High Bending Strength Hypereutectic Al-22Si-0.2Fe-0.1Cu-Re Alloy Fabricated by Selective Laser Melting
Abstract
:1. Introduction
2. Experimental
2.1. Powder Materials
2.2. SLM Process
2.3. Microstructure Characterization
2.4. Mechanical Properties Characterization
3. Results and Discussion
3.1. Powder Characterization
3.2. Phase Analysis and Forming Quality
3.2.1. Phase Analysis
3.2.2. Densification and Porosity
3.2.3. Surface Roughness
3.3. Microstructure Characterization
3.4. Mechanical Properties
3.4.1. Micro-Hardness
3.4.2. Bending Properties
- (i)
- Due to the rapid cooling rate of the SLM process, the solubility of Si in the Al matrix has a significant increase, which leads to the lattice distortion [33] and further hinders dislocation movement [18]. Hence, the strength and hardness of the as-built samples are improved by solid-solution strengthening.
- (ii)
- The primary Si particles formed in conventional cast hypereutectic Al-Si alloys have coarse polygonal morphology (with the average size of ~80 μm) and are unevenly distributed in the matrix [40], which could easily accumulate strain during bending or tensile tests, causing fracture or decohesion of Si particles [3,60], then seriously deteriorating the mechanical properties of hypereutectic Al-Si alloys [61,64]. A lot of research has been done to improve the mechanical properties of hypereutectic Al-Si alloys through adjusting the morphology, size, and distribution of primary Si particles [48,56,64]. Due to the high cooling rate, primary silicon in the as-built samples has extremely small sizes (about 1 μm), nearly spherical morphology, and uniform distribution. Therefore, the stress accumulation around these primary Si particles is rather small compared to that around those particles in conventional cast alloys, which is beneficial to the performance improvement of Al-22Si-0.2Fe-0.1Cu-Re alloys. In addition, the presence of a highly-dispersed nanosized eutectic Si phase in the matrix could also hinder dislocation movement, according to the Orowan strengthening mechanism [18].
- (iii)
- Moreover, grain refinement is also expected to be responsible for the improved properties [25,57]. With the decrease of crystallite size, the number of grains begins to rise, along with the increase of grain boundaries that is considered to be the resistance for dislocation movement, and thus, it is harder for the dislocation to move among grains, leading to a significant enhancement for strength.
- (iv)
- The final reason is that the unique molten pool morphology is formed in the whole SLMed parts [49]. Significantly different structures between the molten pool cores and boundaries can be observed, which induces visible differences in the bending fracture morphologies. Hence, the molten pool boundary acting as the grain boundary considerably restricts the propagation of cracks, resulting in the enhanced mechanism of the as-built samples. Moreover, the size, amount, and shape of the molten pool can be modified by optimizing processing parameters [49], implying the possibility of further enhanced properties.
4. Conclusions
- (1)
- Due to the rapid cooling rate of the SLM process, the solid solubility of Si in the Al matrix has an obvious increase estimated to be 8.25%, which is beneficial to the enhancement of the bending strength and hardness of the SLMed Al-Si alloys.
- (2)
- The relative density of the Al-22Si-0.2Fe-0.1Cu-Re alloys samples reaches 99.54 ± 0.25%. Porosity and surface defects can still be observed for the almost dense specimens. More pores exist near the surface than inside, leading to the enhancement of the sample densification, which could be attributed to remelting of the solidified layers. The surface quality of the top face of the specimen is better than that of the side face, and the side surface defects have an obvious detrimental effect on the bending strength of as-built samples.
- (3)
- There is no appreciable difference between the fine microstructures of the top and side surface of the sample. Three zones can be observed from the microstructure. (i) Fine zones with characteristic petaloid structures and bulk Al-Si eutectic are formed directly from the liquid formed by melted powder and remelted base metal and solidified as cellular-dendritic and eutectic. (ii) Because of the thermal effect induced by laser scanning of the next hatch or layer, coarse zones with grown-up primary Si and partially broken petaloid structures and Al-Si eutectic generate from remelted base metal in a semi-solid state close to fine zones. (iii) The temperature decreases as it is away from the laser contact point, so the base metal remains solid while undergoing heat effects just like heat treatments. As a result, the HAZs with Si particles and primary Si generate beside the coarse zones.
