Nonisothermal Kinetic Degradation of Hybrid CNT/Alumina Epoxy Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of CNT/Alumina Epoxy Nanocomposites
2.3. Characterizations
2.4. Thermal Analysis
3. Results
3.1. Characteristics and Morphology of the CNT/Alumina
3.2. Calculation of Thermal Degradation Kinetic Parameters
3.3. Lifetime Predictions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNT | carbon nanotube |
HYB | CNT/alumina hybrid compound |
DGEBA | Bisphenol A diglycidyl |
TMD | Trimethylhexamethylenediamine |
α | Conversion |
log β | Heating rate; (Kmin−1) |
dα/dt | Rate of conversion |
d2α/dt2 | Rate of conversion for second-derivative thermogravimetry |
f(α) | Expression of kinetic model |
Ea | Activation energy |
Eq | Equation |
F–W–O | Flynn–Wall–Ozawa |
k | Rate constant |
Mo | Initial mass (g) |
Mt | Mass at time (g) |
Mf | Final mass (g) |
n | Kinetic order |
N2 | Nitrogen |
T5 | Temperature at 5% mass loss (K) |
T10 | Temperature at maximum mass loss (K) |
PEPA | Polyethylene polyamine |
R | Gas constant (8.1 Jmol−1 K−1) |
Rw | Residue mass (g) |
Td | Temperature at maximum mass loss (K) |
TG | Thermogravimetry (TG) |
Tg | Glass transition temperature |
T | Temperature (K) |
t | Time (min) |
References
- He, D.; Fan, B.; Zhao, H.; Yang, M.; Wang, H.; Bai, J.; Li, W.; Zhou, X.; Bai, J. Multifunctional polymer composites reinforced by carbon nanotubes–Alumina hybrids with urchin-like structure. Mater. Today Commun. 2017, 11, 94–102. [Google Scholar] [CrossRef]
- Yan, R.; Su, F.; Zhang, L.; Li, C. Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105496. [Google Scholar] [CrossRef]
- Liu, Y.; He, D.; Dubrunfaut, O.; Zhang, A.; Zhang, H.; Pichon, L.; Bai, J. GO-CNTs hybrids reinforced epoxy composites with porous structure as microwave absorbers. Compos. Sci. Technol. 2020, 200, 108450. [Google Scholar] [CrossRef]
- Wilkinson, A.N.; Kinloch, I.A.; Othman, R.N. Low viscosity processing using hybrid CNT-coated silica particles to form electrically conductive epoxy resin composites. Polymer 2016, 98, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, M.R.; Akil, H.M.; Abdul Kudus, M.H.; Othman, M.B.H. Compressive properties and thermal stability of hybrid carbon nanotube-alumina filled epoxy nanocomposites. Compos. Part B Eng. 2016, 91, 235–242. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Abdul Kudus, M.H.; Md. Akil, H.; Zamri, M.H. Improvement of Fracture Toughness in Epoxy Nanocomposites through Chemical Hybridization of Carbon Nanotubes and Alumina. Materials 2017, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, M.R.; Md. Akil, H.; Abdul Kudus, M.H.; Kadarman, A.H. Improving flexural and dielectric properties of MWCNT/epoxy nanocomposites by introducing advanced hybrid filler system. Compos. Struct. 2015, 132, 50–64. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Akil, H.M.; Kudus, M.H.A.; Saleh, S.S.M. Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina. Compos. Part A Appl. Sci. Manuf. 2014, 66, 109–116. [Google Scholar] [CrossRef]
