
metals

Article

Surface Investigation of Ni81Fe19 Thin Film: Using ARXPS for
Thickness Estimation of Oxidation Layers

Zongsheng He 1, Ziyu Li 1, Xiaona Jiang 1, Chuanjian Wu 1, Yu Liu 1, Xinglian Song 2, Zhong Yu 1, Yifan Wang 1 ,
Zhongwen Lan 1 and Ke Sun 1,*

����������
�������

Citation: He, Z.; Li, Z.; Jiang, X.; Wu,

C.; Liu, Y.; Song, X.; Yu, Z.; Wang, Y.;

Lan, Z.; Sun, K. Surface Investigation

of Ni81Fe19 Thin Film: Using ARXPS

for Thickness Estimation of Oxidation

Layers. Metals 2021, 11, 2061.

https://doi.org/10.3390/met11122061

Academic Editor: Volodymyr

A. Chernenko

Received: 29 November 2021

Accepted: 16 December 2021

Published: 20 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Materials and Energy, University of Electronic Science and Technology of China,
Chengdu 610054, China; hezongsheng112@163.com (Z.H.); ziyu.li@uestc.edu.cn (Z.L.);
xnjiang@uestc.edu.cn (X.J.); wcjuestc2005@uestc.edu.cn (C.W.); liuyui15005510@163.com (Y.L.);
yuzhong@uestc.edu.cn (Z.Y.); complax@163.com (Y.W.); zwlan@uestc.edu.cn (Z.L.)

2 Shandong Chunguang Magnetoelectricity Technology Co., Ltd., Linyi 276017, China;
kongxianjuan@ktong.com

* Correspondence: ksun@uestc.edu.cn; Tel.: +86-028-8320-1637

Abstract: This work demonstrates the dependence between magnetic properties and the thickness
of NiFe thin films. More importantly, a quantitative study of the surface composition of NiFe
thin film exposed to atmospheric conditions has been carried out employing angle-resolved X-ray
photoelectron spectroscopy (ARXPS). In this study, we fabricated Ni81Fe19 (NiFe) thin films on
Si (100) substrate using electron beam evaporation and investigated their surface morphologies,
magnetic properties, and the thickness of the surface oxide layer. The coexistence of metallic and
oxidized species on the surface are suggested by the depth profile of ARXPS spectra. The thickness
of the oxidized species, including NiO, Ni(OH)2, Fe2O3, and Fe3O4, are also estimated based on the
ARXPS results. This work provides an effective approach to clarify the surface composition, as well
as the thickness of the oxide layer of the thin films.

Keywords: permalloy; magnetic thin films; ARXPS; magnetic property; oxidation layer

1. Introduction

Microwave magnetic devices, such as circulators, filters, and phase shifters are in-
dispensable components in satellite and mobile communications systems [1–3]. Recently,
the rapid development in the electronic communication industry has proposed higher
requirements for microwave devices including higher operating frequency, lower loss,
and higher integration level. As magnetoelectronic devices are the core components of
microwave devices [4–6], there is an urgent demand to improve their magnetic proper-
ties at the high-frequency range. However, most microwave/radio-frequency magnetic
components are discrete devices based on bulk materials, and directly reducing the size
of high integration often leads to degradation in performance. The progress of chip-type
technology is still behind for the perfect integration of magnetic components with exist-
ing semiconductor devices. Given the above context, ferromagnetic/anti-ferromagnetic
(FM/AF) thin films with a multilayer structure are considered as ideal candidates. The
higher saturation magnetization (Ms), permeability (µ), and self-biased ferromagnetic reso-
nance (FMR) frequency of the magnetic thin film make them suitable for high-frequency
applications as nanostructured magnetic media and magnetic sensors [7–13]. Meanwhile,
the multilayer structure has been widely used in giant magnetoresistance spin valves based
on the exchange bias phenomenon.

The operating frequency, FMR linewidth and the resonance field of periodically
arranged FM/AF multilayer structure can easily be affected by the change in thickness
of each single layer, as well as the surface morphology. Especially, when the thickness of
individual layers falls below the critical thickness, the states and properties of surface and
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interface dominate the magnetic properties. In the multilayer structure of thin films, the
thickness of each single layer can reach down to the level of several nanometers. However,
such high accuracy is often susceptible to environmental oxidation, which leads to the
change in the effective thickness, as well as the change in composition.