- (4)
- The mechanical properties of Al-22Si-0.2Fe-0.1Cu-Re alloy parts processed by SLM are significantly improved. Due to the fine microstructure induced by a high cooling rate, Vickers hardness reaches ~170 HV0.2, and bending strength increases to 644.0 ± 43.7 MPa for the as-built samples. The micro-hardness is uniform for the bulk sample with similar Vickers hardness. The enhanced bending strength could be attributed to solid-solution strengthening, the optimization of Si phase, grain refinement, and the formation of unique molten pool morphology in the SLM process.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, N.; El Mansori, M. A new insight on induced-tribological behaviour of hypereutectic Al-Si alloys manufactured by selective laser melting. Tribol. Int. 2019. [Google Scholar] [CrossRef]
- Goudar, D.M.; Raju, K.; Srivastava, V.C.; Rudrakshi, G.B. Effect of copper and iron on the wear properties of spray formed Al–28Si alloy. Mater. Des. 2013, 51, 383–390. [Google Scholar] [CrossRef]
- Rao, J.H.; Zhang, Y.; Huang, A.; Wu, X.; Zhang, K. Improving fatigue performances of selective laser melted A1-7Si-0.6Mg alloy via defects control. Int. J. Fatigue 2019, 129. [Google Scholar] [CrossRef]
- Kang, N.; Coddet, P.; Chen, C.; Wang, Y.; Liao, H.; Coddet, C. Microstructure and wear behavior of in-situ hypereutectic Al–high Si alloys produced by selective laser melting. Mater. Des. 2016, 99, 120–126. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Wang, J.; Liu, C.F.; Guo, Z.P.; Tong, G.D.; Ma, S.L.; Bi, Y.; Zhang, Y.F.; Xiong, S.M. Characterization of high-pressure die-cast hypereutectic Al-Si alloys based on microstructural distribution and fracture morphology. J. Mater. Sci. Technol. 2019, 35, 1099–1107. [Google Scholar] [CrossRef]
- Jia, Y.; Cao, F.; Scudino, S.; Ma, P.; Li, H.; Yu, L.; Eckert, J.; Sun, J. Microstructure and thermal expansion behavior of spray-deposited Al–50Si. Mater. Des. 2014, 57, 585–591. [Google Scholar] [CrossRef]
- Kang, N.; Coddet, P.; Ammar, M.-R.; Liao, H.; Coddet, C. Characterization of the microstructure of a selective laser melting processed Al-50Si alloy: Effect of heat treatments. Mater. Charact. 2017, 130, 243–249. [Google Scholar] [CrossRef]
- Hogg, S.C.; Lambourne, A.; Ogilvy, A.; Grant, P.S. Microstructural characterisation of spray formed Si–30Al for thermal management applications. Scr. Mater. 2006, 55, 111–114. [Google Scholar] [CrossRef]
- Haghayeghi, R.; Zoqui, E.J.; Timelli, G. Enhanced refinement and modification via self-inoculation of Si phase in a hypereutectic aluminium alloy. J. Mater. Process. Technol. 2018, 252, 294–303. [Google Scholar] [CrossRef]
- Gao, B.; Hu, L.; Li, S.-W.; Hao, Y.; Zhang, Y.-D.; Tu, G.-F.; Grosdidier, T. Study on the nanostructure formation mechanism of hypereutectic Al–17.5Si alloy induced by high current pulsed electron beam. Appl. Surf. Sci. 2015, 346, 147–157. [Google Scholar] [CrossRef]
- Jia, Y.D.; Ma, P.; Prashanth, K.G.; Wang, G.; Yi, J.; Scudino, S.; Cao, F.Y.; Sun, J.F.; Eckert, J. Microstructure and thermal expansion behavior of Al-50Si synthesized by selective laser melting. J. Alloys Compd. 2017, 699, 548–553. [Google Scholar] [CrossRef]
- Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Li, Y.; Gu, D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 2014, 63, 856–867. [Google Scholar] [CrossRef]