- Shin, J.; Lee, K.; Jung, Y.; Park, B.; Yang, S.J.; Kim, T.; Lee, S.B. Mechanical Properties and Epoxy Resin Infiltration Behavior of Carbon-Nanotube-Fiber-Based Single-Fiber Composites. Materials 2021, 14, 106. [Google Scholar] [CrossRef]
- Guo, H.; Ji, P.; Halász, I.Z.; Pirityi, D.Z.; Bárány, T.; Xu, Z.; Zheng, L.; Zhang, L.; Liu, L.; Wen, S. Enhanced Fatigue and Durability Properties of Natural Rubber Composites Reinforced with Carbon Nanotubes and Graphene Oxide. Materials 2020, 13, 5746. [Google Scholar] [CrossRef]
- Rizzo, A.; Luhrs, C.; Earp, B.; Grbovic, D. CNT Conductive Epoxy Composite Metamaterials: Design, Fabrication, and Characterization. Materials 2020, 13, 4749. [Google Scholar] [CrossRef]
- Trakakis, G.; Tomara, G.; Datsyuk, V.; Sygellou, L.; Bakolas, A.; Tasis, D.; Parthenios, J.; Krontiras, C.; Georga, S.; Galiotis, C.; et al. Mechanical, Electrical, and Thermal Properties of Carbon Nanotube Buckypapers/Epoxy Nanocomposites Produced by Oxidized and Epoxidized Nanotubes. Materials 2020, 13, 4308. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Ishfaq, N.; Said, A.; Nawaz, Z.; Ali, Z.; Ali, N.; Afzal, A.; Bilal, M. Fabrication, characterization, morphological and thermal investigations of functionalized multi-walled carbon nanotubes reinforced epoxy nanocomposites. Prog. Org. Coat. 2021, 150, 105962. [Google Scholar] [CrossRef]
- Nayak, S.R.; Mohana, K.N.S.; Hegde, M.B.; Rajitha, K.; Madhusudhana, A.M.; Naik, S.R. Functionalized multi-walled carbon nanotube/polyindole incorporated epoxy: An effective anti-corrosion coating material for mild steel. J. Alloys Compd. 2021, 856, 158057. [Google Scholar] [CrossRef]
- Fan, B.; He, D.; Liu, Y.; Bai, J. Influence of Thermal Treatments on the Evolution of Conductive Paths in Carbon Nanotube-Al2O3 Hybrid Reinforced Epoxy Composites. Langmuir 2017, 33, 9680–9686. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Dichiara, A.; Zha, J.; Su, Z.; Bai, J. On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT–Al2O3 hybrids. Compos. Sci. Technol. 2014, 103, 36–43. [Google Scholar] [CrossRef]
- Kocaman, S.; Gursoy, M.; Karaman, M.; Ahmetli, G. Synthesis and plasma surface functionalization of carbon nanotubes for using in advanced epoxy-based nanocomposites. Surf. Coat. Technol. 2020, 399, 126144. [Google Scholar] [CrossRef]
- Mishra, K.; Singh, R.P. Effect of APTMS modification on multiwall carbon nanotube reinforced epoxy nanocomposites. Compos. Part B Eng. 2019, 162, 425–432. [Google Scholar] [CrossRef]
- Marriam, I.; Xu, F.; Tebyetekerwa, M.; Gao, Y.; Liu, W.; Liu, X.; Qiu, Y. Synergistic effect of CNT films impregnated with CNT modified epoxy solution towards boosted interfacial bonding and functional properties of the composites. Compos. Part A Appl. Sci. Manuf. 2018, 110, 1–10. [Google Scholar] [CrossRef]
