Precipitation Behavior of ω Phase and ω→α Transformation in Near β Ti-5Al-5Mo-5V-1Cr-1Fe Alloy during Aging Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Transformation during Aging Process
3.2. Formation of Isothermal ω Phase
3.3. Evolution of Isothermal ω Phase
3.4. ω Assisted α Nucleation
4. Conclusions
- The increased α precipitates are the result of the joint action of β→α and ω→α transformation processes. When the aging condition is 450 °C/30 min, the isothermal ω phase has coexisted with the embryonic ω phase. This may be due to the aging temperature of 450 °C accelerating the element diffusion process, which can promote the transformation process from the embryonic ω phase to the isothermal ω phase.
- The embryonic ω phase precipitates at 15 min is not obvious. As the aging time continues to increase, the embryonic ω phase precipitates and transforms to isothermal ω phase after 30 min of aging. The transformation process completes after 120 min. The evolution of the isothermal ω phase goes through the increasing average size and aspect ratio from 24.7 to 47.0 nm and from 2.1 to 2.7 respectively, and the change of the ω particle morphology goes from ellipsoid to spindle-like with the increasing aging time.
- The α phase nucleates at the ω/β interface and satisfy the orientation relationship: (100)α//(100)ω//(211)β. The element of Mo, V and Cr in the isothermal ω phase is low. Additionally, Al, as an α stabilizing element, is enriched in the α phase. The Fe elements are evenly distributed in the isothermal ω phase and β matrix but lean in the α phase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banerjee, D.; Williams, J. Perspectives on titanium science and technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Boyer, R.R.; Briggs, R.D. The use of beta titanium alloys in the aerospace industry. J. Mater. Eng. Perform 2005, 14, 681–685. [Google Scholar] [CrossRef]
- Ankem, S.; Greene, C.A. Recent developments in microstructure/property relationships of beta titanium alloys. Mater. Sci. Eng. A 1999, 263, 127–131. [Google Scholar] [CrossRef]
- Okulov, I.V.; Wendrock, H.; Volegov, A.S.; Attar, H.; Kühn, U.; Skrotzki, W.; Eckert, J. High strength beta titanium alloys: New design approach. Mater. Sci. Eng. A. 2015, 628, 297–302. [Google Scholar] [CrossRef]
- Okulov, I.V.; Bönisch, M.; Volegov, A.S.; Shahabi, H.S.; Wendrock, H.; Gemming, T.; Eckert, J. Micro-to-nano-scale deformation mechanism of a Ti-based dendritic-ultrafine eutectic alloy exhibiting large tensile ductility. Mater. Sci. Eng. A. 2017, 682, 673–678. [Google Scholar] [CrossRef]
- Franco, L.A.L.; Lourenco, N.J.; Graca, M.L.A.; Silva, O.M.M.; De Campos, P.P.; Von Dollinger, C.F.A. Fatigue fracture of a nose landing gear in a military transport aircraft. Eng. Fail. Anal. 2006, 13, 474–479. [Google Scholar] [CrossRef]
- Warchomicka, F.; Poletti, C.; Stockinger, M. Study of the hot deformation behavior in Ti-5Al-5Mo-5V-3Cr. Mater. Sci. Eng. A 2008, 490, 369–377. [Google Scholar]
- Li, C.; Zhang, X.Y.; Zhou, K.C.; Peng, C.Q. Relationship between lamellar α evolution and flow behavior during isothermal deformation of Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mater. Sci. Eng. A 2012, 558, 668–674. [Google Scholar] [CrossRef]
- Tsybanev, G.V.; Ageev, M.A.; Titarenko, R.V. Analysis of the specific features of loading of the elements of landing gears of aircrafts aimed at the evaluation of the load-bearing capacity of the structure. Strength Mater. 2008, 40, 458–462. [Google Scholar] [CrossRef]
- Lan, C.; Wu, Y.; Guo, L.; Chen, H.; Chen, F. Microstructure texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy. J. Mater. Sci. Technol. 2018, 34, 788–792. [Google Scholar] [CrossRef]
