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Abstract: The mixed metal oxides Bi2MoO6 and La-doped Bi2MoO6 were prepared by the sol–gel
method. Then, varying quantities of the as-prepared mixed metal oxides were blended with
graphene oxide (GO), employing sonication, to obtain Bi2MoO6/GO (BM/GO) and La-Bi2MoO6/GO
(LBM/GO) nanocomposites. These prepared materials were characterized by different techniques
such as thermal gravimetric analysis (TGA), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET),
X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and transmission
electron microscopy (TEM). Dielectric properties were studied by using a precision impedance ana-
lyzer. Dielectric constant and loss tan of the synthesized composites were studied as a function of
frequency by using a precision impedance analyzer. Overall, the dielectric constant (E’) observed for
the LBM/GO composites was higher than that of BM/GO.

Keywords: dielectric studies; Bi2MoO6; lanthanum; graphene oxide

1. Introduction

A growing demand for electric charge storage devices, due to the invention of battery-
powered automobiles and other devices, has led to the study of the preparation of materials
with enhanced dielectric properties. A variety of nanocomposites such as Mn-substituted
ZnFe2O4; Co2Y hexaferrites substituted by Mn-Ge, Ce-Nd2Zr2O7, Co(II), Ni(II), Cu(II), and
Mn(II)-oxaloyldihydrazone complexes; and ZnO microspheres with polyaniline (PANI)
have been studied for their dielectric behaviors due to the fact that nanocomposites possess
unique properties as compared to bulk material [1–3]. Nanocomposites have great impor-
tance due to their remarkable catalytic, dielectric, and luminescence properties, based on
the morphology of the nanomaterials. The electrical conductance and thermal stability of
the metal nanocomposites can be improved by the help of a carbon-based support, usually
achieved with graphene oxides [4,5].

One such carbon-based support is graphene, a 2D Material that has been found to
be an excellent support for the enhancement of properties of the resulting nanocompos-
ites [6–13]. Various reports of the use of graphene can be found in the literature, such
as poly (p-phenylene benzobisoxazole/graphene, PVA/graphene composites graphene
oxide (GO)/ZnxFe1−xFe2O4 composites, graphene/BaTiO nanocomposites rGO-Cu2O, etc.,
for the creation of nanocomposites that display enhanced dielectric properties due to the
inclusion of graphene [14–16].

Furthermore, the incorporation of metals and non-metals with metal oxides nanopar-
ticles also enhances the functionality of the materials. One such metal that has been exten-
sively studied is bismuth, and there are a series of nanocomposites (Bi2WO6, BaTiO3Bi2O3,
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Bi2S3, BiVO4, Bi2Ti2O7, Bi12TiO20 and Bi2InNbO7) that show a variety of properties [17–21].
Bismuth molybdate (Bi2MoO6) is a versatile metal molybdate with photoelectric charac-
teristics that has been widely used as a photocatalyst and as an anode material in lithium
batteries. Some notable citations in this regard are available in the literature [22–26].

Recently, bismuth molybdate (Bi2MoO6) was employed as a photocatalyst, exhibiting
increased performance among metal molybdates for the degradation of dyes and lumines-
cence, and it has been synthesized by various methods: co-precipitation, hydrothermal,
solid state reaction, and sol–gel [27]. In continuation of our efforts to prepare various
graphene-based nanocomposites, we extended our previous work regarding synthesis
and morphological studies of Bi2MoO6 and La-doped Bi2MoO6 [28–30], and herein we
report on the graphene oxide nanocomposites of Bi2MoO6 and La-doped Bi2MoO6, i.e.,
Bi2MoO6/GO and La-Bi2MoO6/GO composites, respectively, and their dielectric behavior.

2. Materials and Methods
2.1. Materials

All chemicals used for the synthesis, such as graphite powder, sodium molybdate
(Na2Mo2O4 × 2H2O), bismuth chloride (BiCl3), and lanthanum chloride (LaCl3 × 7H2O),
were of analytical grade purchased from Sigma Aldrich and PubChem (Saint Louis, MO,
USA). Bi2MoO6 and La-doped Bi2MoO6 were synthesized using a previously reported
method [28].