- Jian, W.; Lau, D. Understanding the effect of functionalization in CNT-epoxy nanocomposite from molecular level. Compos. Sci. Technol. 2020, 191, 108076. [Google Scholar] [CrossRef]
- Khare, K.S.; Khabaz, F.; Khare, R. Effect of Carbon Nanotube Functionalization on Mechanical and Thermal Properties of Cross-Linked Epoxy–Carbon Nanotube Nanocomposites: Role of Strengthening the Interfacial Interactions. ACS Appl. Mater. Interfaces 2014, 6, 6098–6110. [Google Scholar] [CrossRef]
- Ni, Y.; Han, H.; Volz, S.; Dumitricǎ, T. Nanoscale Azide Polymer Functionalization: A Robust Solution for Suppressing the Carbon Nanotube–Polymer Matrix Thermal Interface Resistance. J. Phys. Chem. C 2015, 119, 12193–12198. [Google Scholar] [CrossRef]
- Saravanan, D.; Palanisamy, C.; Raajeshkrishna, C.R. Tribological performance of multi walled carbon nanotubes–alumina hybrid/epoxy nanocomposites under dry sliding condition. Mater. Res. Express 2019, 6, 105067. [Google Scholar] [CrossRef]
- Li, W.; He, D.; Dang, Z.; Bai, J. In situ damage sensing in the glass fabric reinforced epoxy composites containing CNT–Al2O3 hybrids. Compos. Sci. Technol. 2014, 99, 8–14. [Google Scholar] [CrossRef]
- He, C.N.; Tian, F. A carbon nanotube–alumina network structure for fabricating epoxy composites. Scr. Mater. 2009, 61, 285–288. [Google Scholar] [CrossRef]
- Barral, L.; Díez, F.J.; García-Garabal, S.; López, J.; Montero, B.; Montes, R.; Ramírez, C.; Rico, M. Thermodegradation kinetics of a hybrid inorganic–organic epoxy system. Eur. Polym. J. 2005, 41, 1662–1666. [Google Scholar] [CrossRef]
- Chang, W.L. Decomposition behavior of polyurethanes via mathematical simulation. J. Appl. Polym. Sci. 1994, 53, 1759–1769. [Google Scholar] [CrossRef]
- Liaw, D.J.; Shen, W.C. Curing of acrylated epoxy resin based on bisphenol-S. Polym. Eng. Sci. 1994, 34, 1297–1303. [Google Scholar] [CrossRef]
- Ochi, M.; Tsuyuno, N.; Sakaga, K.; Nakanishi, Y.; Murata, Y. Effect of network structure on thermal and mechanical properties of biphenol-type epoxy resins cured with phenols. J. Appl. Polym. Sci. 1995, 56, 1161–1167. [Google Scholar] [CrossRef]
- Jin, F.-L.; Park, S.-J. Thermal properties of epoxy resin/filler hybrid composites. Polym. Degrad. Stab. 2012, 97, 2148–2153. [Google Scholar] [CrossRef]
- Zhou, Y.; Pervin, F.; Lewis, L.; Jeelani, S. Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater. Sci. Eng. A 2007, 452, 657–664. [Google Scholar] [CrossRef]
- Yu, A.; Ramesh, P.; Sun, X.; Bekyarova, E.; Itkis, M.E.; Haddon, R.C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv. Mater. 2008, 20, 4740–4744. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Lin, W.-N.; Huang, Y.-L.; Tien, H.-W.; Wang, J.-Y.; Ma, C.-C.M.; Li, S.-M.; Wang, Y.-S. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 2011, 49, 793–803. [Google Scholar] [CrossRef]
