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Abstract: Forming limit curve (FLC) is an important failure criterion for sheet metals in sheet metal
forming, while the M-K model is widely used for the prediction of the FLC. In the M-K model, such
prediction is greatly influenced by the initial thickness imperfection factor and material properties,
from which the original M-K model’s theoretical derivation is proposed as a solution to the above
mentioned issue in this paper. Then the relationship between the M-K model and Keeler’s empirical
formula is then studied, from which a new method to predict FLC is proposed that combines the
M-K model with Keeler’s empirical formula according to the previous analyses. It turns out that this
new method can simplify the calculation procedure. Finally, the experimental results of two kinds of
aluminum alloys, AA6016 and AA5182, have verified the effectiveness of the proposed method.

Keywords: M-K method; Keeler’s empirical formula; forming limit curve; aluminum alloy

1. Introduction

Lightweight materials are currently a hot issue in the automotive and aerospace
industry. As light alloy material, aluminum alloy is of small destiny, has a high ratio of
strength to weight and has high corrosion resistance ability [1–3]. Therefore, it is increasing
in popularity. However, aluminum alloys are quite different from automotive steel sheets
in ductility, anisotropy, yield strength and other indicators, so the study of its formability
is of great significance. The forming limit curve (FLC) is the most intuitive and effective
formability indicator for evaluating the forming performance of metal sheets. It is a curve
determined by the instability limit strains of the sheet metal under different strain paths [4].
During the forming process, fracture occurs when the minor and major strain points of the
sheet metal are above the FLC. As FLC is widely used to accurately predict the forming
limit, great attention has been paid to it [5,6].

To quickly and easily obtain the FLC of metal sheets, the following theoretical models
have been proposed, based on the plastic forming theory. The Swift model is based on a
unique relationship between the root-mean-square values of shear stress and incremental
strain [7]. The Hill model is derived from permissible discontinuities of stress, velocity,
and surface slope [8]. The modified maximum force criterion (MMFC) predicts localized
necking under non-proportional loading [9]. The M-K model takes the initial thickness
imperfection into account [10]. It is widely used because of its simplicity and high precision,
and its original model has already been improved significantly by scholars. For further
researches on the M-K method, the angle between the groove and direction of the principal
stress has been introduced in prediction [11–14]. Although scholars have done a lot of
research on it, there are still some disadvantages. The predictions made by the M-K model
are affected by many factors, such as the yield criterion of the materials and the termination
conditions of the algorithm. The performance of the original M-K model on prediction of
the FLC for aluminum alloy is in need of further research. So further study is needed to
improve the M-K method.
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In this study, the M-K model’s theoretical derivation is proposed. Besides, the effect of
material properties and the termination condition of the algorithm are carried out, and then
the relation between the M-K model and Keeler’s empirical formula [15] is studied. Based
on the previous analyses about such relation, a new method to predict FLC is proposed,
which combines the M-K model with Keeler’s empirical formula, and can greatly simplify
the calculation. Finally, the experiments of two aluminum alloys, AA6016 and AA5182,
are introduced to verify the effectiveness of this method.

2. Materials and Methods
2.1. Theoretical Analysis
2.1.1. Original M-K Model

The schematic diagram of groove model is shown in Figure 1. The plastic flow follows
the normality rule, which states

dλ =
dε1
∂ f
∂σ1

=
dε2
∂ f
∂σ2

=
dε3
∂ f
∂σ3

, (1)

where f is yield function; σ1, σ2, and σ3 are stress components that correspond to the
principal axis of stress.
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Figure 1. Schematic diagram of groove model.

According to the hypothesis of incompressibility, we have

dε1 + dε2 + dε3 = 0, (2)

In order to take sheet metal’s normal anisotropy into account, the Hill’48 plastic
yield [16] criterion is applied. The following formulas can be obtained.

