Atomic Layer Deposition of aTiO2 Layer on Nitinol and Its Corrosion Resistance in a Simulated Body Fluid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atomic Layer Deposition of a TiO2 Layer
2.2. Corrosion Tests
3. Results and Discussion
3.1. ALD TiO2 Thin Layer Deposition
3.2. Corrosion Tests
3.2.1. Potentiodynamic Test
3.2.2. Electrochemical Impedance Spectroscopy
4. Conclusions
- The thickness of the formatted TiO2 layers on the CVC NiTi rod was 52.2 nm, and on the commercial Nitinol it was 51.7 nm.
- The formatted TiO2 layers were confirmed by XPS and SEM/EDX analyses.
- The high-energy resolution XPS spectra for TiO2 from both specimens were very similar. The Ti 2p3/2 peak at 458.6 eV and the Ti 2p1/2 peak at 464.5 eV were observed on the surface of both specimens. This corresponds to the binding energy, which is related with the Ti(4+) oxidation state. This shows the presence of the TiO2 compound on the surfaces of both investigated ALD TiO2-covered specimens.
- The potentiodynamic test showed that the passive layer on the TiO2/commercial Nitinol was the most stable and resistant to external corrosion influences. The corrosion stability fell from the commercial Nitinol and the CVC NiTi rod with and without the TiO2 layer.
- The corrosion rate was the smallest for TiO2/commercial Nitinol; the TiO2/CVC NiTi rod and commercial Nitinol were far away but very close together, while the CVC NiTi rod showed the highest corrosion rate, or the lowest corrosion resistance, by the potentiodynamic test.
- Electrochemical Impedance Spectroscopy is interpreted using the Nyquist impedance diagrams, where a typical depressed semicircle shape and the response increasing with the immersion time were shown for all specimens.
- With the help of using the resistance through the porous external oxide layer (R1) and the resistance through the inner compact oxide layer (R2), it was determined that the CVC NiTi rod and the commercial Nitinol had, for the first 48 h of immersion, only resistance through the oxide layer as a consequence of the thin and compact layer (R2). On the other hand, the TiO2/CVC NiTi rod and TiO2/commercial Nitinol had resistances through both layers for the total immersion time (R1 + R2). The resistance R1 was considerably lower for all the specimens, which was not surprising since the solution will penetrate through the porous layer much more easily than through the compact layer.
- It was proven that adding a TiO2 layer on the Nitinol surface was significant for improving the corrosion resistance, but a decisive role can be still attributed to the chemical composition and microstructure of the substrate that the ALD coating is applied.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halani, R.P.; Kaya, I.; Shin, Y.C.; Karaca, H.E. Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition. Mater. Sci. Eng. A 2013, 559, 836–843. [Google Scholar] [CrossRef]
- Frenzel, J.; Zhang, Z.; Neuking, K.; Eggeler, G. High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles. J. Alloys Compd. 2004, 385, 214–223. [Google Scholar] [CrossRef]
- Milošev, I.; Kapun, B. The corrosion resistance of Nitinol alloy in simulated physiological solutions Part 1: The effect of surface preparation. Mater. Sci. Eng. C 2012, 32, 1087–1096. [Google Scholar] [CrossRef]
- Fu, C.H.; Sealy, M.P.; Guo, Y.B.; Wei, X.T. Finite element simulation and experimental validation of pulsed laser cutting of nitinol. J. Manuf. Process. 2015, 19, 81–86. [Google Scholar] [CrossRef]
- Laskovski, A. (Ed.) Biomedical Engineering, Trends in Materials Science, 1st ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Simka, W.; Sadkowski, A.; Warczak, M.; Iwaniak, A.; Dercz, G.; Michalska, J.; Maciej, A. Characterization of passive films formed on titanium during anodic oxidation. Electrochim. Acta 2011, 56, 8962–8968. [Google Scholar] [CrossRef]
- Weng, F.; Chen, C.; Yu, H. Research status of laser cladding on titanium and its alloys: A review. Mater. Des. 2014, 58, 412–425. [Google Scholar] [CrossRef]
