
metals

Article

A Method for Simultaneous Optimization of Blank Shape and
Forming Tool Geometry in Sheet Metal Forming Simulations

Bojan Starman 1 , Gašper Cafuta 2 and Nikolaj Mole 1,*

����������
�������

Citation: Starman, B.; Cafuta, G.;

Mole, N. A Method for Simultaneous

Optimization of Blank Shape and

Forming Tool Geometry in Sheet

Metal Forming Simulations. Metals

2021, 11, 544. https://doi.org/

10.3390/met11040544

Academic Editor: Ricardo J. Alves

de Sousa

Received: 5 March 2021

Accepted: 24 March 2021

Published: 26 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia;
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Abstract: This paper presents a numerical method for simultaneous optimization of blank shape and
forming tool geometry in three-dimensional sheet metal forming operations. The proposed iterative
procedure enables the manufacturing of sheet metal products with geometry fitting within specific
tolerances (surface and edge deviations less than 0.5 or 1.0 mm, respectively) that prescribe the maxi-
mum allowable deviation between the simulated and desired geometry. Moreover, the edge geometry
of the product is affected by the shape of the blank and by an additional trimming phase after the
forming process. The influences of sheet metal thinning, edge geometry, and springback after forming
and trimming are considered throughout the blank and tool optimization process. It is demonstrated
that the procedure effectively optimizes the tool and blank shape within seven iterations without un-
expected convergence oscillations. Finally, the procedure thus developed is experimentally validated
on an automobile product with elaborated design and geometry which prone to large springback
amounts owning to complex-phase advanced high strength steel material selection.

Keywords: sheet metal forming; blank shape; tool design; optimization; experimental validation

1. Introduction

Mass production of manufactured sheet metal goods is nowadays subject to high
standards of quality that impose strict requirements regarding the geometric tolerances and
visual quality of the final product. To achieve these objectives, the forming process must be
designed carefully and mastered effectively, also taking into account time consumption and
financial expenses [1]. To minimize the use of trial and error approaches and consequently
the costs of tool production, computer-aided design procedures can be utilized; in these
procedures, Finite Element Method (FEM) simulations of a forming process, for example [2],
play the central role [3]. While FEM simulations serve primarily as a tool for investigating
the feasibility of a forming process in the sense of avoiding sheet metal defects [4], they
can also be employed as a part of the forming tool, blank shape [5], or blank thickness
optimization procedures with the aim of achieving proper geometrical acceptability of
the product. This enables the minimization of tool production costs through reducing
the number of tool modifications or even eliminating some forming stages, such as the
trimming phase [6]. With FEM simulations, the process can also be optimized for the use
of thinner sheets [7], all to decrease financial expanses.

A proper blank shape also requires less material for production and may reduce
the occurrence of manufacturing defects during the forming process, such as tearing and
wrinkling. However, a certain portion of the product shape area usually needs to lie
under the holder in order to achieve a sufficiently secure hold on the blank, resulting in an
unavoidable sheet trimming phase after the forming process. Where the trimming phase
can be eliminated, however, the accuracy of the product edge geometry depends highly
on the proper design of the blank geometry. Sheet metal thinning during forming and
springback, which is always present due to the elastoplastic response of the sheet metal
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during the forming process, can be controlled by modifying the forming tool design. The
amount of springback plays a special role when simulating the response of high strength
steels, owing to the high yield stress and the consequently larger elastic strains that need to
be compensated after tool removal [8]. Due to the high formability of these steels, there
are also greater differences in wall thickness [9]. Springback can also be compensated by
increasing the blank-holder force, but due to proportional force magnitude and product
thinning this is not a general remedy. An intriguing process of springback compensation
using Magnetic Pulse Forming has recently been described in a work by Cui et al. [10].

In this paper, we present a procedure for the simultaneous optimization of forming
tool and blank shape geometry that involves adjusting the potential geometrical deviations
of the product shape from its desired shape as defined in the form of the general 3D
geometry by the product designer. In the procedure, the optimal forming tool design and
blank geometry are determined iteratively, taking the desired product geometry as the
initial tool geometry into account. The initial blank geometry is determined approximately
from experience. Moreover, the methodology is also extended to products where the
sheet trimming phase is unavoidable. In these cases, the product edge is partly defined
by the forming and trimming phase. However, the trimming line is considered in the
optimization procedure.

2. State of the Art

The proposed methodology originates from the Displacement Adjustment (DA) method,
originally proposed by Gan and Wagoner [11]. The concept of the method involves
adjusting the nodes defining the tool surface in the direction opposite to the springback
error. In the method, the product is defined by using 2D shell finite elements to model the
product’s mid-surface. The adjustment is performed iteratively, where the tool geometry
compensation is applied in the direction parallel to the punch travel. While the method
is simple and relatively straightforward, several improvements have been proposed—
recently, for example, by Ma et al. [12]. One of the first improvements was proposed
by Lingbeek et al. [13] to resolve the issue of different topological structures of tool and
blank geometry by using smooth surfaces. In the paper, they also proposed an alternative
method where the adjustment is based on CAD geometry but they concluded that both
methods need further improvements to allow industrial application. In order to increase the
robustness of the method, Meinders et al. [14] introduced adjustment correction determined
based on the residual stress state in the product. Similarly to [13], Lan et al. [15] proposed
a generalisation of the DA method by using NURBS to construct a smooth tool surface
and demonstrated that their method is an effective tool for producing accurate complex-
shaped sheet metal products. A similar approach was also employed by Lu et al. [16], who
optimized the forging tool by also taking into account its deformability.