σ2
i =

r(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2

1 + r
, (3)

σi =

√
σ2

1 − 2r
1 + r

σ1σ2 + σ2
2 , (4)

where r is normal anisotropic coefficient.
α and β are defined as follows:

α =
σ2

σ1
, (5)
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β =
dε1

dε2
, (6)

Considering stresses are parallel to principal axis of stress, the relation between dεi
and dε1 can be derived by the equivalent plastic work which is expressed as

σidεi = σ1dε1 + σ2dε2, (7)

From Equation (1), β is derived as a function of α, while β = β(α).
It is supposed that the strains of the zone A and the zone B are equal in the 2-direction:

dε2 = dεA
2 = dεB

2 , (8)

force balance condition in 1-direction is expressed as:

σA
1 tA = σB

1 tB, (9)

And the error is set as:
e = σA

1 tA − σB
1 tB, (10)

Based on the above analysis, the stresses and strains of zone A can be obtained when
the equivalent strain increment dεA

i and the ratio αA of zone A are given. The equivalent
strain increment dεB

i of zone B can be determined by Newton iterative algorithm with the
objective function (9). The strain of zone B is considered as the fracture strain when the
main strain of the zone B is far greater than that of zone A.

Setting
ϕ= dεB

1 /dεA
1 , (11)

then the termination of the algorithm can be written as ϕ > ϕT . The recommended value
of ϕT is stated in this paper. The flow chart of each path is shown in Figure 2.
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2.1.2. Relationship between M-K Model and Keeler’s Empirical Formula

The hardening model is expressed as

σ = Kεn, (12)

During each iteration, σA
1 tA is a constant, while the stress component σB

1 and the
thickness tB are determined by the strain increment of zone B dεB

i . That is to say, e is a
function of dεB

i . From Equations (2) and (6), the strain increment dε3 is a function of dεB
i .

Accordingly, we have
σB

1 = σ
(

dεB
i

)
g
(

dεB
i

)
= Kh

(
dεB

i

)
, (13)

Divide both sides of Equation (10) by K, we have

e1 =
e
K

=
σA

1 tA

K
− h
(

dεB
i

)
t
(

dεB
i

)
, (14)

Therefore, the calculated FLCs are independent of strength coefficient K, which is
similar to Keeler’s empirical formula [15]. However, there is a slight difference between
Keeler’s empirical formula and M-k method. The former is dependent on the thickness of
the sheet metal, which is expressed as Equations (15) and (16), while the latter introduces
the thickness imperfection.

ε1 =

{
FLC0 + ε2(0.02725ε2 − 1.1965) , ε2 ≤ 0
FLC0 + ε2(−0.008565ε2 + 0.7849) , ε2 > 0

, (15)

FLC0 =


n(23.3+14.134t)

21.0 , t < 2.54
n(20+20.67t−1.94t2)

21.0 , 2.54 ≤ t < 5.33
n75.125

21.0 , t ≥ 5.33

, (16)

2.1.3. The Modified M-K Model

The contrastive study points out the predicted forming limit curves, obtained by the
original M-K model, do not match the experiment results for either AA6016 or AA5182.
However, the value of FLC0 accords with the experiments. In order to predict the FLC
more precisely, the M-K method is combined with Keeler’s empirical formula, where
FLC0 is calculated by the M-K method, and the accurate FLC is calculated according to
Equation (15).

In the following equations, the calculation of FLC0 will be simplified. When the minor
strain is 0, from Equations (4) and (5), we have

dε1 = dεi
σi

σ1
(
1 − r

1+r α
)

dε2 = dεi
σi

σ1
(
α − r

1+r
)

dε3 = −(dε2 + dε1)

(17)

dε1 = dεi
σi

σ1

(
1 −

( r
1+r
)2
)
= dεi

dε2 = 0
dε3 = −dε1 = −dεi

(18)

According to Equations (10), (12) and (18), Equation (14) can be written as

e =
(

εA
i + dεA

i

)n
tA
0 e−(εA

i +dεA
i ) −

(
εB

i + dεB
i

)n
tB
0 e−(εB

i +dεB
i ), (19)

where tB
0 and tA

0 are the initial thickness of zone B and A, let f0 = tB
0 /tA

0 denote the initial
thickness imperfection factor.



Metals 2021, 11, 394 5 of 11

In each iteration, e is dependent only on dεB
i . Equations (14) and (19) have similarities.

Meanwhile, Equation (19) expresses that the FLC0 only depends on the hardening exponent
and the initial thickness imperfection factor.

