Deformation Mechanisms in Ni-Based Superalloys at Room and Elevated Temperatures Studied by In Situ Neutron Diffraction and Electron Microscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. In Situ Neutron Diffraction Studies
3.2. Microstructural Analysis of the Deformation Behavior
3.3. Comparison of the Deformation Behavior to the Literature Data
4. Summary and Conclusions
- The deformation behavior did not change within this temperature range. At both tested temperatures, the material showed macroscopic strain hardening and the deformation mechanism was mainly shearing of the γ′-precipitates by coupled dislocation pairs and the formation of stacking faults by partial dislocations.
- The deformation was strongly anisotropic and dependent on the grain orientations. The macroscopic hardening can mainly be attributed to plastic deformation in the grains, whereas the (200) lattice planes were orientated perpendicular to the loading direction. These grains were the only ones where the peak width was strongly increased during the experiment and a remaining intergranular strain was measured after the experiment. In contrast, the grains at which the (111) lattice planes were oriented perpendicular to the loading direction displayed much less plastic deformation. This difference can be explained by the different Schmid factors.
- The elastic anisotropy of VDM 780 was similar to comparable wrought polycrystalline Ni-based superalloys. The Young’s modulus was the highest in the <111> direction and the lowest in the <002> direction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Wahi, R.P. Investigation of γ/γ′ lattice mismatch in the polycrystalline nickel-base superalloy IN738LC: Influence of heat treatment and creep deformation. Acta Metall. Mater. 1995, 43, 507–517. [Google Scholar] [CrossRef]
- Soula, A.; Renollet, Y.; Boivin, D.; Pouchou, J.-L.; Locq, D.; Caron, P.; Bréchet, Y. Analysis of high-temperature creep deformation in a polycrystalline nickel-base superalloy. Mater. Sci. Eng. A 2009, 510–511, 301–306. [Google Scholar] [CrossRef]
- Cozar, R.; Pineau, A. Morphology of y′ and y″ precipitates and thermal stability of inconel 718 type alloys. Metall. Trans. 1973, 4, 47–59. [Google Scholar] [CrossRef]
- Oblak, J.M.; Paulonis, D.F.; Duvall, D.S. Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates. Metall. Trans. 1974, 5, 143–153. [Google Scholar]
- Sundararaman, M.; Mukhopadhyay, P.; Banerjee, S. Precipitation of the δ-Ni3Nb phase in two nickel base superalloys. Metall. Trans. A 1988, 19, 453–465. [Google Scholar] [CrossRef]
- Huenert, D.; Proebstle, M.; Casanova, A.; Schluetter, R.; Schluetter, R.; Krakow, R.; Krakow, R.; Buescher, M.; Randelzhofer, P.; Evans, A.; et al. ATI718Plus®—New Nickel Based Disc Alloy and its Capability. In Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys; Hardy, M.C., Huron, E.S., Glatzel, U., Griffin, B., Lewis, B., Rae, C., Seetharaman, V., Tin, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 781–792. [Google Scholar]
- Devaux, A.; Picqué, B.; Gervais, M.F.; Georges, E.; Poulain, T.; Héritier, P. AD730™—A New Nickel-Based Superalloy for High Temperature Engine Rotative Parts. In Superalloys 2012; Huron, E.S., Reed, R.C., Hardy, M.C., Mills, M.J., Montero, R.E., Portella, P.D., Telesman, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 911–919. [Google Scholar]