The predicted product geometry and corresponding tool adjustment due to springback
are highly dependent on the material model employed [17]. Taking into account sheet metal
anisotropy, Yang and Ruan [18] improved the DA method by considering compensation
direction, which plays a key role in springback compensation. Generally, a tool point
topology after springback compensation along a certain direction may differ from the
desired tool geometry [19], resulting in a position error, which is neglected in most cases [20].
To improve springback compensation, Cimolin et al. [21] proposed an optimization method
where the product geometry after springback is described as a sum of initial tool geometry
and associated shape functions. The role of the shape functions is to yield the most
appropriate change of the initial tool geometry when the optimization algorithm is applied.

The method proposed by Karafillis and Boyce [22] is the most intriguing among the
DA alternatives. In the first step of the method, a blank is deformed into the desired
product shape and the nodal forces are recorded. In the next, the so-called “springforward”
step, the shape thus derived is elastically loaded so as to obtain the tool geometry. The
accuracy of the tool shape is checked by forming and springback simulation. If the resulting
product shape deviates from the optimal shape, another iteration takes place, where the
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blank is deformed to the tool geometry obtained in the previous iteration instead of
being formed to the desired geometry. As the initially proposed method is valid only for
axisymmetric products where no material draw-in was allowed, the authors also proposed
a generalization [23]. Among other improvements, we should mention also the Modified
Springforward Method by Cheng et al. [24]. However, the methods are limited to products
with constant cross-sections (2D problems).

One of the major issues in springback is the compensation of 3D geometry. Owing
to the many difficulties that arise from increasing nonlinearity, adjustment direction, and
surface description, the classical approach is to optimize the process parameters, such as
blank-holding force, the location and shape of the holder, selective lubrication, tool parts,
and kinematics. For some examples, please see [25,26], and recently [27–29]. Since these
problems are often solved through optimization algorithms, a large number of computer
simulations of the forming process are needed. The number of the simulations can be
reduced by using the Response Surface Method, which predicts the value of a cost function
by using, e.g., a line search algorithm. The reader can obtain more information on this
method in the papers of Wei et al. [30] and Schenk and Hillmann [31].

An intriguing method called the Physical Scaling Approach has recently been proposed
by Birkert et al. [32]. The procedure uses the locally existent membrane stresses that result
in the contraction of an elastic part to scale the drawing tool. By doing so, the root cause of
the problem itself is directly used to solve the problem.

As reviewed, improvements for a functional approximation of discrete surface de-
scription and adjustment direction correction have been proposed in the literature. With
regards to the latter, an accurate determination of surface normals from a discrete surface
point topology is an essential step [33,34]. Consequently, when dealing with 3D springback
compensation, an appropriate correspondence between the product and the tool topologies
must be established. In our previous works [35,36], this was achieved through improved
normal description—surface description is improved to achieve C1 continuity when a rect-
angular surface mesh is used. Moreover, besides springback compensation, the product’s
wall thickness is also optimized by taking into account that the inner and the outer side of
the product interact with the adjusted tool (see also Bici et al. [37]).

In addition to springback compensation, it is also beneficial, where applicable, to
adjust the blank edge geometry to ensure that the formed product edge fits the desired
shape. We have found various studies addressing this issue; prevalent methods include
geometric mapping, direct [38], inverse [39], ideal forming, constrained optimization,
neural network, deformation path, and volume addition/subtraction.

Azaouzi et al. [40], for example, used an inverse FEM simulation approach to estimate
the initial blank shape in the first stage; this was followed by updating the blank shape
through iterations combining standard optimization algorithms and direct FEM simula-
tions. Similarly, Naceur et al. [41] used an evolutionary algorithm—chosen for its simplicity
and efficiency—for the topological optimization of the structures. A two-stage procedure
was also used by Park et al. [42]. In the first stage, a blank edge geometry is determined
by employing the ideal forming theory [43]. An optimal blank geometry is subsequently
obtained through the developed path iteration method in which the shape is adjusted
based on the addition/subtraction of an amount of volume along with the deformation
path. A combined approach was used also by Yeh et al. [44], who used the Inverse True
Strain Method to obtain the initial blank shape. They used the Adaptive-Network-based Fuzzy
Interface System to determine the anisotropic material optimum blank shape in the flange
stretch process. A similar approach was taken also by Lin and Kwan [45], who used
abductive networks to predict the optimum blank contour of an elliptic cylindrical cup
without an earing profile after deep drawing. A generally known drawback of both these
methods is that the optimization process could require a large number of FEM calculations,
which may be time-consuming.

Son and Shim [46] proposed a direct method where the optimal blank shape is de-
signed using the initial nodal velocity, which is used to calculate a scaling factor applied
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to the correction of blank edge geometry. They found the method very effective in the
design of an arbitrary drawing process. Particularly appropriate is the method by Ham-
mami et al. [47]. They introduce a geometric mapping method where the blank is optimized
using the push/pull technique. For the shape error selected, the method estimates the optimal
blank shape within five iterations. Slightly better still is the method proposed by Fazli and
Arezoo [48], where the correction of the blank shape is also based on taking into account
the displacement path of the product edge nodes.

The optimal blank shape can also be obtained by parameterizing the blank geometry
and applying classical optimization algorithms to find the optimal set of parameters [49].
Padmanabhana et al. [50], for example, used parametric NURBS curves and optimized
the blank shape geometry by using the displacement of control points. The convergence
of the method can be further improved by including the sensitivity of the optimization
parameters [51].

In Mole et al. [52], we developed a geometric mapping method similar to the push/pull
technique. One thing common to all the previously mentioned methods is that the blank
must be re-meshed after its shape correction. In our method, by contrast, the mesh element
topology is kept unchanged throughout the iterative procedure.