2.2. Experiments to Determine the Material Properties

Aluminum alloy 6016-T4 and 5182-O (sheet thickness is 1 mm) are applied in the
experiments of this paper. The geometrical dimension of the dog bones is shown in Figure 3,
designed according to the standard GB/T 228.1-2010 [17]. The stretch testing machine
is SANS (50 KN, MTS Industrial Systems (China) CO., LTD., Shenzhen, China), and the
strains are measured by the extensometer with 25 mm-gauge-length. During the test,
the chuck moves at a constant speed of 3 mm/s.
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The stress-strain response of AA6016 and AA5182 is expressed in Figure 4. The stress-
strain response are fitted by power function and the adjusted R-squared is greater than
0.995. The fitting results are expressed in Table 1 and Figure 4.
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Figure 4. The stress-strain response of AA6016 and AA5182.

Table 1. Material parameter of AA6016 and AA5182.

Material Strength Coefficient
K/MPa

Hardening Exponent
N

Coefficient of Normal
Anisotropy

R

6016 126 0.27 0.56

5182 121 0.33 0.66

The forming limit tests are carried out in accordance with GB/T15825.631995 [18].
The drawing of the test tooling is shown in Figure 5. The strain path (ratio of major to
minor strain) is changed according to the change of specimen width and the lubrication
condition. The test pieces are rectangular sheets shown in Figure 6. The width w1 is in a
range from 20 mm to 160 mm and the interval is 20 mm. The value of w is 20 mm greater
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than w1. Only one experiment is carried out for each specimen. Each point in the forming
limit diagram is only one sample.
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3. Results and Discussion
3.1. Parameters’ Effect on the Prediction of the FLC

From Equations (4) and (5), the yield criterion directly determines the stress and strain
increment tensor of each iteration. Accordingly, the yield criterion has a direct impact on
the prediction results. In Section 2.1.1 (Theoretical Analyses), the Hill’48 yield criterion was
applied with the normal anisotropy. When the normal anisotropic coefficient was equal
to one, the Von Mises yield criterion was applied. For both of the above mentioned yield
criteria, the initial thickness imperfection factor was 0.999.

The predicted FLCs of AA6016 and AA5182, based on the M-K method, are shown in
Figure 7. The lowest point of the FLC, predicted by the M-K method, is independent of
the normal anisotropic coefficient. This outcome is consistent with the previous theoretical
derivations in Section 2.1.3. When the normal anisotropic coefficient changes, there is a
subtle change in the shape of the prediction curve at the left side (negative minor strain)
while significant change is seen on that at the right side (positive minor strain). The curve
rises with the decrease of the normal anisotropic coefficient.
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From the analysis in Section 2.1.1, the predicted results, based on the M-K method,
are dependent on the hardening exponent, but independent on the strength coefficient.
According to Table 1, the hardening exponent of 6016 is less than that of 5182. Therefore,
when the hardening exponent increases, the predicted FLC based on M-K method moves
up, as shown in Figure 7.

By comparing the experimental data of AA6016 and AA5182, the predicted FLC
is independent on the strength coefficient under the M-K method. The FLC tends to
move up when the strength coefficient increases. In addition, the FLC0 relies on the
hardening exponent.

Based on previous relevant studies, the value of ϕT in the termination condition of the
algorithm is in a range from 7 to 10. However, the principle of determining this value is
unclear. This paper discusses the influence of the value on predicted FLC. Figure 8 reveals
the ratios of equivalent strains in region B to those in region A. The values of α are chosen
for the purpose that the strain paths are evenly distributed throughout the forming limit
diagram. The value ϕ changes slowly at the initial stage and then increases rapidly when ε,
the equivalent strain, reaches a certain value. To research the influence of ϕT on predicted
result, let εϕT denote the equivalent strain when ϕ reaches ϕT . If setting

∆ε = εϕT=10 − εϕT=3, (20)

the values of ∆ε are very small under different stress paths. The ratios of ∆ε to ε10 are less
than 2%, which are listed in Table 2. Therefore, the iteration termination condition can be
taken as ϕ > 3. That is to say, dεB

1 /dεA
1 > 3 is regarded as the termination condition of the

algorithm under the M-K method.
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Table 2. The ratio of the strain increment of zone B and A.