- Gu, D.; Hagedorn, Y.-C.; Meiners, W.; Meng, G.; Batista, R.J.S.; Wissenbach, K.; Poprawe, R. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 2012, 60, 3849–3860. [Google Scholar] [CrossRef]
- Kang, N.; Coddet, P.; Liao, H.; Baur, T.; Coddet, C. Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting. Appl. Surf. Sci. 2016, 378, 142–149. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Peng, C.; Cai, Z.; Zhou, Z.; Li, X.; Cao, X. Microstructural evolution and mechanical performance of in-situ TiB2/AlSi10Mg composite manufactured by selective laser melting. J. Alloys Compd. 2021, 853, 157287. [Google Scholar] [CrossRef]
- Rakesh, C.H.S.; Priyanka, N.; Jayaganthan, R.; Vasa, N.J. Effect of build atmosphere on the mechanical properties of AlSi10Mg produced by selective laser melting. Mater. Today Proc. 2018, 5, 17231–17238. [Google Scholar] [CrossRef]
- Guang, F. Microstructure and Tensile Properties of AlSi10Mg Alloy Manufactured by Multi-Laser Beam Selective Laser Melting (SLM). Metals 2020, 9, 1337. [Google Scholar]
- Liu, X.; Zhao, C.; Zhou, X.; Shen, Z.; Liu, W. Microstructure of selective laser melted AlSi10Mg alloy. Mater. Des. 2019, 168. [Google Scholar] [CrossRef]
- Wei, P.; Wei, Z.; Chen, Z.; Du, J.; He, Y.; Li, J.; Zhou, Y. The AlSi10Mg samples produced by selective laser melting: Single track, densification, microstructure and mechanical behavior. Appl. Surf. Sci. 2017, 408, 38–50. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Maskery, I.; Tuck, C.; Ashcroft, I.; Everitt, N.M. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment. Mater. Sci. Eng. A 2016, 667, 139–146. [Google Scholar] [CrossRef]
- Wang, L.F.; Sun, J.; Yu, X.L.; Shi, Y.; Zhu, X.G.; Cheng, L.Y.; Liang, H.H.; Yan, B.; Guo, L.J. Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment. Mater. Sci. Eng. A 2018, 734, 299–310. [Google Scholar] [CrossRef]
- Prashanth, K.G.; Scudino, S.; Klauss, H.J.; Surreddi, K.B.; Loeber, L.; Wang, Z.; Chaubey, A.K.; Kuehn, U.; Eckert, J. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng. A 2014, 590, 153–160. [Google Scholar] [CrossRef]
- Rao, J.H.; Zhang, Y.; Zhang, K.; Wu, X.; Huang, A. Selective laser melted Al-7Si-0.6Mg alloy with in-situ precipitation via platform heating for residual strain removal. Mater. Des. 2019, 182. [Google Scholar] [CrossRef]
- Suryawanshi, J.; Prashanth, K.G.; Scudino, S.; Eckert, J.; Prakash, O.; Ramamurty, U. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater. 2016, 115, 285–294. [Google Scholar] [CrossRef]
- Li, X.P.; Wang, X.J.; Saunders, M.; Suvorova, A.; Zhang, L.C.; Liu, Y.J.; Fang, M.H.; Huang, Z.H.; Sercombe, T.B. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater. 2015, 95, 74–82. [Google Scholar] [CrossRef]
- Ponnusamy, P.; Masood, S.H.; Ruan, D.; Palanisamy, S.; Rashid, R. High strain rate dynamic behaviour of AlSi12 alloy processed by selective laser melting. Int. J. Adv. Manuf. Technol. 2018, 97, 1023–1035. [Google Scholar] [CrossRef]
- Li, W.; Li, S.; Liu, J.; Zhang, A.; Zhou, Y.; Wei, Q.; Yan, C.; Shi, Y. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater. Sci. Eng. A 2016, 663, 116–125. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Everitt, N.M.; Ashcroft, I.; Tuck, C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 2014, 1–4, 77–86. [Google Scholar] [CrossRef]