The challenge becomes evident when simultaneous springback compensation, thin-
ning compensation, and blank edge geometry correction are required to achieve the prod-
uct’s desired shape. This means that the methods for springback compensation and blank
edge geometry correction need to be integrated somehow. To the best of the authors’
knowledge, no study has yet integrated springback, thinning, and blank edge geometry
correction in a unified algorithm; this represents the main novelty of this paper.

3. Preliminaries

A sheet metal forming process generally involves the interaction of multiple tool parts
with the sheet metal under kinematically driven conditions to form the final product. In
computer simulations of such a process, the tool is usually modelled as a rigid surface,
described analytically or discretely. If the sheet metal is relatively thin, a shell finite element
model can be employed, but it should be emphasized that the response is not only driven
by the process parameters but also by the material model.

Generally, the shape of the final product is achieved in multiple forming stages, which
are followed by the springback after tool removal. Discrepancies between the product ge-
ometry achieved through forming and the desired product geometry should be minimized
with the developed optimization methodology.

The methodology involves several numerical procedures, which are employed fre-
quently throughout the optimization, and are described in this section.

3.1. Surface and Edge Topology

A typical simulation involves multiple tool parts and the sheet metal in surface contact
interaction. In this paper, we define surfaces with discrete surface point topology G, where
the basic constituent of the surface is a quadrilateral subsurface joined by four adjacent
points, resulting in a quadrilateral mesh representation of the surface.

We designate the tool surface point topology as Gtool, blank mid-surface point topology
as Gbl, and the desired (or reference) product mid-surface topology as Gref. Since the FEM
simulation typically consists of a forming and a relaxation step, we designate actual
simulated mid-surface point topology as Gsim,m and mid-surface before springback occurs
as G ′sim,m. Since any forming process results in thickness reduction, it is essential to model
tool–sheet interaction by using the top or bottom shell surface, dependent on a contact
direction. We designate this surface point topology as control surface topology Gsim,cs
and topology before springback as G ′sim,cs. Moreover, when taking particular steps, the
methodology requires the construction of an auxiliary surface, which we denote as Gaux
surface point topology.
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Blank shape optimization is based on edge topology manipulation; thus, we designate
blank edge point topology as Γbl ⊂ Gbl,m. The desired product edge topology is denoted as
Γref ⊂ Gref,m and the edge topology of the simulated product as Γsim ⊂ Gsim,m.

Throughout the paper, we use indices i or j that designate the i-th or j-th element �i
(or �j) of a set. Since the optimization is an iterative process, we use upper index �(k) to
designate the quantities or objects in the k-th iteration.

3.2. Surface and Edge Normals
3.2.1. Surface Normals

The basic procedure that is called several times in the tool and blank shape optimiza-
tion process is surface and edge normals determination. Since the projected surface is
defined by a point topology G, the surface normal is determined at each i-th point Pi of
topology G, Pi ∈ G. To improve the robustness and convergence of the general optimization
algorithm, a two-stage procedure for improved normal description is proposed. In the
first stage, to deal with the problem of duality [34], we define a normal vector
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The main drawback of the description is that in the case of a surface with high
curvature, or when the point topology is coarse, this approach would provide unsatisfactory
results. To improve the description, a second stage is introduced. In this stage, the normal
vector
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i is defined by the analytical surface Qi [33] interpolated across the set of nine
points of adjacent elements Sj, j ∈ {1, 2, 3, 4} (c.f. Figure 1b). In the case that more or
less than four elements are connected at point Pi, nine closest points Pi,j (including Pi)
are chosen for surface formulation. The analytical surface formulation Qi(x, y, z) = 0 is
based on polynomial approximation, where the coefficients are generally determined by
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interpolation through points Pi,j. However, it is generally known that the robustness of the
interpolation procedure can be improved by the formulation of Qi in the local coordinate
system, say (x̃, ỹ, z̃) with the origin at Pi. The local basis vectors can be defined as

ex̃ = k×
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1 

 

 

𝓷 

 

𝓽 

′
i × ex̃, ez̃ =

1 

 

 

𝓷 

 

𝓽 

′
i, (2)

where the basis vector k = (0, 0, 1) defines the direction of the global z-axis. The rotation of
the global coordinate system to the local coordinate system is defined by angle-and-axis
parameterization of the three-dimensional rotation matrix:
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As we will present later, the above procedure is essential for the calculation of sim-
ulated surface point topology Gsim deviation from the desired surface Gref and for the
procedures mapping a specific surface to a target surface.

3.2.2. Edge Normals

To compensate for the deviations of the simulated product edge topology Γsim from
the desired product edge topology Γref, it is essential to identify, for an arbitrary point PΓ
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In the optimization methodology, the procedure will be applied on edge geometries
Γsim and Γref to determine the final blank shape geometry.

3.3. Surface Topology Normal Projection Mapping

In the optimization methodology, it is essential to address the deviation between two
surface point topologies or to map one surface point topology to the desired surface. Let
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us call the surface topology that is mapped to a specific surface the projected surface topology
Gproj and the desired surface, to which the surface is mapped, the target surface topology
Gtar. For example, when calculating the deviation between the product simulated surface
topology Gsim,m and the product desired topology Gref, the former is the projected topology
and the latter is the target topology. It is also worth noting that generally, these surfaces
can have different topologies.