To study the composition of surface and interface as well as the thickness distribution
in multilayer structures, atomic force microscopy (AFM) and angle resolved X-ray photo-
electron spectroscopy (ARXPS) are commonly applied. Among the previous studies, Yu
G.H. et al. [14] studied the relationship between the oxidation states of Ni in NiOx and
the exchange bias field Hex of the NiFe film by ARXPS, but the critical thickness of the
pinning of NiFe film was not studied. S.S. Sakhonenkov et al. [15] presented an in-depth
study of Mo/Si multilayer systems using ARXPS. They reported that a MoSi2 interlayer
with a thickness of 0.19 ± 0.05 nm was identified on the Si-on-Mo interface. J. Zemek
et al. [16] investigated the surface and in-depth distribution of sp2 and sp3 coordinated
carbon atoms in modified diamond-like carbon films. A. Sanchez-Martinez et al. [17]
discovered that small amounts of oxidized gallium and metallic arsenic are located at the
HfO2/InGaAs interface. Meanwhile, they studied the structure of TiN/HfO2 nanofilms
grown on InGaAs substrates by ARXPS. The above evidences have shown ARXPS as a
useful tool in characterizing the surface/interface of the thin films. In this study, AFM and
ARXPS are used to characterize the surface oxidation layers of the NiFe thin film, which
is known for its high permeability while having a relatively high Ms. More importantly,
the thickness of each oxidation layer is estimated based on the ARXPS results. The static
magnetic properties of the NiFe thin films were also investigated.

2. Experimental Details

In this experiment, Ni81Fe19 thin films were deposited on 5 mm × 5 mm Si (100)
substrates by electron beam evaporation (EB-500) in vacuum (≤5.0 × 10−5 Pa) at 25 ◦C.
The thicknesses of the Ni81Fe19 films are 90, 100, 110, and 120 nm. The growth rate of the
film is 0.03 nm/s. The Si (100) substrates were preliminarily cleaned in a sequential bath of
acetone, alcohol, and deionized water and dried with ionized dry N2 flux. Once prepared,
the samples were stored at room temperature to be oxidized under ambient environment.

The surface morphologies of the NiFe thin films were investigated using an atomic
force microscope (AFM, Bruker MultiMode8) with a scanned area of 2 µm × 2 µm. Static
magnetic properties of NiFe films were measured using a vibrating sample magnetometer
(VSM, Lake Shore 8604) at room temperature. The samples were analyzed using ARXPS
(ULVAC-PHI5000 Veraprobe III) with an Al Kα emission source (1486.6 eV). The XPS
measurements were conducted at a base pressure of 8 × 10−10 Pa. The pass energy of the
spectrometer was set to 69 eV. The energy was calibrated by setting the adventitious C 1s
binding energy to 284.8 eV. The chemical depth profile was acquired at six angles (α) of
20◦, 35◦, 45◦, 60◦, 75◦, and 90◦.

3. Results and Discussion
3.1. AFM Analysis and Surface Roughness

Figure 1 illustrates the AFM surface morphology and roughness of the NiFe thin films
with a NiFe thicknesses of 100 nm. The surface roughness of the films with different NiFe
thicknesses from 90 to 120 nm was 1.31 nm, 1.27 nm, 1.45nm, and 1.67 nm, respectively.
The minimum roughness of 1.27 nm is seen for the sample with a thickness of 100 nm,
whose average grain size also appears to be the smallest among the samples (see Figure 3a).
The experimental results are in good correspondence with a previous report [18], which
shows the positive correlation between the average grain size and surface roughness.
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Figure 1. AFM images of NiFe films with a thickness of 100 nm.

3.2. Magnetic Properties of NiFe Films

Figure 2a,b shows the in-plane and out-of-plane magnetic hysteresis loops of NiFe thin
films with the thicknesses from 90 to 120 nm. The samples with thickness of 90–110 nm
show narrow M-H loops, while the 120-nm-thick sample shows a much wider curve,
suggesting a higher coercivity (Hc) [19]. Figure 3 shows the static magnetic properties of
the NiFe thin films, including the saturation magnetization (4πMs) and Hc. According to
Figure 3a, as the thickness of NiFe thin film increases, the 4πMs is increased. Concomitantly,
in-plane (Hc//) and out-of-plane (Hc⊥) coercivity are displayed in Figure 3b. Both Hc// and
Hc⊥ exhibit a similar trend, which shows a slight reduction upon the increase of thickness
from 90 to 110 nm, followed by a dramatic increase as the thickness is further increased to
120 nm. As the Hc is dependent on the quality and defects of the film [20], the dramatic
increase of Hc observed in Figure 3b can be attributed to the high roughness of the 120 nm
thick sample.