- Mower, T.M.; Long, M.J. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater. Sci. Eng. A 2016, 651, 198–213. [Google Scholar] [CrossRef]
- Bi, J.; Lei, Z.; Chen, Y.; Chen, X.; Tian, Z.; Liang, J.; Qin, X.; Zhang, X. Densification, microstructure and mechanical properties of an Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy printed by selective laser melting. Mater. Sci. Eng. A 2020, 774. [Google Scholar] [CrossRef]
- Yang, K.V.; Rometsch, P.; Jarvis, T.; Rao, J.; Cao, S.; Davies, C.; Wu, X. Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting. Mater. Sci. Eng. A 2018, 712, 166–174. [Google Scholar] [CrossRef]
- Fousova, M.; Dvorsky, D.; Vronka, M.; Vojtech, D.; Lejcek, P. The Use of Selective Laser Melting to Increase the Performance of AlSi9Cu3Fe Alloy. Materials 2018, 11, 1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozdniakov, A.V.; Churyumov, A.Y.; Loginova, I.S.; Daubarayte, D.K.; Ryabov, D.K.; Korolev, V.A. Microstructure and properties of novel AlSi11CuMn alloy manufactured by selective laser melting. Mater. Lett. 2018, 225, 33–36. [Google Scholar] [CrossRef]
- Sistiaga, M.L.M.; Mertens, R.; Vrancken, B.; Wang, X.; Van Hooreweder, B.; Kruth, J.-P.; Van Humbeeck, J. Changing the alloy composition of A17075 for better processability by selective laser melting. J. Mater. Process. Technol. 2016, 238, 437–445. [Google Scholar] [CrossRef]
- Casati, R.; Coduri, M.; Riccio, M.; Rizzi, A.; Vedani, M. Development of a high strength Al-Zn-Si-Mg-Cu alloy for selective laser melting. J. Alloys Compd. 2019, 801, 243–253. [Google Scholar] [CrossRef]
- Ma, C.; Wei, X.; Yan, B.; Yan, P. Numerical Simulation of Moving Heat Flux during Selective Laser Melting of AlSi(25)Alloy Powder. Metals 2020, 10, 877. [Google Scholar] [CrossRef]
- Ma, P.; Scudino, S.; Jia, Y.; Wang, H.; Zou, C.; Wei, Z.; Eckert, J. Influence of Annealing on Mechanical Properties of Al-20Si Processed by Selective Laser Melting. Metals 2014, 4, 28–36. [Google Scholar] [CrossRef]
- Thijs, L.; Kempen, K.; Kruth, J.-P.; Van Humbeeck, J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013, 61, 1809–1819. [Google Scholar] [CrossRef] [Green Version]
- Rao, H.; Giet, S.; Yang, K.; Wu, X.; Davies, C.H.J. The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting. Mater. Des. 2016, 109, 334–346. [Google Scholar] [CrossRef]
- Bonaiti, L.; Concli, F.; Gorla, C.; Rosa, F. Bending fatigue behaviour of 17-4 PH gears produced via selective laser melting. Procedia Struct. Integr. 2019, 24, 764–774. [Google Scholar] [CrossRef]
- Lu, G.; Wang, J.; Liu, Y.; Liu, C. Effect of heating rate during solution treatment on the bendability of Al–Mg–Si alloys. Mater. Sci. Eng. A 2020, 791, 139604. [Google Scholar] [CrossRef]
- Ahmad, R.; Hashim, M.Y. Effect of vortex runner gating system on the mechanical strength of Al-12Si alloy castings. Arch. Metall. Mater. 2011, 56, 991–997. [Google Scholar] [CrossRef]
- Müller, M.; Mirko, R.; Eberle, S.; Brandão, A.; Pambaguian, L.; Reutlinger, A.; Seidel, A.; Lopez, E.; Brueckner, F.; Leyens, C.; et al. Microstructural, mechanical and thermo-physical characterization of hypereutectic AlSi40 fabricated by Selective Laser Melting. J. Laser Appl. 2018, 31, 022321. [Google Scholar] [CrossRef]