- Kudus, M.H.A.; Akil, H.M.; Mohamad, H.; Loon, L.E. Effect of catalyst calcination temperature on the synthesis of MWCNT–alumina hybrid compound using methane decomposition method. J. Alloys Compd. 2011, 509, 2784–2788. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, R.; Wang, J.; Qi, S. Thermal conductivity improvement of epoxy composite filled with expanded graphite. Ceram. Int. 2015, 41 Pt A, 13541–13546. [Google Scholar] [CrossRef]
- Vasconcelos, G.D.C.; Mazur, R.L.; Ribeiro, B.; Botelho, E.C.; Costa, M.L. Evaluation of decomposition kinetics of poly (ether-ether-ketone) by thermogravimetric analysis. Mater. Res. 2014, 17, 227–235. [Google Scholar] [CrossRef]
- Neǐman, M.; Kovarskaya, B.; Golubenkova, L.; Strizhkova, A.; Levantovskaya, I.; Akutin, M. The thermal degradation of some epoxy resins. J. Polym. Sci. 1962, 56, 383–389. [Google Scholar] [CrossRef]
- Grassie, N.; Guy, M.I.; Tennent, N.H. Degradation of epoxy polymers: Part 4—Thermal degradation of bisphenol-A diglycidyl ether cured with ethylene diamine. Polym. Degrad. Stab. 1986, 14, 125–137. [Google Scholar] [CrossRef]
- Grassie, N.; Guy, M.I.; Tennent, N.H. Degradation of epoxy polymers: Part 1—Products of thermal degradation of bisphenol-A diglycidyl ether. Polym. Degrad. Stab. 1985, 12, 65–91. [Google Scholar] [CrossRef]
- Wang, H.; Tao, X.; Newton, E. Thermal degradation kinetics and lifetime prediction of a luminescent conducting polymer. Polym. Int. 2004, 53, 20–26. [Google Scholar] [CrossRef]
- Xie, W.; Heltsley, R.; Cai, X.; Deng, F.; Liu, J.; Lee, C.; Pan, W.P. Study of stability of high-temperature polyimides using TG/MS technique. J. Appl. Polym. Sci. 2002, 83, 1219–1227. [Google Scholar] [CrossRef]
- Barton, J.; Lee, W.; Wright, W. Some applications of thermal methods of analysis to polymers. J. Therm. Anal. 1978, 13, 85–98. [Google Scholar] [CrossRef]
Samples | DGEBA:TMD | CNT/Alumina (wt%) | Curing (Temperature, Time) |
---|---|---|---|
Epoxy00 | 10:6 | 0 | 120 °C, 1 h |
Epoxy/HYB1 | 10:6 | 1 | 120 °C, 1 h |
Epoxy/HYB3 | 10:6 | 3 | 120 °C, 1 h |
Epoxy/HYB5 | 10:6 | 5 | 120 °C, 1 h |
Samples | β | Char Residue a | T10% (°C) e | Tonset (°C) b | Tmax (°C) c | Tend (°C) d | ∆T (°C) f |
---|---|---|---|---|---|---|---|
Epoxy00 | 5 | 8.23 | 201.5 | 320.18 | 360.42 | 522.83 | 202.65 |
10 | 7.38 | 209.5 | 328.12 | 377.42 | 529.70 | 201.58 | |
20 | 8.97 | 218.0 | 355.50 | 394.90 | 596.00 | 240.50 | |
Average | 8.19 | 209.66 | 343.50 | 376.43 | 565.50 | 222.00 | |
Epoxy/HYB1 | 5 | 9.24 | 190.35 | 320.80 | 362.80 | 583.80 | 263.00 |
10 | 10.79 | 216.80 | 341.10 | 373.40 | 556.40 | 215.30 | |
20 | 8.91 | 230.60 | 332.90 | 382.50 | 497.80 | 164.90 | |
Average | 9.65 | 209.10 | 331.60 | 372.90 | 546.00 | 214.40 | |
Epoxy/HYB3 | 5 | 10.94 | 239.10 | 326.50 | 351.40 | 502.10 | 175.60 |