- Bergner, M.; Rösler, J.; Gehrmann, B.; Klöwer, J. Effect of Heat Treatment on Microstructure and Mechanical Properties of VDM Alloy 780 Premium. In Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications; Ott, E., Liu, X., Andersson, J., Bi, Z., Bockenstedt, K., Dempster, I., Groh, J., Heck, K., Jablonski, P., Kaplan, M., et al., Eds.; Springer: Berlin, Germany, 2018; pp. 489–499. [Google Scholar]
- Rösler, J.; Hentrich, T.; Gehrmann, B. On the Development Concept for a New 718-Type Superalloy with Improved Temperature Capability. Metals 2019, 9, 1130. [Google Scholar] [CrossRef] [Green Version]
- Gilles, R. How Neutrons Facilitate Research into Gas Turbines and Batteries from Development to Engineering Applications. J. Surf. Investig. 2020, 14, 69–74. [Google Scholar] [CrossRef]
- Beran, P.; Mukherji, D.; Strunz, P.; Gilles, R.; Karge, L.; Hofmann, M.; Hoelzel, M.; Rösler, J.; Farkas, G. Additional Phases at High Boron Content in High-Temperature Co–Re–Cr Alloys. Metals 2018, 8, 621. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; An, K.; Gao, Y.; Suzuki, A. Determination of γ/γ′ Lattice Misfit in Ni-Based Single-Crystal Superalloys at High Temperatures by Neutron Diffraction. Metall. Mater. Trans. A 2018, 49, 740–751. [Google Scholar] [CrossRef]
- Véron, M.; Bastie, P. Strain induced directional coarsening in nickel based superalloys: Investigation on kinetics using the small angle neutron scattering (SANS) technique. Acta Mater. 1997, 45, 3277–3282. [Google Scholar] [CrossRef]
- Lawitzki, R.; Hassan, S.; Karge, L.; Wagner, J.; Wang, D.; von Kobylinski, J.; Krempaszky, C.; Hofmann, M.; Gilles, R.; Schmitz, G. Differentiation of γ′- and γ″-precipitates in Inconel 718 by a complementary study with small-angle neutron scattering and analytical microscopy. Acta Mater. 2019, 163, 28–39. [Google Scholar] [CrossRef]
- Peetermans, S.; Lehmann, E.H. Simultaneous neutron transmission and diffraction imaging investigations of single crystal nickel-based superalloy turbine blades. NDT E Int. 2016, 79, 109–113. [Google Scholar] [CrossRef]
- Hausmann, D.; Solís, C.; Freund, L.P.; Volz, N.; Heinemann, A.; Göken, M.; Gilles, R.; Neumeier, S. Enhancing the High-Temperature Strength of a Co-Base Superalloy by Optimizing the γ/γ′ Microstructure. Metals 2020, 10, 321. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.J.; Li, L.; Yang, B.; Choo, H.; Liaw, P.K.; Saleh, T.A.; Clausen, B.; Brown, D.W. In Situ neutron-diffraction study of tensile deformation of a bulk nanocrystalline alloy. Mater. Sci. Eng. A 2019, 506, 187–190. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.; Lv, Y.; Lu, W.; Sun, G. Investigation on Deformation Behavior of Nickel Aluminum Bronze by Neutron Diffraction and Transmission Electron Microscopy. Metall. Mater. Trans. A 2016, 47, 2081–2092. [Google Scholar] [CrossRef]
- Aba-Perea, P.E.; Pirling, T.; Withers, P.J.; Kelleher, J.; Kabra, S.; Preuss, M. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys. Mater. Des. 2016, 89, 856–863. [Google Scholar] [CrossRef]