When mapping an arbitrary point Pproj
i on Gproj to Gtar, (c.f. Figure 2), it is essential

that the surface normal vector

1 

 

 

𝓷 

 

𝓽 

proj
i associated with the point is calculated by the procedure

described in Section 3.2.1. Once the normal is found, it is necessary to identify the surface
element S tar

i ∈ Gtar that is intersected by the line defined by the location of Pproj
i and the

direction of

1 

 

 

𝓷 

 

𝓽 

proj
i . The element S tar

i presents the quadrilateral subsurface on which the point
is projected, and once identified, its four nodal points Ptar

i,j and respective normal vectors

1 

 

 

𝓷 

 

𝓽 

tar
i,j , j ∈ {1, 2, 3, 4} are retrieved. Thus it is also necessary to calculate the normal vector

1 

 

 

𝓷 

 

𝓽 

tar
i at each point i of the target surface Gtar. In the next step, Ptar

i,j and

1 

 

 

𝓷 

 

𝓽 

tar
i,j , j ∈ {1, 2, 3, 4}

are mapped to the local coordinate system (x̃, ỹ, z̃) with the origin at Pproj
i and the coordinate

axis z̃ oriented in the direction of

1 

 

 

𝓷 

 

𝓽 

proj
i . The remaining local basis vectors x̃, ỹ and the

mapping R are determined using Equations (3) and (4). The position vectors P̃tar
i,j and˜

1 

 

 

𝓷 

 

𝓽 

tar
i,j , j ∈ {1, 2, 3, 4} are thus determined by

P̃
tar
i,j = R(r, θ) ·

(
Ptar

i,j − Pproj
i

)
, ˜

1 

 

 

𝓷 

 

𝓽 

tar
i,j = R(r, θ) ·

1 

 

 

𝓷 

 

𝓽 

tar
i,j , j ∈ {1, 2, 3, 4}. (8)
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Figure 2. Projection of an arbitrary point Pproj
i ∈ Gproj on Gtar along normal direction: (a) identification of the surface element

S tar
i ∈ Gtar that is intersected by the line defined by the location of Pproj

i and the direction of

1 

 

 

𝓷 

 

𝓽 

proj
i , (b) approximation of

S tar
i by using the local position vectors P̃tar

i,j and the associated normal vectors ˜

1 

 

 

𝓷 

 

𝓽 

tar
i,j by polynomial surface approximation

S̃tar
i (x̃, ỹ, z̃) = 0.

Now we can approximate S tar
i using the local position vectors P̃tar

i,j and the associated

normal vectors ˜

1 

 

 

𝓷 

 

𝓽 

tar
i,j =

(
(ñx̃)

tar
i,j ,
(

ñỹ

)tar

i,j
, (ñz̃)

tar
i,j

)
at four interpolation points. This can be

achieved by the functional form:

S̃tar
i (x̃, ỹ, z̃) = z̃−

(
a1 + a2 x̃ + a3ỹ + a4 x̃ỹ + a5 x̃2 + a6ỹ2 + a7 x̃2ỹ + a8 x̃ỹ2 + a9 x̃2ỹ2 + a10 x̃3 + a11ỹ3 + a12 x̃3ỹ3

)
= 0, (9)

with twelve coefficients am, m ∈ {1, 2, . . . , 12} to be determined. By requiring that the
surface S̃tar

i (x̃, ỹ, z̃) = 0 should meet the interpolation requirements at P̃tar
i,j , j ∈ {1, 2, 3, 4},

the following system of linear equations can be set up:

S̃tar
i
(
x̃j, ỹj, z̃j

)
= 0,

∂S̃tar
i

∂x̃
(

x̃j, ỹj, z̃j
)
=

(ñx)
tar
i,j

(ñz̃)
tar
i,j

,
∂S̃tar

i
∂ỹ

(
x̃j, ỹj, z̃j

)
=

(
ñy
)tar

i,j

(ñz̃)
tar
i,j

, j ∈ {1, 2, 3, 4}, (10)
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whose solution yields the values of the coefficients am. Here it should be emphasized
that using normal vectors ˜

1 

 

 

𝓷 

 

𝓽 

tar
i,j and points coordinates P̃tar

i,j improves the description of
the surface geometry as the polynomial of higher order can be used for the interpolation.
Continuity C1 can be achieved if rectangular sub-surfaces are used to describe Gtar topology.

Considering that the origin of the local coordinate system is at the point Pproj
i , the

distance between point Pproj
i and its normal projection on the surface S tar

i can be retrieved
by the value of z̃ coordinate in the surface formulation S̃tar

i
(

x̃j, ỹj, z̃j
)
= 0 when setting

x̃ = ỹ = 0. This yields the distance di = a1, and the vector from point Pproj
i to its normal

projection on the surface S tar
i , say Ptar

i , is given as di = di

1 

 

 

𝓷 

 

𝓽 

proj
i . Finally, the point topology

Gproj mapped to surface point topology Gtar for an arbitrary point Pproj
i is given by

Ptar
i = Pproj

i + di. (11)

In conclusion, it should be emphasized that there are two major outcomes of the
projection mapping procedure. The first one is the distance between the point under
consideration on Gproj and its image on Gtar. For example, this information is essential for
the algorithm to decide when the simulated product geometry Gsim,m as a result of tool
and blank optimization achieves the desired product geometry Gref. The second outcome
is the mapping procedure, which is essential for establishing a tool correction procedure.

4. Methodology for the Simultaneous Optimization of Blank Shape and Forming Tool Design

This section presents the method for the simultaneous forming tool design and blank
shape optimization in three-dimensional sheet metal forming operations. The basic logic
behind the procedure is to sequentially update the forming tool geometry and blank edge
geometry to match the desired geometry as specified by the product designer. This can be
achieved by accomplishing several activities (blocks), where each activity requires several
steps to be taken (c.f. Figure 3). A detailed description of each activity is given below.