α

True Strain in Region A True Strain in Region B

εϕT=3 εϕT=10 ∆ε
Percent of ∆ε

/% εϕT=3 εϕT=10 ∆ε
Percent of ∆ε

/%

0.10 0.6689 0.6707 0.0018 0.3 0.7259 0.7335 0.0076 1.0

0.20 0.4347 0.4358 0.0011 0.3 0.4692 0.4739 0.0047 1.0

0.30 0.2924 0.2931 0.0007 0.2 0.3115 0.3145 0.003 1.0

0.40 0.2761 0.2768 0.0007 0.3 0.2931 0.2963 0.0032 1.1

0.60 0.6137 0.6162 0.0025 0.4 0.6639 0.6733 0.0094 1.4

0.75 1.1103 1.1164 0.0061 0.6 1.1994 1.2201 0.0207 1.7

In addition, the predicted FLCs for AA6016 under different initial thickness imper-
fection factors are expressed in Figure 9. The FLC curve calculated from the M-K theory
is greatly influenced by initial thickness imperfection factor. The FLC tends to move up
when the initial thickness imperfection increases. In addition, the
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FLC0 relies on the initial thickness imperfection factor.

3.2. Performance of the Improved M-K Model

According to the analysis in Section 2.2, both Keeler’s empirical formula and the M-K
method depend on the hardening exponent. However, the M-K method depends on initial
thickness imperfection factor, while Keeler’s empirical formula depends on the thickness
of the sheet metal. FLC experiments are carried out to explore the relationship between
these parameters and the predicted FLC’s accuracy. The experiments’ results are stated in
Figures 10 and 11. Meanwhile, the predicted FLCs, based on M-K method and Keeler’s
empirical formula, are presented.
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For AA6016 and AA5182, the prediction results, based on the M-K method and
Keeler’s empirical formula, respectively, are very different. Under Keeler’s empirical
formula, the shape of the FLC never changes, while only the lowest point FLC0 does
with the corresponding parameters. On the contrary, both FLC0 and the shape of the
FLC under the M-K method change with the parameters. Therefore, although there are
some similarities between Keeler’s empirical formula and the M-K method, their predicted
results are quite different in both the lowest point of the FLC, FLC0, and the shape of
the FLC.

Compared with experimental results, the value of FLC0 under the M-K method,
tends to be more accurate when the initial thickness imperfection factor is appropriate
(for example, the thickness imperfection factor of AA6016 is between 0.9 and 0.999, while
the factor of AA5182 is between 0.7 and 0.9). In contrast, the shape of the FLC under
Keeler’s empirical formula is more consistent with the experimental results. Therefore,
these two methods are suggested to be combined. Calculating FLC0 under the M-K method,
and then the FLC curve according to Equation (15), the FLCs are presented in Figures 10
and 11. By comparison of the experimental data and the predicted FLC under the proposed
method, the predicted FLC under the proposed new method fits the experimental data very
well for both AA6016 and AA5182 when the initial thickness imperfection factor is suitable.

4. Conclusions

In this study, the theoretical derivation of the M-K method is proposed. Besides,
the relationship between the M-K method and Keeler’s empirical formula is presented.
Under this relation, a new method to predict FLC, which combines both of these two
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aspects, is proposed. Finally, the experiments about the forming limit curve of AA6016 and
AA5182 validate the proposed new method. Consequently, it is concluded that:

1. By comparison with the experimental data of AA6016 and AA5182, the predicted
FLC is independent on the strength coefficient under the M-K method. The FLC
tends to move up when the strength coefficient or the initial thickness imperfection
increases. In addition, the FLC0 relies on the hardening exponent and the initial
thickness imperfection factor.

2. Under the M-K method, dεB
1 /dεA

1 > 3 is regarded as the termination condition of
the algorithm.

3. Although there are some similarities between Keeler’s empirical formula and the M-K
method, those predicted results are quite different in both the lowest point of the FLC,
FLC0, and the shape of the FLC.

4. When the initial thickness imperfection factor is suitable, the predicted FLC under the
proposed new method fits the results of the experiments very well for both AA6016
and AA5182.
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