- Von Kobylinski, J.; Lawitzki, R.; Hofmann, M.; Krempaszky, C.; Werner, E. Micromechanical behaviour of Ni-based superalloys close to the yield point: A comparative study between neutron diffraction on different polycrystalline microstructures and crystal plasticity finite element modelling. Contin. Mech. Thermodyn. 2019, 31, 691–702. [Google Scholar] [CrossRef]
- Wang, Z.; Stoica, A.D.; Ma, D.; Beese, A.M. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction. Mater. Sci. Eng. A 2016, 674, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Oliver, E.C.; Daymond, M.R.; Withers, P.J. Interphase and intergranular stress generation in carbon steels. Acta Mater. 2004, 52, 1937–1951. [Google Scholar] [CrossRef]
- Wagner, J.N.; Hofmann, M.; Wimpory, R.; Krempaszky, C.; Stockinger, M. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis. Mater. Sci. Eng. A 2014, 618, 271–279. [Google Scholar] [CrossRef]
- Ma, S.; Rangaswamy, P.; Majumdar, B.S. Microstress evolution during In Situ loading of a superalloy containing high volume fraction of γ′ phase. Scr. Mater. 2003, 48, 525–530. [Google Scholar] [CrossRef]
- Repper, J.; Link, P.; Hofmann, M.; Krempaszky, C.; Petry, W.; Werner, E. Interphase microstress measurements in IN 718 by cold neutron diffraction. Appl. Phys. A 2010, 99, 565–569. [Google Scholar] [CrossRef]
- Solís, C.; Munke, J.; Bergner, M.; Kriele, A.; Mühlbauer, M.J.; Cheptiakov, D.V.; Gehrmann, B.; Rösler, J.; Gilles, R. In Situ Characterization at Elevated Temperatures of a New Ni-Based Superalloy VDM-780 Premium. Metall. Mater. Trans. A 2018, 49, 4373–4381. [Google Scholar] [CrossRef] [Green Version]
- Solís, C.; Munke, J.; Hofmann, M.; Mühlbauer, S.; Bergner, M.; Gehrmann, B.; Rösler, J.; Gilles, R. In situ characterization at high temperature of VDM Alloy 780 premium to determine solvus temperatures and phase transformations using neutron diffraction and small-angle neutron scattering. In Characterization of Minerals, Metals, and Materials; Li, B., Li, J., Ikhmayies, S., Zhang, M., Kalay, Y.E., Carpenter, J.S., Hwang, J.-Y., Neves Monteiro, S., Bai, C., Escobedo-Diaz, J.P., et al., Eds.; Springer: Berlin, Germany, 2019; pp. 23–32. [Google Scholar]
- Ghica, C.; Solís, C.; Munke, J.; Stark, A.; Gehrmann, B.; Bergner, M.; Rösler, J.; Gilles, R. HRTEM analysis of the high-temperature phases of the newly developed high-temperature Ni-base superalloy VDM 780 Premium. J. Alloys Compd. 2020, 814, 152–157. [Google Scholar] [CrossRef]
- Hofmann, M.; Gan, W.; Rebelo-Kornmeier, J. STRESS-SPEC: Materials science diffractometer. J. Large Scale Res. Facil. 2015, 1, A6. [Google Scholar] [CrossRef]
- Rebelo-Kornmeier, J.; Hofmann, M.; Gan, W.M.; Randau, C.; Braun, K.; Zeitelhack, K.; Defendi, I.; Krueger, J.; Faulhaber, E.; Brokmeier, H.G. New Developments of the Materials Science Diffractometer STRESS-SPEC. Mater. Sci. Forum 2017, 905, 151–156. [Google Scholar] [CrossRef]
- Randau, C.; Garbe, U.; Brokmeier, H.-G. StressTextureCalculator: A software tool to extract texture, strain and microstructure information from area-detector measurements. J. Appl. Cryst. 2011, 44, 641–646. [Google Scholar] [CrossRef]
- Steca: The Stress and Texture Calculator, version 2; Scientific Computing Group at Heinz Maier-Leibnitz Zentrum Garching: Garching bei München, Germany. 2018. Available online: https://github.com/scgmlz/Steca2 (accessed on 20 May 2020).