The process begins with the desired product shape Gref. The tool and blank correction
rely upon an adequate computer simulation of the sheet metal forming process, which is
followed by a degree of springback that occurs after tool removal. To simulate the process,
forming process parameters, such as tool and blank geometry, tool kinematics, friction
conditions, and blank-holder forces, must also be provided (Block 1). For the procedure,
it is essential that the initial blank and tool geometry approximations, G(0)bl and G(0)tool, are
provided before the optimization process. The latter can be considered equal to the desired
product geometry as G(0)tool = Gref, whereas the initial blank shape approximation can be
chosen from experience (Block 2).

After the aforementioned initialization steps (Block 1 and Block 2), the iterative op-
timization procedure takes place (Block 3). The first activity in the kth iteration of the
optimization is related to the FEM simulation of the forming process, followed by the
springback (Block 4). In this particular case it is worth noting that in the FEM simulation,
the sheet metal is realized as a shell model with quadrilateral finite element mesh discretiza-
tion, whereas the tool and reference geometry is approximated using quadrilateral discrete
rigid elements. The outcome of the simulation is a simulated product geometry G(k)sim (or
actual geometry), which is an approximation of the desired geometry of the product Gref.
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Before taking any further steps, we establish the simulated product topology on the
product mid-surface G(k)sim,m (= G(k)sim for shell FE model), and the topology on the control

(contact) surface, denoted as G(k)sim,cs = G(k)sim,m ± t(k)sim/2 (the sign depends on the contact
direction). The process is repeated for the desired product geometry Gref, where the desired
product thickness tref is taken into account for Gref,cs = Gref,m ± tref/2, Gref,m = Gref.

To quantify the mismatch between the simulated geometry G(k)sim,cs and the desired
geometry Gref,cs a deviation should be evaluated (Block 5). This is achieved by the procedure

established in Section 3.3, where we calculate the projection distance d(k)i from an arbitrary
point i associated with the FE mesh on the control surface of the simulated product
geometry, say P(k)

i , along with its normal projection along

1 

 

 

𝓷 

 

𝓽 

(k)
i to a point on the desired

product surface Gref,cs. Again, it is worth noting that in the FE model, the product geometry

is characterized by its mid-surface G(k)sim,m and its thickness t(k)i , meaning that thickness

should be taken into account when constructing the control surface topology G(k)sim,cs and
the associated desired surface topology Gref,cs. This way, control of the simulated product

thickness t(k)i is established during the optimisation process.

While the normal projection distance d(k)i at each point of the simulated surface G(k)sim,cs
indicates the predominant springback and thickness reduction amount to be compensated
by the tool geometry G(k)tool, the deviation of the simulated surface edge geometry Γ(k)

sim from

the desired edge geometry Γref, say δ
(k)
i is mainly due to sheet blank-holding and drawing

conditions. This deviation can be reduced by proper blank shape design characterized by
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its edge Γ(k)
bl . In contrast to d(k)i , which is the projection distance in the normal direction

1 

 

 

𝓷 

 

𝓽 

(k)
i of the G(k)sim,cs to the Gref,cs, δ

(k)
i can be characterized as the distance in edge normal

direction

1 

 

 

𝓷 

 

𝓽 

Γ(k)
i at an arbitrary point PΓ(k)

i on edge Γ(k)
sim. This is addressed in Block 6. To

obtain its value, four steps are necessary. In the first step, we construct edge normals

1 

 

 

𝓷 

 

𝓽 

Γ(k)
i for all the edge points PΓ(k)

i of the edge point topology Γ(k)
sim. This is accomplished

according to the procedure described in Section 3.2.2. Following the same procedure, in
the second step, we also construct edge normals

1 

 

 

𝓷 

 

𝓽 

ref,Γ
i for all the edge points of the desired

point topology Gref,m. In the third and crucial step, we construct an auxiliary surface point
topology, say Gaux, perpendicular to the edge Γref ∈ Gref,m, by using a set of edge points
Pref,Γ

i and new points Paux
i , dislocated from Pref,Γ

i in the normal direction

1 

 

 

𝓷 

 

𝓽 

ref
i of Gref,m for a

predefined distance. The constructed auxiliary surface Gaux is presented in Figure 4a. In the
last step, we project all edge points PΓ(k)

i ∈ Γ(k)
sim to the Gaux along

1 

 

 

𝓷 

 

𝓽 

Γ(k)
i and calculate the

projection distance δ
(k)
i according to the procedure established in Section 3.3. A graphical

presentation of this step is presented in Figure 4b.
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i according to the established procedure.

Once a set of distances,
{

d(k)i

}
and

{
δ
(k)
i

}
, associated with the surface and edge point

topology G(k)sim,cs and Γ(k)
sim, are calculated, their maximum value d(k)max = max

({
d(k)i

}
,
{

δ
(k)
i

})
can be found (Block 7). If the value is within the acceptable tolerance, the optimal tool
geometry Gopt

tool = G
(k)
tool and optimal blank shape geometry Gopt

bl = G(k)bl have been attained
(Block 9). In this case, both geometries can be exported from the FEM environment to create
a CAD model for further tool and blank fabrication (Blank 10). If d(k)max does not fall within
the acceptable tolerance, the tool geometry G(k)tool and blank shape Γ(k)

bl are adjusted. This is

achieved by a procedure schematically shown in Block 8, where the deviations d(k)i and δ
(k)
i

play a crucial role. Both the tool and the blank adjustment procedures are presented in the
following subsections and once the geometries are updated, a new iteration takes place.