- Cotton, J.D.; Briggs, R.D.; Boyer, R.R.; Tamirisakandala, S.; Russo, P.; Shchetnikov, N.; Fanning, J.C. State of the art in beta titanium alloys for airframe applications. JOM 2015, 67, 1281–1303. [Google Scholar] [CrossRef] [Green Version]
- Haghighi, S.E.; Attar, H.; Okulov, I.V.; Dargusch, M.S.; Kent, D. Microstructural evolution and mechanical properties of bulk and porous low-cost Ti-Mo-Fe alloys produced by powder metallurgy. J. Alloys Compd. 2021, 853, 156768. [Google Scholar] [CrossRef]
- Chen, W.; Wang, H.D.; Lin, Y.C.; Zhang, X.Y.; Chen, C.; Zhou, Y.P.L.K.C. The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling. J. Mater. Sci. Technol. 2020, 43, 220–229. [Google Scholar] [CrossRef]
- Jones, N.G.; Dashwood, R.J.; Jackson, M.; Dye, D. Beta phase decomposition in Ti-5Al-5Mo-5V-3Cr. Acta Mater. 2009, 57, 3830–3839. [Google Scholar] [CrossRef]
- Lutjering, G.; Williams, J.C. Titanium; Springer: Berlin, Germany, 2007; pp. 30–33. [Google Scholar]
- Nag, S.; Banerjee, R.; Srinivasan, R.; Hwang, J.Y.; Harper, M.; Fraser, H.L. Omega-Assisted nucleation and growth of alpha precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe beta titanium alloy. Acta Mater. 2009, 57, 2136–2147. [Google Scholar] [CrossRef]
- Williams, J.C.; Jaffee, R.I.; Burte, H.M. Ti1973 Science and Technology; Plenum Press: New York, NY, USA, 1973; pp. 1433–1494. [Google Scholar]
- Williams, J.C.; Fontaine, D.D.; Paton, N.E. The ω-phase as an example of an unusual shear transformation. Metall. Transform. 1973, 4, 2701–2708. [Google Scholar] [CrossRef]
- Blackburn, M.J.T.; Williams, J.C. Phase Transformation in Ti-Mo and Ti-V Alloys; Boeing Scientific Research Labs: Seattle, WA, USA, 1968. [Google Scholar]
- Zheng, Y.; Williams, R.E.; Sosa, J.M.; Alam, T.; Wang, Y.; Banerjee, R.; Fraser, H.L. The indirect influence of the omega phase on the degree of refinement of distributions of the alpha phase in metastable beta-Titanium alloys. Acta Mater. 2016, 103, 850–858. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Choudhuri, D.; Alam, T.; Williams, R.E.; Benerjee, R.; Fraser, H.L. The role of cuboidal omega precipitates on alpha precipitation in a Ti-20V alloy. Scr. Mater. 2016, 123, 81. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Kent, D.; Sha, G.; Cairney, J.M.; Dargusch, M.S. The role of ω in the precipitation of α in near-β Ti alloys. Scr. Mater. 2016, 117, 92–95. [Google Scholar] [CrossRef]
- Li, T.; Kent, D.; Sha, G.; Stephenson, L.T.; Ceguerra, A.V.; Ringer, S.P.; Dargusch, M.S.; Cairney, J.M. New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Mater. 2016, 106, 353–366. [Google Scholar] [CrossRef]
- Azimzaden, S.; Rack, H. Phase transformations in Ti-6.8Mo-4.5Fe-1.5Al. Met. Mater. Trans. A 1998, 29, 2455–2467. [Google Scholar] [CrossRef]
- Shi, R.; Zheng, Y.; Banerjee, R.; Fraser, H.L.; Wang, Y. ω-Assisted α nucleation in a metastable β titanium alloy. Scr. Mater. 2019, 171, 62–66. [Google Scholar] [CrossRef]
- Cao, S.; Jiang, Y.; Yang, R.; Hu, Q.M. Properties of β/ω phase interfaces in Ti and their implications on mechanical properties and ω morphology. Comput. Mater. Sci. 2019, 158, 49–57. [Google Scholar] [CrossRef]
- Sass, S.L. The structure and decomposition of Zr and Ti b.c.c. solid solutions. J. Less Common. Met. 1972, 28, 157–173. [Google Scholar] [CrossRef]
- Ivasishin, P.E.; Markovsky, S.L.; Semiatin, C.H. Ward, Aging response of coarse and fine-grained β titanium alloys. Mater. Sci. Eng. A 2005, 405, 296–305. [Google Scholar] [CrossRef]
- Prima, F.; Vermaut, P.; Texier, G.; Ansel, D.; Gloriant, T. Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy. Scr. Mater. 2006, 54, 645–648. [Google Scholar] [CrossRef]