10 | 12.14 | 186.04 | 340.00 | 373.70 | 589.70 | 249.70 | |
20 | 10.31 | 272.00 | 351.20 | 391.70 | 601.00 | 249.80 | |
Average | 11.13 | 230.00 | 339.23 | 372.27 | 564.27 | 225.03 | |
Epoxy/HYB5 | 5 | 13.9 | 247.50 | 325.60 | 357.20 | 494.50 | 168.90 |
10 | 12.15 | 257.80 | 345.60 | 366.60 | 556.70 | 211.10 | |
20 | 11.73 | 213.00 | 347.80 | 371.90 | 603.60 | 255.80 | |
Average | 12.59 | 239.43 | 339.67 | 365.23 | 551.60 | 211.93 |
α | Ea (kJmol−1) | R2 | α | Ea (kJmol−1) | R2 |
---|---|---|---|---|---|
Epoxy00 | Epoxy/HYB1 | ||||
0.05 | 84.31 | 0.8820 | 0.05 | 100.76 | 0.8031 |
0.10 | 98.83 | 0.9317 | 0.10 | 112.05 | 0.8900 |
0.15 | 127.94 | 0.8114 | 0.15 | 141.32 | 0.9394 |
0.20 | 137.55 | 0.9375 | 0.20 | 163.22 | 0.9900 |
0.25 | 144.79 | 0.9654 | 0.25 | 210.65 | 0.9902 |
0.30 | 149.40 | 0.9770 | 0.30 | 212.36 | 0.9392 |
Average | 123.80 | - | Average | 156.73 | - |
Epoxy/HYB3 | Epoxy/HYB5 | ||||
0.05 | 79.81 | 0.8768 | 0.05 | 76.51 | 0.8390 |
0.10 | 92.48 | 0.8381 | 0.10 | 88.48 | 0.8012 |
0.15 | 117.13 | 0.8371 | 0.15 | 112.28 | 0.8926 |
0.20 | 129.32 | 0.9073 | 0.20 | 147.40 | 0.8393 |
0.25 | 139.62 | 0.9681 | 0.25 | 173.57 | 0.8613 |
0.30 | 142.04 | 0.9876 | 0.30 | 219.75 | 0.8797 |
Average | 116.73 | - | Average | 136.33 | - |
Sample Designation | n a | Ea | ln A b | Lifetime Predictions c | |||||
---|---|---|---|---|---|---|---|---|---|
25 °C | 50 °C | 100 °C | 150 °C | 250 °C | 500 °C | ||||
Epoxy00 | 0.9 | 76.51 | 2.33 | 11.11 | 10.07 | 8.41 | 5.34 | 2.87 | 1.42 |
Epoxy01 | 0.9 | 79.81 | 2.37 | 11.67 | 10.59 | 8.86 | 5.65 | 3.07 | 1.56 |
Epoxy03 | 0.9 | 84.31 | 2.47 | 12.42 | 11.27 | 9.44 | 6.06 | 3.33 | 1.74 |
Epoxy05 | 0.9 | 87.14 | 2.48 | 12.91 | 11.72 | 9.84 | 6.33 | 3.52 | 1.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudus, M.H.A.; Zakaria, M.R.; Omar, M.F.; Hafi Othman, M.B.; Md. Akil, H.; Nabiałek, M.; Jeż, B.; Abdullah, M.M.A.B. Nonisothermal Kinetic Degradation of Hybrid CNT/Alumina Epoxy Nanocomposites. Metals 2021, 11, 657. https://doi.org/10.3390/met11040657
Kudus MHA, Zakaria MR, Omar MF, Hafi Othman MB, Md. Akil H, Nabiałek M, Jeż B, Abdullah MMAB. Nonisothermal Kinetic Degradation of Hybrid CNT/Alumina Epoxy Nanocomposites. Metals. 2021; 11(4):657. https://doi.org/10.3390/met11040657
Chicago/Turabian StyleKudus, Muhammad Helmi Abdul, Muhammad Razlan Zakaria, Mohd Firdaus Omar, Muhammad Bisyrul Hafi Othman, Hazizan Md. Akil, Marcin Nabiałek, Bartłomiej Jeż, and Mohd Mustafa Al Bakri Abdullah. 2021. "Nonisothermal Kinetic Degradation of Hybrid CNT/Alumina Epoxy Nanocomposites" Metals 11, no. 4: 657. https://doi.org/10.3390/met11040657
APA StyleKudus, M. H. A., Zakaria, M. R., Omar, M. F., Hafi Othman, M. B., Md. Akil, H., Nabiałek, M., Jeż, B., & Abdullah, M. M. A. B. (2021). Nonisothermal Kinetic Degradation of Hybrid CNT/Alumina Epoxy Nanocomposites. Metals, 11(4), 657. https://doi.org/10.3390/met11040657