4.1. Tool Geometry Adjustment

The basic idea behind the tool adjustment is that the calculated deviations d(k)i at

points P(k)
i ∈ G(k)sim,cs are used for tool correction. Because the simulated product control

surface point topology G(k)sim,cs and tool surface point topology G(k)tool generally have differ-
ent topological structure, and because it is practically impossible to predict which point
P(k)

i ∈ G(k)sim,cs interacts with an associated point T(k)
i ∈ G(k)tool, some mapping procedures

need to be applied to address these issues.



Metals 2021, 11, 544 11 of 19

In the first step, we construct an auxiliary surface, say G(k)A , by mapping the simulated

product control surface point topology G ′(k)sim,cs to the tool surface point topology G(k)tool

to match their topological structures. To locate which point P(k)
i ∈ G(k)sim,cs interacts with

an associated point on G(k)tool, we consider the simulated product control surface point

topology before the springback simulation, denoted as G ′(k)sim,cs. The mapping is performed
by employing the procedure established in Section 3.3, where the projected surface is
G ′(k)sim,cs and target surface G(k)tool.

In the second step, we apply the adjustment to G(k)A by using calculated the deviations

d(k)i between the G(k)sim,cs and Gref,cs. We construct a new auxiliary surface, say G(k)B , where

an arbitrary point P(k)
A,i ∈ G

(k)
A is mapped to point P(k)

B,i ∈ G
(k)
B as

P(k)
B,i = P(k)

A,i +
(

d(k)
i ·

1 

 

 

𝓷 

 

𝓽 

(k)
A,i

)

1 

 

 

𝓷 

 

𝓽 

(k)
A,i. (12)

In this equation, the P(k)
A,i and P(k)

B,i presents the location vector of P(k)
A,i and P(k)

B,i ,

1 

 

 

𝓷 

 

𝓽 

(k)
A,i the

surface normal vector at P(k)
A,i according to Section 3.2.1 and d(k)

i = d(k)i

1 

 

 

𝓷 

 

𝓽 

(k)
i , where

1 

 

 

𝓷 

 

𝓽 

(k)
i

is the surface normal vector at P(k)
i ∈ G(k)sim,cs. However, it should be noted that the

scalar product is used because only a normal component of d(k)
i to

1 

 

 

𝓷 

 

𝓽 

(k)
A,i contributes to

tool adjustment.
Finally, in the last step, the tool surface point topology G(k)tool is projected to the auxiliary

surface G(k)B by the procedure described in Section 3.3, where the projected surface is G(k)tool

and the target surface is G(k)B . As result, the adjusted tool surface point topology G(k+1)
tool

is obtained.

4.2. Blank Shape Adjustment

Blank edge geometry Γ(k)
bl ∈ G

(k)
bl,m is adjusted based on the calculated edge deviations

δ
(k)
i between the simulated surface edge geometry Γ(k)

sim ∈ G
(k)
sim,m and the desired edge

geometry Γref ∈ Gref,m. The blank geometry is adjusted in three steps as follows:

In the first step the blank’s edge normals

1 

 

 

𝓷 

 

𝓽 

Γ(k)
bl,i at each edge point PΓ(k)

bl,i of the Γ(k)
bl are

calculated using the procedure described in Section 3.2.2. Once the normals are established,
the updated edge point topology Γ(k+1)

bl is constructed in the second step:

PΓ(k+1)
bl,i = PΓ(k)

bl,i + δ
(k)
i ·

1 

 

 

𝓷 

 

𝓽 

Γ(k)
bl,i , (13)

where PΓ(k)
bl,i presents an edge point position vector (edge point coordinates) from the

beginning of the k-th iteration, and PΓ(k+1)
bl,i an edge point position vector at the end of

the iteration.
The last step yields the blank geometry, where only the blank edge point topology

Γ(k+1)
bl is adjusted. Interior points of the blank surface topology, say G(k)bl,int = G

(k)
bl,m\Γ

(k)
bl ,

remain unadjusted, which could result in poor FE mesh quality. To resolve this issue,
we map interior points of G(k)bl,m proportionally with the distance from the adjusted edge

Γ(k+1)
bl . Although this seems a relatively difficult task, we map interior points by simulating

a separate elastic boundary problem, where the blank geometry G(k)bl,m is subjected to
displacement-driven boundary conditions with the edge displacement at an arbitrary point
PΓ(k)

bl,i set as δ
(k)
i ·

1 

 

 

𝓷 

 

𝓽 

Γ(k)
bl,i . Finally, the geometry of the blank shape at the loaded state is

retrieved as G(k+1)
bl,m .
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5. Results of Forming Tool and Blank Shape Design Optimization
5.1. Forming Process Simulation and Optimization Procedure

In this section, the presented methodology for simultaneous tool and blank design
optimization is applied to an automotive part made of complex-phase advanced high strength
steel HDT 760C sheet, which tends to exhibit a considerable amount of springback after
tool removal, owing to the high ratio of yield stress to tensile strength. Since these steels
have high crash energy absorption, they are recommended in lightweight automotive
applications such as stiffeners, sills, door impact bars, seat mounting rails, and automotive
chassis components. The fine microstructure of the sheet leads to high formability of
punched edges while maintaining good bending properties. According to EN 10346, its
chemical composition is 0.18% C, 2.5 Mn, 1.0% Si, 1.0% Cr+Mo, 0.25% Nb+Ti, 0.20% V,
0.005% B, 0.015–2.00% Al, 0.08% P, 0.015% S, and balance Fe (max wt.%).