- Jaladurgam, N.R.; Li, H.; Kelleher, J.; Persson, C.; Steuwer, A.; Colliander, M.H. Microstructure-dependent deformation behaviour of a low γ′ volume fraction Ni-base superalloy studied by in-situ neutron diffraction. Acta Mater. 2020, 183, 182–195. [Google Scholar] [CrossRef]
- Rai, S.K.; Kumar, A.; Shankar, V.; Jayakumar, T.; Bhanu Sankara Rao, K.; Raj, B. Characterization of microstructures in Inconel 625 using X-ray diffraction peak broadening and lattice parameter measurements. Scr. Mater. 2004, 51, 59–63. [Google Scholar] [CrossRef]
- He, K.; Chen, N.; Wang, C.; Wei, L.; Chen, J. Method for Determining Crystal Grain Size by X-Ray Diffraction. Cryst. Res. Technol. 2018, 53, 1700157. [Google Scholar] [CrossRef]
- Lebrun, J.-M.; Jha, S.K.; Naik, K.S.; Seymour, K.C.; Kriven, W.M.; Raj, R. The Change of X-ray Diffraction Peak Width during In Situ Conventional Sintering of Nanoscale Powders. J. Am. Ceram. Soc. 2016, 99, 765–768. [Google Scholar] [CrossRef]
- Birosca, S. The deformation behaviour of hard and soft grains in RR1000 nickel-based superalloy. IOP Conf. Ser. Mater. Sci. Eng. 2015, 82, 012033. [Google Scholar] [CrossRef]
- Grant, B.M.B.; Francis, E.M.; da Fonseca, J.Q.; Daymond, M.R.; Preuss, M. Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy. Acta Mater. 2020, 60, 6829–6841. [Google Scholar] [CrossRef]
- Kochmann, D.M.; Le, K.C. Dislocation pile-ups in bicrystals within continuum dislocation theory. Int. J. Plast. 2008, 24, 2125–2147. [Google Scholar] [CrossRef]
- Fedorov, A.A.; Gutkin, M.; Ovid’ko, I.A. Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials. Acta Mater. 2003, 51, 887–898. [Google Scholar] [CrossRef]
- Sun, F.; Gu, Y.F.; Yan, J.B.; Zhong, Z.H.; Yuyama, M. Tensile deformation-induced dislocation configurations at intermediate temperatures in a Ni-Fe-based superalloy for advanced ultra-supercritical coal-fired power plants. J. Alloys Compd. 2016, 657, 565–569. [Google Scholar] [CrossRef]
- Im, H.J.; Lee, S.; Choi, W.S.; Makineni, S.K.; Raabe, D.; Ko, W.-S.; Choi, P.-P. Effects of Mo on the mechanical behavior of γ/γ′-strengthened Co-Ti-based alloys. Acta Mater. 2020, 197, 69–80. [Google Scholar] [CrossRef]
- Cihak, U.; Staron, P.; Clemens, H.; Homeyer, J.; Stockinger, M.; Tockner, J. Characterization of residual stresses in turbine discs by neutron and high-energy X-ray diffraction and comparison to finite element modeling. Mater. Sci. Eng. A 2006, 437, 75–82. [Google Scholar] [CrossRef]
- Bettge, D.; Oeesterle, W.; Ziebs, J. Temperature dependence of yield strength and elongation of the nickel-base superalloy IN 738 LC and the corresponding microstructural evolution. Z. Fuer Met. 1995, 86, 190–197. [Google Scholar]
- Milligan, W.W.; Antolovich, S.D. The mechanisms and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480. Metall. Trans. A 1991, 22, 2309–2318. [Google Scholar] [CrossRef]
- León-Cázares, F.D.; Monni, F.; Jackson, T.; Galindo-Nava, E.I.; Rae, C.M.F. Stress response and microstructural evolution of nickel-based superalloys during low cycle fatigue: Physics-based modelling of cyclic hardening and softening. Int. J. Plast. 2020, 128, 102682. [Google Scholar] [CrossRef]
- Pike, L.M. HAYNES® 282™ Alloy: A New Wrought Superalloy Designed for Improved Creep Strength and Fabricability. In Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain, 8–11 May 2006; ASME: New York, NY, USA, 2008; Volume 4: Cycle Innovations; Electric Power; Industrial and Cogeneration; Manufacturing Materials and Metallurgy, pp. 1031–1039. [Google Scholar]
- Pike, L.M. Long term thermal exposure of haynes 282 alloy. Int. Symp. Superalloy Deriv. 2010, 2, 645–660. [Google Scholar]