- Mantri, S.A.; Choudhuri, D.; Behera, A.; Hendrickson, M.; Alam, T.; Banerjee, R. Role of isothermal omega phase precipitation on the mechanical behavior of a Ti-Mo-Al-Nb alloy. Mater. Sci. Eng. A 2019, 767, 138397. [Google Scholar] [CrossRef]
- Xu, Y.F.; Yi, D.Q.; Liu, H.Q.; Wang, B.; Yang, F.L. Age-hardening behavior, microstructural evolution and grain growth kinetics of isothermal ω phase of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications. Mater. Sci. Eng. A 2011, 529, 326–334. [Google Scholar] [CrossRef]
- Ke, Y.; He, C.; Zheng, H.; Geng, Y.; Fu, J.; Zhang, S.; Hu, H.; Wang, S.; Zhou, B.; Wang, F.; et al. The time-of-flight Small-Angle Neutron Spectrometer at China Spallation Neutron Source. Neutron News 2018, 29, 14–17. [Google Scholar] [CrossRef]
- Coakley, J.; Vorontsov, V.A.; Jones, N.G.; Radecka, A.; Bagot, P.A.; Littrell, K.C.; Heenan, R.K.; Hu, F.; Magyar, A.P.; Bell, D.C.; et al. Precipitation processes in the Beta-Titanium alloy Ti-5Al-5Mo-5V-3Cr. J. Alloys Compd. 2015, 646, 946–953. [Google Scholar] [CrossRef] [Green Version]
- Sikka, S.K.; Vohra, Y.K.; Chidambaram, R. Omega phase in materials. Prog. Mater. Sci. 1982, 27, 245–310. [Google Scholar] [CrossRef]
- Fontaine, D.D.; Paton, N.E.; Williams, J.C. The omega phase transformation in titanium alloys as an example of displace controlled reactions transformation. Acta Matallurgica 1971, 19, 1153–1162. [Google Scholar] [CrossRef]
- Devaraj, A.; Nag, S.; Srinivasan, R.; Williams, R.E.A.; Banerjee, S.; Banerjee, R.; Fraser, H.L. Experimental evidence of concurrent compositional and structure instabilities leading to ω precipitation in titanium-molybdenum alloys. Acta Mater. 2012, 60, 596–609. [Google Scholar] [CrossRef]
- Sanchez, J.M.; Fontaine, D.D. Anomalous diffusion in omega forming systems. Acta Matallurgica 1978, 26, 1083–1095. [Google Scholar] [CrossRef]
- Furuhara, T.; Maki, T.; Makino, T. Microstructure control by thermomechanical processing in β-Ti-15-3 alloy. J. Mater. Process. Technol. 2001, 117, 318–323. [Google Scholar] [CrossRef]
- Dong, R.; Li, J.; Kou, H.; Fan, J.; Zhao, Y.; Hou, H.; Wu, L. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy. J. Mater. Sci. Technol. 2020, 44, 24–30. [Google Scholar] [CrossRef]
- Alina, G.; Butler, P.; Cho, J.; Doucet, M.; Kienzle, P. SANS Analysis Software. Available online: www.sasview.org (accessed on 12 December 2020).
- Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering; Plenum Press: New York, NY, USA, 1987. [Google Scholar]
- Shi, R.; Ma, N.; Wang, Y. Predicting equilibrium shape of precipitates as function of coherency state. Acta Mater. 2012, 60, 4172–4184. [Google Scholar] [CrossRef]
- Ohmori, Y.; Ogo, T.; Nakai, K.; Kobayashi, S. Effect of ω-phase precipitation on β→α, α″ transformations in a metastable βtitanium alloy. Mater. Sci. Eng. A 2001, 312, 182–188. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wei, S.; Yang, S.; Ke, Y.; Zhang, X.; Zhou, K. Precipitation Behavior of ω Phase and ω→α Transformation in Near β Ti-5Al-5Mo-5V-1Cr-1Fe Alloy during Aging Process. Metals 2021, 11, 273. https://doi.org/10.3390/met11020273
Guo Y, Wei S, Yang S, Ke Y, Zhang X, Zhou K. Precipitation Behavior of ω Phase and ω→α Transformation in Near β Ti-5Al-5Mo-5V-1Cr-1Fe Alloy during Aging Process. Metals. 2021; 11(2):273. https://doi.org/10.3390/met11020273
Chicago/Turabian StyleGuo, Yi, Shaohong Wei, Sheng Yang, Yubin Ke, Xiaoyong Zhang, and Kechao Zhou. 2021. "Precipitation Behavior of ω Phase and ω→α Transformation in Near β Ti-5Al-5Mo-5V-1Cr-1Fe Alloy during Aging Process" Metals 11, no. 2: 273. https://doi.org/10.3390/met11020273
APA StyleGuo, Y., Wei, S., Yang, S., Ke, Y., Zhang, X., & Zhou, K. (2021). Precipitation Behavior of ω Phase and ω→α Transformation in Near β Ti-5Al-5Mo-5V-1Cr-1Fe Alloy during Aging Process. Metals, 11(2), 273. https://doi.org/10.3390/met11020273