2.2. Methods

Graphene oxide was synthesized by the modified Hummers method [31]. A variety
of nanocomposites of bismuth molybdate and lanthanum-doped bismuth molybdate with
graphene oxide were synthesized by depositing varying amounts by weight of Bi2MoO6
and La-BiMoO6 on graphene oxide to yield 2, 3, and 4% of Bi2MoO6/GO (BM/GO) and
La-Bi2MoO6/GO (LBM/GO). The mixed metal oxides and graphene oxide were dispersed
in deionized water by applying sonication for 3 h. After sonication, the samples were dried
in an electric oven at 90 ◦C for 48 h, and we obtained X% BM/GO (X wt.% Bi2MoO6/GO)
and X% LBM/GO (X wt.% La-Bi2MoO6/GO) composites, where X = 2, 3, or 4, which
denotes the wt.% of the mixed metal oxide in the GO nanocomposite.

2.3. Characterization

The crystalline structures of the as synthesized nanocomposites were characterized
with XRD patterns on a Bruker D2 Phaser X-ray diffractometer with Cu Kα radiation
(λ = 1.5418 Å), having accelerating voltage and current of 30 kV and 10 mA, respectively
(Bruker, Berlin, Germany). TGA was performed by heating the samples in an N2 flow
using a Perkin-Elmer Thermogravimetric Analyzer 7 with a heating rate of 10 ◦C/min
(Perkin-Elmer, Waltham, MA, USA). BET surface area and BJH pore volume were measured
by an N2 adsorption-desorption isotherm with a liquid nitrogen temperature of −196 ◦C
using Micromeritics (Gemini VII, 2390 surface area and porosity, Norcross, GA, USA). The
samples were degassed at 120 ◦C for 3 h using N2 gas. The surface morphology of the
nanocomposites was determined by scanning electron microscopy (SEM, Jeol, JED-2200
series, Tokyo, Japan). Transmission electron microscopy (TEM) analysis of nanocompos-
ite measurements was carried out using Jeol TEM model JEM-1011 (Jeol, Tokyo, Japan)
at 100 keV. XPS spectra were measured on a PHI 5600 Multi-Technique XPS (Physical
Electronics, Lake Drive East, Chanhassen, MN, USA) using monochromatized Al Ka at
1486.6 eV.

3. Results and Discussions
3.1. Thermal Gravimetric Analysis

A thermal gravimetric analysis (TGA, Perkin-Elmer, Waltham, MA, USA) was con-
ducted to identify the thermal behavior of all the synthesized composites. The results of
4% BM/GO and 4% LBM/GO are compared in Figure 1, while the TGA curves of other
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compositions are given in the supplementary data (Figure S1). Among these composites, in
general, a large weight loss was observed between 220 and 445 ◦C, which can be attributed
to the thermal decomposition of rGO in these composites. Such a large loss is in agreement
with similar degradation patterns of Bi2MoO6/rGO composites [22]. The TGA thermogram
of Bi2MoO6 reveals that there was an 8% weight loss and that of La-Bi2MoO6 shows a
weight loss of up to 16%, indicating that the later nanocomposite is thermally less stable
than its precursor. However, when the GO nanocomposites of the mixed metal oxides
BM and LBM, i.e., X% Bi2MoO6/GO and X% La-Bi2MoO6/GO, were subjected to similar
studies wherein the samples were heated up to 800 ◦C starting from 25 ◦C at a heating
rate of 10 ◦C/min under an inert atmosphere, a similar trend of thermal stability was
observed, indicating the formation of composites. However, when the La-doped Bi2MoO6
was subjected to a similar study, it was found that the weight loss was up to 16%, indicating
that the later nanocomposite, i.e., 4% LBM/GO, is thermally less stable.
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Figure 1. Comparative thermal degradation patterns of Bi2MoO6 (BM), La-Bi2MoO6 (LBM), graphene
oxide (GO), 4% BM/GO, and 4% LBM/GO.