The mechanical properties of the sheet material are given in Table 1. Since the plastic
anisotropy of the analyzed steel sheet is mild, we assume that the material response is
isotropic and that during the forming process no significant reverse bending occurs, which
means kinematic hardening effects can be neglected. The assumed hardening relation

closely follows Ludwik’s hardening law by
(

ε
pl
eq

)
= σ0 + H

(
ε

pl
eq

)n
, where the parameters

are obtained by nonlinear regression.

Table 1. Elastic and plastic parameters of HDT760C calculated from the uniaxial tensile test data.

Isotropic Elasticity (Hooke’s Law) Isotropic Hardening (Ludwig’s Law)

E 201 GPa σ0 620.6 MPa
ν 0.3 H 504.3 MPa

n 0.217

In the forming process under consideration, the final product is produced in two
consecutive forming steps, each of them using different tool set-up geometries as presented
in Figure 5. In the first forming step, the blank is formed into a semi-product; in the second
step, this is followed by forming into the final shape. In both steps, the sheet is held in place
with a blank holding force of 24 kN. The workpiece is passed from one forming operation
to the other with the help of a strip connected to the workpiece; after the trimming phase,
this is scrapped. The final product should fulfil the costumer’s specifications, showing no
surface defects (no tearing, wrinkling, or thinning) and fulfilling the specified geometric
tolerances (surface and edge deviations less than 0.5 or 1.0 mm, respectively).
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A numerical simulation of the complete manufacturing process is conducted in the
ABAQUS/Explicit and ABAQUS/Standard FEM environments. Both steps of the process
consist of a loading stage and an unloading stage, which are associated with irreversible
plastic deformation and elastic relaxation. Before loading is applied, the blank or semi-
product is held in position using a holder which, to a certain extent, also serves as forming
tool (see holder geometry in Figure 5a). The blank-holding stage and the forming operation
are simulated in ABAQUS/Explicit, while the unloading and springback associated with
the elastic relaxation stage is simulated in ABAQUS/Standard. Trimming operation is
conducted before elastic relaxation in the second forming step.

The forming of the blank into the product is carried out using different tool set-
ups for each forming phase (c.f. Figure 5). The clearance between the die1/die2 and
punch1/punch2 is set to a constant value of 2.2 mm. Both tool set-ups are assumed
to be rigid and modelled using discrete rigid surface geometry. Quadrilateral FE mesh
using R3D4 finite elements is adopted for the surface description. The sheet metal is
modelled as a thin shell meshed with quadrilateral finite elements (S4 elements). Seven
integration points distributed evenly across the shell thickness (t = 2 mm) are considered
in order to take the strain–stress state evolution into account. The characteristic size of
the shell and rigid finite elements is 2.5 mm and 3.0 mm, respectively. Tool–sheet contact
interaction is modelled using a penalty contact algorithm. Due to contact pressure, stress
state, lubrication, and sliding velocity variation at different contact regions, the value of
friction coefficient generally varies significantly at different locations of the tools [54]. In our
case, we simplified friction modelling by assuming Coulomb’s law, where the coefficient of
friction is set equal to 0.12 [55].

On one hand, the applied tool set-up boundary conditions are directly associated
with the tool kinematics. On the other hand, the workpiece conditions are applied to
the connected strip, which is fixed in all directions. Once the strip is trimmed and the
workpiece is load-free, an arbitrary node on the workpiece can be fixed to simulate the
elastic relaxation and the final self-equilibrium state.

With the FEM model established, the optimization of the tool and blank edge geometry
takes place. Since the forming process is conducted in two forming steps, both tool set-ups
could be optimized to achieve the desired product geometry. However, this turned out to
be redundant in the analyzed case—the optimized workpiece geometry can be achieved by
adjusting only the punch and the die for the second forming step. Moreover, in accordance
with the costumer’s specifications, the surface area in contact with the holder was not
subject to the surface optimization procedure.

Determination of the optimal tool and blank geometry is carried out according to the
procedure described in Section 4. In the procedure, an initial die and punch geometry is
set equivalent to the desired product geometry, taking into account the sheet thickness
and clearance. The initial blank geometry is determined empirically and is presented in
Figure 6a. During the iteration process, the punch, the die, and the blank geometry are
successively adjusted using deviations between the desired product geometry and the
simulated geometry. The iterative procedure is continued until the desired product shape
(Figure 6b) is achieved within a prescribed tolerance.
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5.2. Results

In the following section, we present the results of the optimization procedure, where
the results refer to the forming process with the initial and the optimized tool and blank
designs. Product surface and edge deviations calculated from the initial and the optimized
tool geometry are both presented in Figure 7. The left column presents the product edge
geometry deviations from the desired shape prior (Figure 7a) and after (Figure 7c) the opti-
mization takes place. The right column presents the product surface geometry deviations
from the desired shape, once again before (Figure 7b) and after (Figure 7d) springback
compensation. While the product geometry calculated from the initial blank and tool
geometry results in quite high deviations from the desired shape (about 3 mm in both
cases), the deviation is substantially reduced after optimization. In this case, the edge and
surface deviations are below 0.15 mm and 0.5 mm, respectively, meaning that our primary
target is achieved. The deviations in Figure 7d that are above 0.5 mm occur in the region not
subjected to the optimization procedure, in accordance with the costumer’s specifications.
It should be emphasized that for the particular sheet material, springback compensation
is particularly challenging, owing to its high values, presented in Figure 8a. As expected,
the springback is highest at the locations most distant from the nearest bending radius.
Most surprisingly, when comparing Figure 8a with Figure 7d, it can be observed that this
springback is successfully compensated to the resulting deviation under 0.2 mm. On the
other hand, using the initial tool design (Figure 7b) the springback directly manifests itself
in surface deviation.