- Ullsperger, T.; Matthaeus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tuennermann, A.; Nolte, S. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses. Appl. Phys. A 2017, 123, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jiang, T.; Wei, B.; Xu, B.; Xu, G.; Wang, Z. Microcharacterization and mechanical performance of an Al-50Si alloy prepared using the sub-rapid solidification technique. Mater. Lett. 2020, 263. [Google Scholar] [CrossRef]
- Dai, D.; Gu, D.; Zhang, H.; Xiong, J.; Ma, C.; Hong, C.; Poprawe, R. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts. Opt. Laser Technol. 2018, 99, 91–100. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, J.; Zhu, H.; Yin, J.; Chen, C.; Zeng, X. Effect of the track length and track number on the evolution of the molten pool characteristics of SLMed Al alloy: Numerical and experimental study. Opt. Laser Technol. 2020, 123. [Google Scholar] [CrossRef]
- Kimura, T.; Nakamoto, T.; Mizuno, M.; Araki, H. Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting. Mater. Sci. Eng. A 2017, 682, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, D.; Schleifenbaum, H.; Heidrich, S.; Meiners, W.; Bueltmann, J. High Power Selective Laser Melting (HP SLM) of Aluminum Parts. In Lasers in Manufacturing 2011, Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, Munich, Germany, 23–26 May 2011; Schmidt, M., Zaeh, M., Graf, T., Ostendorf, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 12, pp. 271–278, Part A. [Google Scholar]
- Raju, K.; Harsha, A.P.; Ojha, S.N. Evolution of microstructure and its effect on wear and mechanical properties of spray cast Al-12Si alloy. Mater. Sci. Eng. A 2011, 528, 7723–7728. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, Y.; Xiao, Z.; Zhang, M.; Wang, D. Process optimization and mechanical property evolution of AlSiMg0.75 by selective laser melting. Mater. Des. 2018, 140, 257–266. [Google Scholar] [CrossRef]
- Zhou, Y.; Duan, L.; Wen, S.; Wei, Q.; Shi, Y. Enhanced micro-hardness and wear resistance of Al-15Si/TiC fabricated by selective laser melting. Compos. Commun. 2018, 10, 64–67. [Google Scholar] [CrossRef]
- Raju, K.; Harsha, A.P.; Ojha, S.N. Effect of processing techniques on the mechanical and wear properties of Al-20Si alloy. Trans. Indian Inst. Met. 2011, 64, 1–5. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, P.; Jia, Y.; Yu, Z.; Sokkalingam, R.; Shi, X.; Ji, P.; Eckert, J.; Prashanth, K.G. Microstructure and Mechanical Properties of Al-(12-20)Si Bi-Material Fabricated by Selective Laser Melting. Materials 2019, 12, 2126. [Google Scholar] [CrossRef] [Green Version]
- Koutny, D.; Palousek, D.; Pantelejev, L.; Hoeller, C.; Pichler, R.; Tesicky, L.; Kaiser, J. Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Melting. Materials 2018, 11, 298. [Google Scholar] [CrossRef] [Green Version]
- Kurzawa, A.; Kaczmar, J.W. Bending Strength of EN AC-44200—Al2O3 Composites at Elevated Temperatures. Arch. Foundry Eng. 2017, 17, 103–108. [Google Scholar] [CrossRef]
- Fuliang, Y.; Danqing, Y.I.; Wei, Z. Effect of Powders Oxidizing on Microstructure and Mechanical Properties of High-Silicon Aluminum Alloy Hot-Extrusion Composites. Mater. Mech. Eng. 2008, 32, 57–60. [Google Scholar]
- Yang, W.; Chen, G.; Qiao, J.; Liu, S.; Xiao, R.; Dong, R.; Hussain, M.; Wu, G. Graphene nanoflakes reinforced Al-20Si matrix composites prepared by pressure infiltration method. Mater. Sci. Eng. A 2017, 700, 351–357. [Google Scholar] [CrossRef]
