

Article

Effects of Incorporating B-Tricalcium Phosphate with Reaction Sintering into Mg-Based Composites on Degradation and Mechanical Integrity

Kai Narita 1,*,†, Sachiko Hiromoto ², Equo Kobayashi ¹ and Tatsuo Sato ³

- ¹ Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan; equo@mtl.titech.ac.jp
- ² Corrosion Property Group, Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan; hiromoto.sachiko@nims.go.jp
- ³ Tokyo Institute of Technology, Tokyo 152–8552, Japan; sato.tatsuo8@gmail.com
- * Correspondence: kai.y.narita@gmail.com
- ⁺ Current address: Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA 91125, USA.

Figure S1. Optical microscopic image of Mg particles. L shows the length of the longest distance of a Mg particle contour.

Figure S2. Histogram of Mg particle size measured from optical microscope images

Citation: Narita, K.; Hiromoto, S.; Kobayashi, E.; Sato, T. Effects of Incorporating B-Tricalcium Phosphate with Reaction Sintering into Mg-Based Composites on Degradation and Mechanical Integrity. *Metals* **2021**, *11*, 227. https://doi.org/10.3390/met11020227

Received: 22 December 2020 Accepted: 25 January 2021 Published: 28 January 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

Element	Al	Ca	Cu	Fe	Mn	Pb	Si	Zn	Total
%	0.03	0.008	ND	0.009	0.01	ND	0.02	0.006	0.083

*ND: Not Detected.

Table S1. Impurity of magnesium powder.

Figure S3. The boundary of sintered Mg particles obtained by Auger electron microscopy. (a) secondary electron image, (b) elemental mapping of Mg, and (c) elemental mapping of O.

Figure S4. Ultimate compressive strength of Mg/bredigite [1], Mg-3Zn/5wt.%HA [2], Mg-2.5Zn-0.5Si/1wt.%HA [3], and Mg/ β -TCP (our work).

Reference

- 1 Naddaf, S.; Lee, S.; Huan, Z.; Chang, J.; Zhou, J. Fabrication of novel magnesium-matrix composites and their mechanical properties prior to and during in vitro degradation. *J. Mech. Behav. Biomed. Mater.* **2017**, *67*, 74–86, doi:doi.org/10.1016/j.jmbbm.2016.10.010.
- 2 Parande, G.; Manakari, V.; Prasadh, S.; Chauhan, D.; Rahate, S.; Wong, R.; Gupta, M. Strength retention, corrosion control and biocompatibility of Mg–Zn–Si/HA nanocomposites. *J. Mech. Behav. Biomed. Mater.* 2020, 103, 103584, doi:10.1016/j.jmbbm.2019.103584.
- 3 Dubey, A.; Jaiswal, S.; Lahiri, D. Mechanical Integrity of Biodegradable Mg–HA Composite During In Vitro Exposure. *J. Mater. Eng. Perform.* **2019**, *28*, 800–809, doi:10.1007/s11665-018-3778-8.