The iteration process performed according to the flow chart given in Figure 3 is
convergent, with the optimal forming tool and blank edge geometry achieved iteratively.
Figure 9 shows the convergence of the proposed method. In this particular case, it can
be observed that convergence is achieved in several iterations. Moreover, the method
converges in a stable way, without any oscillations, which is significant in the case of sheet
materials prone to large springback amounts.

Based on the results of the optimization procedure, the optimal tool and blank geome-
tries were exported to the CAD environment. The individual tool parts and blank shape
were produced and the forming process conducted.
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5.3. Experimental Verification

Finally, the developed optimization methodology is verified by forming the actual
product. As per customer specifications, the measured edge and surface deviations should
be smaller than 1.0 mm and 0.5 mm, respectively. Figure 10 shows the measuring locations
of the surface (Figure 10a) and the edge (Figure 10b) deviations. The locations on the
surface are selected in the region which is prone to significant deviations due to springback.
The results are presented in Table 2.

Metals 2021, 11, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 9. The convergence of the optimization method: (blue) maximum surface deviation calcu-
lated from deviations at all surface points (including blank holder contact surface area), (red) max-
imum surface deviation calculated from deviations at optimized surface points (without blank 
holder contact surface area), (green) maximum edge deviations calculated from all edge devia-
tions. 

5.3. Experimental Verification 
Finally, the developed optimization methodology is verified by forming the actual 

product. As per customer specifications, the measured edge and surface deviations should 
be smaller than 1.0 mm and 0.5 mm, respectively. Figure 10 shows the measuring locations 
of the surface (Figure 10a) and the edge (Figure 10b) deviations. The locations on the sur-
face are selected in the region which is prone to significant deviations due to springback. 
The results are presented in Table 2. 

 
Figure 10. Measured deviations the final product geometry produced by optimized tool geometry in the forming step 2: 
(a) surface deviations, (b) edge deviations. Number in a capture represents the surface or edge acquisition point, where 
the deviation from its optimal shape is measured. The values of deviations are specified in Table 2. 

Table 2 illustrates that the measured deviations are below the required values. It 
should be noted that the predicted values generally follow the measured ones, with few 
exceptions (e.g., surface points 3,5,6,12), where the measured deviation is greater than the 
predicted one. In both cases, however, the improvement in the product geometry is not as 

Figure 10. Measured deviations the final product geometry produced by optimized tool geometry in the forming step 2: (a)
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Table 2. Measured deviations of the final product geometry produced by the optimized tool geometry.
The location of the measuring points is denoted in Figure 10.

Surface Deviations Edge Deviations
Location (mm) Location (mm)

1 0.21 1 0.07
2 0.24 2 0.02
3 0.47 3 0.00
4 0.16 4 0.32
5 0.48 5 0.71
6 0.46 6 0.01
7 0.03 7 0.08
8 0.14 8 0.39
9 0.16 9 0.28
10 0.01 10 0.25
11 0.10 11 0.02
12 0.37 12 0.08
13 0.09 13 0.11
14 0.09 14 0.15
15 0.22 - -

Table 2 illustrates that the measured deviations are below the required values. It
should be noted that the predicted values generally follow the measured ones, with few
exceptions (e.g., surface points 3,5,6,12), where the measured deviation is greater than
the predicted one. In both cases, however, the improvement in the product geometry
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is not as large as predicted by the optimization procedure and corresponding computer
simulations. Differences may arise due to many numerical and experimental factors,
suspecting tool manufacturing process, surface roughness quality, tool–sheet simulation
contact properties, friction properties, forming process and material modelling, deviations
measuring technique, etc. Additional uncertainties are introduced by using two forming
steps. Nevertheless, the optimization method succeeds in predicting the forming tool and
blank geometry such that the customer’s specifications are achieved.

6. Conclusions

In this paper, we present a numerical method for the compensation of springback,
thinning, and blank edge geometry which results in the simultaneous optimization of
the blank shape and forming tool geometry. Based on our previous works, the proposed
iterative procedure is developed by integrating the springback (and thinning) compensation
algorithm [35,36] and the blank edge geometry correction algorithm [52] into one unified
algorithm. To the best of the authors’ knowledge, no study has yet comprehensively
considered all these phenomena; this thus represents the main novelty of this paper.

The proposed algorithm is capable of optimizing the blank shape and the forming tool
geometry in three-dimensional sheet metal forming operations. The algorithm is demon-
strated on a complex-phase advanced high strength steel sheet automobile product, which,
due to the high ratio of yield stress to tensile strength, is prone to a considerable amount
of springback after tool removal. As presented, the algorithm effectively compensates for
the springback, thickness reduction, and product edge deviations in seven iterations. As
shown, during the convergence process, no oscillations occur and maximum surface and
edge deviations are reduced from 3 mm to 0.4 and 0.15 mm, respectively.

Finally, the predicted tool and blank geometries were produced and implemented in
the actual forming process. The results showed that using the optimized tool and blank
edge geometries, the customer’s specifications in the form of allowable deviations between
manufactured and desired product geometries were met. The values allowable deviations
were prescribed as 0.5 mm for surface and 1.0 mm for edge deviations whereas the maxi-
mum measured surface and edge deviations were 0.48 mm and 0.71 mm, respectively. The
main reasons for deviations between the measured and predicted values are mainly due to
accuracy of material and process modelling assumptions as well as due to experimental
factors, such as tool and product surface measurement.

Finally, the procedure is significant for practical industrial applications. The method-
ology and the developed software have been introduced in the company’s R&D division
product development and proven to be successful in practical applications.
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