- Wawrzynski, J.; Gil, J.A.; Goodman, A.D.; Waryasz, G.R. Hypersensitivity to Orthopedic Implants: A Review of the Literature. Rheumatol. Ther. 2017, 4, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, Z.W.W.; Schalock, P.C. Hypersensitivity Reactions to Implanted Metal Devices: Facts and Fictions. J. Investig. Allergol. Clin. Immunol. 2016, 26, 279–329. [Google Scholar]
- Nordberg, G.F.; Gerhardsson, L.; Broberg, K.; Mumtaz, M.; Ruiz, P.; Fowler, B.A. Interactions in Metal Toxicology. In Handbook on the Toxicology of Metals, 3rd ed.; Elsevier BV: Amsterdam, The Netherlands, 2007; pp. 117–145. [Google Scholar]
- Shabalovskaya, S.; Anderegg, J.; Humbeeck, J.V. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 2008, 4, 447–467. [Google Scholar] [CrossRef] [PubMed]
- Pohl, M.; Glogowski, T.; Kühn, S.; Hessing, C.; Unterumsberger, F. Formation of titanium oxide coatings on NiTi shape memory alloys by selective oxidation. Mater. Sci. Eng. A 2008, 481–482, 123–126. [Google Scholar] [CrossRef]
- Nasakina, E.O.; Sudarchikova, M.A.; Sergienko, K.V.; Konushkin, S.V.; Sevost’yanov, M.A. Ion Release and Surface Characterization of Nanostructured Nitinol during Long-Term Testing. Nanomaterials 2019, 9, 1569. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.R.; Liu, F.; Zhang, Y.P.; Yu, D.Z.; Wang, F.P. Preparation and properties of titanium oxide film on NiTi alloy by micro-arc Oxidation. Appl. Surf. Sci. 2011, 257, 5576–5580. [Google Scholar] [CrossRef]
- Vojtĕch, D.; Voděrová, M.; Fojt, J.; Novák, P.; Kubásek, T. Surface structure and corrosion resistance of short-time heat-treated NiTi shape memory alloy. Appl. Surf. Sci. 2010, 257, 1573–1582. [Google Scholar] [CrossRef]
- Hu, T.; Chu, C.; Yin, L.; Pu, Y.; Dong, Y.; Guo, C.; Sheng, X.; Chung, J.; Chu, P. In vitro biocompatibility of titanium-nickel alloy with titanium oxide film by H202 oxidation. Trans. Nonferrous Met. Soc. China 2007, 17, 553–557. [Google Scholar] [CrossRef]
- Shabalovskaya, S.A.; Tian, H.; Anderegg, J.W.; Schryvers, D.U.; Carroll, W.U.; Van Humbeeck, J. The influence of surface oxides on the distribution and release of nickel from Nitinol wires. Biomaterials 2009, 30, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Schryvers, T.; Liu, D.; Jiang, Q.; Van Humbeeck, J. Stability of Ni in nitinol oxide surfaces. Acta Biomater. 2011, 7, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Leyens, C.; Peters, M. (Eds.) Titanium and Titanium Alloys. Fundamentals and Applications; Wiley: Weinheim, Germany, 2003. [Google Scholar]
- Pelton, A.R.; Mehta, A.; Zhu, L.; Trépanier, C.; Imbeni, V.; Robertson, S.; Barney, M. TiNi Oxidation: Kinetics and Phase Transformations. Solid-to-Solid Transform. Inorg. Mater. 2005, 2, 1029–1034. [Google Scholar]
- Zhu, L.; Fino, J.M.; Pelton, A.R. Oxidation of Nitinol. In Proceedings of the SMST-2003, Monterey, CA, USA, 5–8 May 2003. [Google Scholar]
- Bauer, S.; Schmuki, P.; von der Mark, K.; Park, J. Engineering biocompatible implant surfaces Part I: Materials and surfaces. Prog. Mater. Sci. 2013, 58, 263–300. [Google Scholar] [CrossRef]
- Saric, I.; Peter, R.; Piltaver, I.K.; Jelovica Badovinac, I.; Salamon, K.; Petravic, M. Residual chlorine in TiO2 films grown at low temperatures by plasma enhanced atomic layer deposition. Thin Solid Film. 2017, 628, 142–147. [Google Scholar] [CrossRef]
- Piltaver, I.K.; Peter, R.; Šarić, I.; Salamon, K.; Jelovica Badovinac, I.; Koshmak, K.; Nannarone, S.; Delač, M.I.; Petravić, M. Controlling the grain size of polycrystalline TiO2 films grown by atomic layer deposition. Appl. Surf. Sci. 2017, 419, 564–572. [Google Scholar] [CrossRef]
- Johnson, W.R.; Hultqvist, A.; Bent, F.S. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Aarik, J.; Aidla, A.; Mändar, H.; Uustare, T. Atomic layer deposition of titanium dioxide from TiCl4 and H2O: Investigation of growth mechanism. Appl. Surf. Sci. 2001, 172, 148–158. [Google Scholar] [CrossRef]