3.2. X-ray Diffraction

The XRD pattern of the prepared 4% BM/GO and 4% LBM/GO composites is given in
Figure 2. The diffractogram obtained for the sample of 4% BM/GO revealed the presence
of GO along with the pattern of Bi2MoO6 (JCPDS No. 76-2388), which yielded diffraction
peaks at 2θ values 23.5◦ (111), 28.2◦ (131), 32.5◦ (002), 33.2◦ (060), 36.1◦ (151), 46.8◦ (202),
47.2◦ (260), 55.5◦ (133), 56.4◦ (191), and 58.4◦ (262) that were found in the original mixed
metal oxide BM [32]. However, the XRD pattern of 4% LBM/GO revealed the presence of
mixed phases of La2Mo2O9 and Bi2MoO6 along with GO [32–34].

3.3. BET Analysis

The nitrogen adsorption isotherms of 4% BM/GO and 4% LBM/GO composites
measured at 333K are shown in Figure 3. From the isotherms obtained, it can be observed
that the adsorption of N2 was much higher in the composites than in their precursors,
suggesting that the enormous alteration of structural characteristics takes place due to
incorporation of GO in the system [35]. Moreover, the surface area of the 4% BM/GO and
4% LBM/GO composites was found to be 12 m2/g and 10.7 m2/g, respectively, which is
several times greater than that of the precursors Bi2MoO6 (1.0277 m2/g) and La-doped
Bi2MoO6 (3.4077 m2/g), respectively [28]. This difference in surface area can also be
attributed to the GO incorporation with BM and LBM precursors [36].
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Figure 2. Comparative XRD patterns of BM, 4% BM/GO, and LBM, 4% LBM/GO composites.
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Figure 3. Nitrogen adsorption isotherms of 4% BM/GO and 4% LBM/GO composites.

Furthermore, when comparing the pore distribution of the composites with the pre-
cursor metal oxides, i.e., BM and LBM, it was observed that the pore size of the composites
ranged from 1.1 to 18.6 × 10−3 cm3/g and 2.8 to 19.7 × 10−3 cm3/g for the 4% BM/GO
and 4% LBM/GO composites, respectively (Figure 4).

3.4. Microscopic Analysis

The surface morphology of the prepared 4% BM/GO and 4% LBM/GO composites
was examined by SEM, and the respective SEM micrograms are shown in Figure 5. The
surface morphology of 4% BM/GO possesses irregular shining particles with small crystals
of bismuth molybdate on a graphene oxide platform. The surface morphology of 4%
LBM/GO exhibits a distribution of particles arranged as relatively large rod-like crystals of
lanthanum molybdate embedded on a graphene oxide platform. The surface morphology
of both composites is quite different than that of Bi2MoO6 and La-Bi2MoO6, which are
dense rod-like and scattered granular, respectively [28].
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The prepared composites were subjected to TEM analysis by dispersing the prepared
composites in hexane and using a sonicator water bath, then, the dispersed solution was
dropped on the TEM grid to evaluate the dispersion of BM and LBM on the graphene oxide
sheets. It was observed that the dispersion of LBM, i.e., La-Bi2MoO6, on the graphene oxide
sheets in the composite 4% LBM/GO was superior to that observed in the case of BM, i.e.,
Bi2MoO6 in the 4% BM/GO composite, wherein agglomeration of the mixed metal oxides
was seen on the surface of the GO. The TEM images obtained for both the composites, i.e.,
4% BM/GO and 4% LBM/GO, are given in Figure 6.