3.3. Oxidation Thickness of NiFe Films

Figure 4 shows the ARXPS spectra of Ni in the NiFe thin film with a thickness of 100
nm from various take-off angles. For clear identification of each peak, as well as to obtain
the peak intensity, fitted results for each spectrum are obtained (examples of α = 20◦ and
90◦ are shown in Figure 5). The relationship between the detection depth (d), photoelectron
take-off grazing angle, and the mean free path of inelastic scattering (λ), is as follows [21].

d = 3λ sin α (1)
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take-off angles (α).
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As can be seen in Figure 5, there are several noticeable peaks representing the signals
from Ni 2p3/2 (852.3 eV), NiO 2p3/2 (853.3 eV), Ni(OH)2 2p3/2 (856.6 eV), as well as
their satellite peaks [22–24]. The coexistence of metallic and oxide components is further
confirmed by the spectra from O 1s photoemission, which is shown in Figure 6a. The
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thickness of the oxide film (do) can be calculated according to the ARXPS results through
the following equations [25]:

ln
(

1 +
R

R∞

)
=

do

λ
· 1

sin α
(2)

where α is different take-off angles: 20◦, 35◦, 45◦, 60◦, 75◦, and 90◦, and R is the ratio of
photoelectron peak intensity from the oxides (Io) to that from nickel (Is):

R =
Io

Is
(3)
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In Equation (2), R∞ can be calculated as follows:

R∞ =
Mo

Ms
· ρs

ρo
· λs

λo
(4)

where the values of M are the molecular weight of nickel oxides (Mo) and nickel (Ms),
values of ρ are the density of nickel oxides (ρo) and nickel (ρs), and values of λ are the
mean free path of inelastic scattering for nickel oxides (λo) and nickel (λs). Because the
photoelectron kinetic energy of nickel and its oxides are almost the same, thus λo and λs
are approximately equal [21]. Table 1 shows the values of density, molecular weight for Ni,
NiO, and Ni(OH)2, as well as the calculated R∞ for both nickel oxides.

Table 1. The values of density, molecular weight, and kinetic energy for Ni, NiO, and Ni(OH)2, as
well as R∞ for both nickel oxides.

Material ρ (g/cm3) M (g/mol) R∞ Kinetic Energy (eV)

Ni 8.9 59 - 853.3
NiO 6.84 75 0.6 853.6

Ni(OH)2 4.15 93 0.3 855.0

Table 2 shows the relative peak intensities of nickel (Is) and nickel oxides (Io) at
different take-off angles based on the fitting results shown in Figure 5, as well as the
calculated ratios between them (R). As α is increased from 20 to 90◦, Is(Ni) is seen to
increase from ~20 to ~43%, while both Io(NiO) and Io(Ni(OH)2) are reduced from ~46 to
~32% and from ~33 to ~26%, respectively. As the oxidation reactions take place at the top
surface of the metal substrate, with a limited traveling distance of photoemission signal, it
is natural that the detection depth becomes deeper as the take-off angle becomes closer to
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90◦. Therefore, one can observe the obvious enhancement in Is(Ni), and slight reduction in
Io(NiO) and Io(Ni(OH)2).

Table 2. Relative peak intensities (Is and Io) and the Io/Is ratios for both nickel oxides in the NiFe
(100 nm) thin film.