- Vokoun, D.; Racek, J.; Kaderavek, L.; Kei, C.C.; Yu, Y.S.; Klimša, L.; Šittner, P. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface. JMEPEG 2018, 27, 572–579. [Google Scholar] [CrossRef]
- Vokoun, D.; Klimša, L.; Vetushka, A.; Duchoň, J.; Racek, J.; Drahokoupil, J.; Kopeček, J.; Yu, Y.S.; Koothan, N.; Kei, C.C. Al2O3 and Pt Atomic Layer Deposition for Surface Modification of NiTi Shape Memory Films. Coatings 2020, 10, 746. [Google Scholar] [CrossRef]
- Lojen, G.; Stambolić, A.; Šetina, B.; Rudolf, R. Experimental continuous casting of nitinol. Metals 2020, 10, 505. [Google Scholar] [CrossRef] [Green Version]
- Stambolić, A.; Anžel, I.; Lojen, G.; Kocijan, A.; Jenko, M.; Rudolf, R. Continuous vertical casting of a NiTi alloy. Mater. Tehnol. 2016, 50, 981–988. [Google Scholar] [CrossRef]
- Stambolić, A.; Jenko, M.; Kocijan, A.; Žužek, B.; Drobne, D.; Rudolf, R. Determination of mechanical and functional properties by continuous vertical cast NiTi rod. Mater. Tehnol. 2018, 52, 521–527. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy; Physical Electronics Inc.: Eden Prairie, MN, USA, 1995. [Google Scholar]
- Izquierdo, J.; González-Marrero, M.B.; Bozorg, M.; Fernández-Pérez, B.M.; Vasconcelos, H.C.; Santana, J.J.; Souto, R.M. Multiscale electrochemical analysis of the corrosion of titanium and nitinol for implant applications. Electrochim. Acta 2016, 203, 366–378. [Google Scholar] [CrossRef]
- Figueira, N.; Silva, T.M.; Carmezima, M.J.; Fernandes, J.C.S. Corrosion behaviour of NiTi alloy. Electrochim. Acta 2009, 54, 921–926. [Google Scholar] [CrossRef]
Sample | Ecorr (mV) | icorr (μA/cm2) | Ebd (mV) | ibd (μA/cm2) | Corrosion Rate (mm/Year) | Passive Range (mV) |
---|---|---|---|---|---|---|
CVC NiTi rod | −334 ± 4 | 0.44 ± 0.05 | 329 ± 4 | 6.8 ± 0.2 | (4.2 ± 0.3) × 10−3 | 430 |
com. NiTi | −300 ± 4 | 0.30 ± 0.03 | 634 ± 7 | 6.2 ± 0.2 | (2.6 ± 0.2) × 10−3 | 730 |
TiO2/CVC NiTi rod | −235 ± 3 | 0.34 ± 0.03 | 643 ± 7 | 6.2 ± 0.2 | (3.1 ± 0.2) × 10−3 | 650 |
TiO2/com. NiTi | −186 ± 2 | 0.16 ± 0.02 | / | / | (1.1 ± 0.1) × 10−4 | / |
t (h) | R1com × 105 (Ω) | R2com × 105 (Ω) | R1CVC × 105 (Ω) | R2CVC × 105 (Ω) | R1TiO2/CVC × 105 (Ω) | R2TiO2/CVC × 105 (Ω) | R1TiO2/com × 105 (Ω) | R2TiO2/com × 105 (Ω) |
---|---|---|---|---|---|---|---|---|
1 | 0.00 | 3.74 | 0.00 | 2.08 | 0.24 | 2.22 | 0.82 | 4.00 |
6 | 0.00 | 6.86 | 0.00 | 2.30 | 0.42 | 3.29 | 0.94 | 8.20 |
12 | 0.00 | 6.49 | 0.00 | 2.61 | 0.79 | 3.85 | 1.16 | 10.20 |
24 | 0.00 | 7.41 | 0.00 | 2.71 | 1.36 | 4.41 | 1.34 | 18.01 |
48 | 0.00 | 10.94 | 0.00 | 2.55 | 2.44 | 7.58 | 1.45 | 25.00 |
72 | 4.32 | 19.65 | 0.33 | 7.80 | 2.59 | 13.80 | 1.37 | 33.81 |
96 | 6.92 | 40.35 | 0.28 | 18.00 | 2.48 | 22.51 | 1.56 | 52.51 |
120 | 7.46 | 56.88 | 0.34 | 24.08 | 2.66 | 33.00 | 1.35 | 68.50 |
144 | 8.32 | 70.29 | 0.33 | 28.06 | 2.68 | 44.72 | 1.34 | 89.00 |
168 | 9.01 | 89.47 | 0.35 | 30.25 | 2.69 | 56.51 | 1.26 | 101.04 |
192 | 10.28 | 81.47 | 0.31 | 29.62 | 2.29 | 60.31 | 1.46 | 113.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudolf, R.; Stambolić, A.; Kocijan, A. Atomic Layer Deposition of aTiO2 Layer on Nitinol and Its Corrosion Resistance in a Simulated Body Fluid. Metals 2021, 11, 659. https://doi.org/10.3390/met11040659
Rudolf R, Stambolić A, Kocijan A. Atomic Layer Deposition of aTiO2 Layer on Nitinol and Its Corrosion Resistance in a Simulated Body Fluid. Metals. 2021; 11(4):659. https://doi.org/10.3390/met11040659
Chicago/Turabian StyleRudolf, Rebeka, Aleš Stambolić, and Aleksandra Kocijan. 2021. "Atomic Layer Deposition of aTiO2 Layer on Nitinol and Its Corrosion Resistance in a Simulated Body Fluid" Metals 11, no. 4: 659. https://doi.org/10.3390/met11040659
APA StyleRudolf, R., Stambolić, A., & Kocijan, A. (2021). Atomic Layer Deposition of aTiO2 Layer on Nitinol and Its Corrosion Resistance in a Simulated Body Fluid. Metals, 11(4), 659. https://doi.org/10.3390/met11040659