3.5. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy is one of the best tools to analyze the surface com-
position and particularly the valence state of elements in these composites. The scan of
the 4% LBM/GO composite revealed the presence of Bi, Mo, O, and La elements in the
prepared composites, and an additional signal corresponding to the element C revealed
the successful doping of GO in the nanocomposite (Figure 7). The full spectrum for the 4%
LBM/GO composite contains peaks for C 1s (287 eV), O 1s (537 eV), Mo 3d (235 eV), Bi 4f
(158 eV), and La 3d. These results are in agreement with previous literature [22,28]. It was
observed that there was no change in the binding energies of the respective elements of the
mixed metal oxides, indicating that the formation of the composites is by physisorption of
the mixed metal oxides, i.e., BM and LBM, on the surface of the employed GO, as confirmed
by the TEM images.
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3.6. Dielectric Properties

Dielectric properties of Bi2MoO6/GO and La-Bi2MoO6/GO as a function of fre-
quency were studied by using an impedance analyzer, and the values of the dielectric
constants were plotted against the log of frequency, as shown in Figure 8a,b and Figure 9a,b.
Figure 8a,b shows the increase in dielectric constant from X% BM/GO (X = 2, 3, and 4).
E’ decreases with an increase in frequency. High dielectric constants at low frequencies
were attributed to the electrode polarization phenomenon, wherein an increase in of the
electrode potential lags behind the frequency, and space charges have less time to be ar-
ranged according to the applied electric field [37]. An increase in E’ was observed with an
increase in BM content from 2 to 4% in the GO nanocomposite. Values of E’ were 17.69,
76.67, and 142.33 for 2, 3 and 4%, respectively. A high dielectric constant was considered
due to the electronic and ionic polarizability, and contribution by the oxide contents and
Bi ions mainly contributed to the high E’ [38,39]. Moreover, existence of the oxygenated
groups in the GO caused entrapment of Bi ions and reduced the interaction of Bi with
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molybdate ions, and hence, more available Bi caused a high E’ [40]. E’ observed for the
LBM/GO composites was higher than that of the undoped nanocomposite, i.e., BM/GO,
but overall, the value of the E’ was much lower than that of Bi2MoO6/GO. Values observed
for the E’ of La-Bi2MoO6/GO, which were 43.9, 48.89, and 51.28 for 2, 3, and 4% weight of
La-Bi2MoO6, dispersed in a fixed amount of GO. The low E’ was attributed to the increased
conductivity of the oxide ions in La-doped Bi2MoO6 [41].
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The loss tangents (tan δ) for Bi2MoO6/GO and La-Bi2MoO6/GO plotted against
frequency, as shown in Figure 9a,b, show a similar behavior as that of E’. Values of tan δ

were 0.75, 1.82, and 1.79 for 2, 3, and 4% weight of Bi2MoO6, respectively, and the values
of tan δ of La-Bi2MoO6/GO were 0.65, 0.71, and 0.88, respectively. The increase in tan
δ with the increase in Bi2MoO6 content in GO is attributed to the conductive nature of
Bi2MoO6 [42], while the increase in tan δ with increase in Bi2MoO6/GO is attributed to
the conductive network formation, dipole polarization, and interfacial polarization [43], as
there exists a relation between electrical conduction E’ and E” [44,45].

4. Conclusions

Composites of GO/Bi2MoO6 and La-doped GO/Bi2MoO6 were synthesized by son-
ication. An increase in the dielectric constant with an increase in Bi2MoO6 content was
observed with an E’ of 142.33 at 4 wt.% of Bi2MoO6. A similar increasing trend was shown
for La-doped Bi2MoO6, with an overall value of E’ 51.28. Tan δ was 1.79 and 0.88 for 4%
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GO/Bi2MoO6 and La-doped GO/Bi2MoO6, respectively. Overall, the present work opens
an avenue for the controlled synthesis of GO/Bi2MoO6 and La-doped GO/Bi2MoO6 and
directs our attention to new roles of GO in the controllable synthesis of new materials for
possible applications in capacitive and charge storage devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/met11040559/s1, Figure S1: Comparative thermal degradation patterns of (a) BM, LM, GO, 2%
BM/GO, 3% BM/GO, 2% LBM/GO, and 3% BM/GO.
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