- Liu, J.; Xiu, Z.; Liang, X.; Li, Q.; Hussain, M.; Qiao, J.; Jiang, L. Microstructure and properties of Sip/Al-20 wt% Si composite prepared by hot-pressed sintering technology. J. Mater. Sci. 2014, 49, 1368–1375. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, C.; Wang, R.; Peng, C.; Wu, X.; Li, H. Microstructure, mechanical and thermo-physical properties of Al-50Si-xMg alloys. Mater. Sci. Eng. A 2018, 730, 57–65. [Google Scholar] [CrossRef]
- Qin, X.; Cheng, H.; Lu, N.; Cheng, F. Effect of P modification on microstructure and properties of Al-50Si composite. Trans. Mater. Heat Treat. 2019, 40, 31–37. [Google Scholar]
- Rao, J.H.; Zhang, Y.; Fang, X.; Chen, Y.; Wu, X.; Davies, C.H.J. The origins for tensile properties of selective laser melted aluminium alloy A357. Addit. Manuf. 2017, 17, 113–122. [Google Scholar] [CrossRef]
Scanning Path | Laser Power | Scanning Speed | Layer Thickness | Hatch Distance | Scanning Strategy |
---|---|---|---|---|---|
Interior | 160 W | 1000 mm/s | 30 μm | 80 μm | Stripes (Initial angle 35°, Rotation angle 67°, shift 1.6 mm, strip width 8 mm, strips interval 0.05 mm) |
Contour | 80 W | 500 mm/s | 30 μm | 40 μm | two contours |
Element Weight (%) | Si | Fe | Cu | Re * | Others | Al | Density (g/cm3) |
---|---|---|---|---|---|---|---|
Al-Si powder | 22.22 | 0.20 | 0.10 | 0.05 | 0.02 | bal. | 2.6486 |
Element Weight (%) | La | Ce | Others |
---|---|---|---|
Al-22Si-0.2Fe-0.1Cu-Re powder | 36.42 | 63.57 | 0.01 |
Materials | As-Cast (HV) | As-SLMed (HV) | As-SLMed + Heat-Treated (HV) |
---|---|---|---|
AlSi10Mg | 95–105 [41] | 127 [41], 140–150 [52] | 100–103 [23] |
AlSi12 | 69 [53] | 145–150 [54],154–162 [29] | 105–115 [54] |
Al-15Si | / | 170 [55] | 110–135 [55] |
Al-20Si | 79 [56] | 188 [57] | 91–177 [57] |
Al-50Si | 112 [48] | / | / |
Materials | Processing Methods | Bending Strength (MPa) | Source |
---|---|---|---|
AlSi10Mg | SLM | 600–660 | Ref. [24] |
SLM+T6 | 563–595 | ||
TiB2/AlSi10Mg composite | As-cast | 321.6 | Ref. [18] |
SLM | 674.8 | ||
Al-12Si | As-cast | 130–170 | Ref. [45] |
Squeeze casting | 300–350 | Ref. [59] | |
Al-12Si composite | Hot extrusion | 170–242 | Ref. [60] |
Al-20Si | Pressure infiltration | 150–200 | Ref. [61] |
50 vol% Sip/Al-20Si composite | Hot press sintering | 386 ± 10 | Ref. [62] |
Al-22Si-0.2Fe-0.1Cu-Re | SLM | 644.0 ± 43.7 | Present work |
Al-30Si composite | Hot extrusion | 286–378 | Ref. [60] |
Al-50Si | Hot press sintering | 275–300 | Ref. [63] |
Al-50Si composite | As-cast | 206 | Ref. [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.; Lu, Z.; Wei, X.; Yan, B.; Yan, P. High Bending Strength Hypereutectic Al-22Si-0.2Fe-0.1Cu-Re Alloy Fabricated by Selective Laser Melting. Metals 2021, 11, 528. https://doi.org/10.3390/met11040528
Yin C, Lu Z, Wei X, Yan B, Yan P. High Bending Strength Hypereutectic Al-22Si-0.2Fe-0.1Cu-Re Alloy Fabricated by Selective Laser Melting. Metals. 2021; 11(4):528. https://doi.org/10.3390/met11040528
Chicago/Turabian StyleYin, Chunyue, Zhehao Lu, Xianshun Wei, Biao Yan, and Pengfei Yan. 2021. "High Bending Strength Hypereutectic Al-22Si-0.2Fe-0.1Cu-Re Alloy Fabricated by Selective Laser Melting" Metals 11, no. 4: 528. https://doi.org/10.3390/met11040528
APA StyleYin, C., Lu, Z., Wei, X., Yan, B., & Yan, P. (2021). High Bending Strength Hypereutectic Al-22Si-0.2Fe-0.1Cu-Re Alloy Fabricated by Selective Laser Melting. Metals, 11(4), 528. https://doi.org/10.3390/met11040528