α

(◦)
Is(Ni)
(%)

Io(NiO)
(%)

Io(Ni(OH)2)
(%) R(NiO) = Io(NiO)/Is R(Ni(OH)2) = Io/Is

20 20.38 46.18 33.44 2.27 1.64
35 32.50 37.95 29.55 1.17 0.91
45 36.73 35.37 27.90 0.96 0.76
60 40.32 33.27 26.41 0.83 0.66
75 42.05 32.29 25.66 0.77 0.61
90 42.57 32.00 25.44 0.75 0.60

According to Equation (2), to calculate the thickness of the oxidation layer, one can
plot the results of ln(1 + R/R∞) against 1/sinα, the slope of which indicates the thickness
divided by the mean free path of inelastic scattering (do/λ). Figure 6b shows the results of
ln(1 + R/R∞) against 1/sinα for Ni(OH)2 and NiO. Given that λ = 6 Å [26], the thickness of
NiO in NiFe thin film is determined to be 0.2 nm, the thickness of Ni(OH)2 is determined
to be 0.3 nm.

As with nickel oxides, the composition and thickness of iron oxides can also be
determined. Figure 7 shows the Fe 2p photoemission spectra of partially oxidized NiFe
thin film. The signals from each take-off angle can be fitted with Fe 2p3/2 (706.8 eV), Fe2O3
2p3/2 (710.7 eV), and Fe3O4 2p3/2 (709.3 eV) [27–29], the results of which are shown in
Figure 8. Figure 9a shows the fitted O 1s spectra to further confirm the existence of iron
oxides. Table 3 shows the relevant parameters including Is(Fe), Io(Fe2O3), Io(Fe3O4), and
the intensity ratios between iron and its oxides. For the same reason mentioned above,
Is(Fe) is increased with increasing α, as higher take-off angle results in deeper detection
depth.
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Figure 9. (a) ARXPS spectra of O 1s photoemission and the fitting results, (b) the results of ln(1 + R/R∞) against 1/sinα for
the iron oxides in NiFe thin film.

Table 3. Relative peak intensities (Is and Io) and the Io/Is ratios for both iron oxides in the NiFe (100 nm) thin film.

α (◦) Is(Fe) (%) Io(Fe3O4) (%) Io(Fe2O3) (%) R(Fe3O4) = Io(Fe3O4)/Is R(Fe2O3) = Io(Fe2O3)/Is

20 2.11 7.85 90.04 3.72 42.67
35 8.59 8.01 83.41 0.93 9.71
45 12.49 7.92 79.58 0.63 6.37
60 16.63 7.75 75.61 0.47 4.55
75 18.91 7.63 73.46 0.40 3.88
90 19.63 7.59 72.78 0.39 3.71

Table 4 shows the values of density, molecular weight for Fe, Fe3O4, and Fe2O3, as well
as the calculated R∞ for both iron oxides. The values in Tables 3 and 4 are integrated into
Equations (2)–(4), and the results of ln(1 + R/R∞) against 1/sinα for Fe 2p photoemission
in the NiFe thin film are shown in Figure 9b. As λ = 7.5 Å [26], the thickness of Fe2O3 layer
determined is 0.9 nm and that of Fe3O4 is 0.7 nm. It means that oxidation in the natural
environment occurs only in the extreme depth of the surface. To summarize, a schematic
illustration is shown in Figure 10 to better demonstrate the multilayer structure of the
oxidized NiFe.
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Table 4. The values of density, molecular weight, and kinetic energy for Fe, Fe2O3, and Fe3O4, as
well as R∞ for both iron oxides.

Material ρ (g/cm3) M (g/mol) R∞ Kinetic Energy (eV)

Fe 7.86 56 - 710.7
Fe2O3 5.24 160 0.23 710.4
Fe3O4 5.18 232 0.16 710.8
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4. Conclusions

In summary, NiFe thin films with thickness from 90 to 120 nm were fabricated by
electron beam evaporation. The sample with a thickness of 100 nm shows the lowest
surface roughness and the smallest grain size. The saturation magnetization of the films is
increased from 9891 to 10,300 Gs as the thickness of film increases. The optimum magnetic
properties (4πMs = 9930 Gs, Hc = 1.37 Oe) are obtained when the thickness of film is 100 nm.
In addition, the coexistence of NiFe and its oxides on the top surface is observed along the
probing depth of ARXPS. By fitting the ARXPS spectra and obtaining the relative intensity
of each peak, the thickness of NiO, Ni(OH)2, Fe2O3, and Fe3O4, which are 0.3 nm, 0.2 nm,
0.9 nm, and 0.7 nm, respectively, are determined. This work demonstrates the beneficial
application of ARXPS in characterizing the oxide layers including their compositions and
thicknesses as a quick and damage-free approach, especially for future investigations with
even lower film thickness.
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