- Andersson, J.; Sjöberg, G.; Chaturvedi, M. Hot Ductility Study of HAYNES® 282® Superalloy. In Superalloy 718 and Derivatives: Proceedings of the 7th International Symposium on Superalloy 718 and Derivatives; Ott, E., Groh, J., Banik, A., Dempster, I., Gabb, T., Helmink, R., Liu, X., Mitchell, A., Sjöberg, G.P., Wusatowska-Sarnek, A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2011; pp. 539–554. [Google Scholar]
- Stone, H.J.; Holden, T.M.; Reed, R.C. Determination of the plane specific elastic constants of Waspaloy using neutron diffraction. Scr. Mater. 1999, 40, 353–358. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Q.; Zhu, C.; Chen, K. Micromechanical modeling and calculation for diffraction elastic constants of Ni-based superalloy. AIP Adv. 2020, 10, 035003. [Google Scholar] [CrossRef] [Green Version]
Element | Co | Cr | Nb | Mo | Al | Fe | Ti | Ni |
---|---|---|---|---|---|---|---|---|
wt.% | 24.4 | 17.7 | 5.4 | 2.9 | 2.2 | 0.6 | 0.3 | Bal. |
Lattice plane | (111) | (200) | (220) | (311) |
Number of atoms in lattice plane | Very high | Medium | Low | Medium |
Young’s Modulus | Very high (256 GPa) | Low (167 GPa) | High (228 GPa) | Medium (204 GPa) |
Rel. change in intensity (0.52%/7.69%) | Very high (1%/33%) | High (10%/12%) | Negative (0%/−44%) | Low (4%/5%) |
Rel. change in FWHM (0.52%/7.69%) | Low (−7%/1%) | Very high (1%/25%) | High (2%/12%) | Medium (−4%/4%) |
Lattice strain (0.52%/7.69%) | Low (0.3%/0.4%) | Very high (0.5%/0.9%) | Low (0.3%/0.4%) | Medium (0.4%/0.6%) |
Slip Plane | Slip Direction | Grain Orientation | ||
---|---|---|---|---|
[002] | [202] | [334] | ||
(111) | [] | 0.41 | 0.41 | 0.15 |
[] | 0.43 | 0.02 | 0.13 | |
[] | 0.03 | 0.38 | 0.02 | |
() | [] | 0.41 | 0 | 0.15 |
[101] | 0.38 | 0 | 0.15 | |
[0] | 0.02 | 0 | 0 | |
() | [] | 0.40 | 0.02 | 0.06 |
[] | 0.43 | 0.05 | 0.34 | |
[110] | 0.03 | 0.03 | 0.28 | |
() | [] | 0.41 | 0.43 | 0.35 |
[] | 0.38 | 0.02 | 0.06 | |
[0] | 0.03 | 0.41 | 0.30 |
Young’s Modulus/GPa | ||||||||
---|---|---|---|---|---|---|---|---|
Lattice Plane | (111) | (200) | (220) | (311) | ||||
Temperature | 25 °C | 500 °C | 25 °C | 500 °C | 25 °C | 500 °C | 25 °C | 500 °C |
VDM® Alloy 780 | 256 | 219 | 167 | 149 | 228 | 194 | 204 | 173 |
Inconel® Alloy 718 [19] | 261 | 231 | 166 | 144 | 232 | 199 | 201 | 174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kümmel, F.; Kirchmayer, A.; Solís, C.; Hofmann, M.; Neumeier, S.; Gilles, R. Deformation Mechanisms in Ni-Based Superalloys at Room and Elevated Temperatures Studied by In Situ Neutron Diffraction and Electron Microscopy. Metals 2021, 11, 719. https://doi.org/10.3390/met11050719
Kümmel F, Kirchmayer A, Solís C, Hofmann M, Neumeier S, Gilles R. Deformation Mechanisms in Ni-Based Superalloys at Room and Elevated Temperatures Studied by In Situ Neutron Diffraction and Electron Microscopy. Metals. 2021; 11(5):719. https://doi.org/10.3390/met11050719
Chicago/Turabian StyleKümmel, Frank, Andreas Kirchmayer, Cecilia Solís, Michael Hofmann, Steffen Neumeier, and Ralph Gilles. 2021. "Deformation Mechanisms in Ni-Based Superalloys at Room and Elevated Temperatures Studied by In Situ Neutron Diffraction and Electron Microscopy" Metals 11, no. 5: 719. https://doi.org/10.3390/met11050719
APA StyleKümmel, F., Kirchmayer, A., Solís, C., Hofmann, M., Neumeier, S., & Gilles, R. (2021). Deformation Mechanisms in Ni-Based Superalloys at Room and Elevated Temperatures Studied by In Situ Neutron Diffraction and Electron Microscopy. Metals, 11(5), 719. https://doi.org/10.3390/met11050719