Advances in Understanding of the Application of Unit Operations in Metallurgy of Rare Earth Elements
Abstract
:1. Introduction
2. Application of the Unit Operations in Primary Metallurgy of REE
2.1. Treatment of an Eudialyte Concentrate with Precipitation and Solvent Extraction
2.2. Molten Salt Electrolysis
3. Application of the Unit Operations in Secondary Metallurgy
3.1. Recovery of REE from Waste of Electrical and Electronic Equipment (WEEE or e-Waste)
3.2. Recovery of Yttrium Oxide from Waste Materials
3.3. Recovery of REE from Acid Mine Drainage (AMD) Solution and Bauxite Residue (BR)
3.4. Recovery of REE from Phosphogypsum (PG) and Coal Flying Ash (CFA)
4. Conclusions
- Acid digestion of eudialyte concentrate was successfully performed without heating and at 100 °C for fuming in order to prevent silica gel formation in laboratory conditions. Scale up of this process was tested in two reactors, each 40 L. The extraction efficiency reached a high level in a short time, increasing from 82.2% to 88.8% when the digestion time increased from 20 min to 40 min. The optimization of process was studied using regression analysis and artificial neural network determining one final equation with four reaction parameters (temperature, time, ratio between concentrate and hydrochloric acid, and ratio between water and used acid). The new reactor of 100 L volume was built for a digestion of an eudialyte concentrate. A REE carbonate containing 30.0% total REE was finally produced, with an overall REE recovery yield of 85.5%, what is an advantage in comparison to the previously existing solutions in hydrometallurgy.
- Purification of obtained solution was performed using calcium carbonate and hydrogen peroxide in order to remove iron after acid digestion and water leaching. The final product of a treatment of eudialyte concentrate is REE-carbonate. Heavy REE and light REE are separated in subsequent step using solvent reaction and precipitation. When adjusting the pH to ~4.0 using calcium carbonate, zirconium, aluminum, and iron were removed at 99.1%, 90.0%, and 53.1%, respectively, with a REE loss of 2.1%
- In comparison to an eudialyte concentrate, bastnasite ore was firstly reduced at high temperature and after that the obtained slag with 8% rare earth oxide (REO) was treated by combination of UO.
- REE were produced from secondary materials such as WEEE (spent NdFeB-magnets), Ti-Al waste materials, AMD, BR, PG, and CFA. The combination of hydrometallurgical and pyrometallurgical methods was successfully applied.
- The preparation of fine REO was performed using ultrasonic spray pyrolysis from water solution of rare earth nitrate between 700 °C and 1000 °C after treatment of spent NdFeB magnets.
- Thermal treatment of yttrium oxalate at 850 °C leads to formation of yttrium oxide starting from Ti-Al spent materials.
- A zero-waste valorization vision for BR through experimental results combines AMD and BR as two waste materials in order to absorb REE.
- Molten salt electrolysis was applied for the production of mixture of Nd and Pr.
- The future of an application of UO in extractive metallurgy of REE is depending on a construction of more efficient reactors and digitalization of the whole process.
- Controlled potential leaching and separation process shall be studied as one solution for a selective separation of the REE, which is a new research challenge.
- Optimization of metallurgical process is successfully performed using regression analysis and artificial neural network.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Havlik, T.; Turzakova, M.; Friedrich, B.; Stopic, S. Atmospheric leaching of EAF dust with diluted sulphuric acid. Hydrometallurgy 2005, 77, 41–50. [Google Scholar] [CrossRef]
- Havlik, T.; Friedrich, B.; Stopic, S. Pressure leaching of EAF dust with sulphuric acid. Erzmetall World Metall. 2004, 57, 2, 113–120. [Google Scholar]
- Falagan, C.; Grail, B.; Johnson, D. New approaches for extracting and recovering metals from mine tailings. Miner. Eng. 2017, 106, 15, 71–78. [Google Scholar] [CrossRef]
- Harahsheh, M.; Kingman, S. Microwave assisted leaching—A review. Hydrometallurgy 2004, 73, 189–203. [Google Scholar] [CrossRef]
- Voßenkaul, D.; Birich, A.; Müller, N.; Stolz, N.; Friedrich, B. Hydrometallurgical Processing of Eudialyte Bearing Concentrates to Recover Rare Earth Elements Via Low-Temperature Dry Digestion to Prevent the Silica Gel Formation. J. Sustain. Metall. 2017, 3, 79–89. [Google Scholar] [CrossRef]
- Demol, J.; Ho, E.; Senanayake, G. Sulfuric acid baking and leaching of rare earth elements, thorium and phosphate from a monazite concentrate: Effect of bake temperature from 200 to 800 °C. Hydrometallurgy 2018, 179, 254–267. [Google Scholar] [CrossRef]
- Matus, C.; Stopic, S.; Etzold, S.; Kremer, D.; Wotruba, H.; Dertmann, C.; Telle, R.; Knops, P.; Friedrich, B. Mechanism of nickel, magnesium, and iron recovery from olivine bearing ore during leaching with hydrochloric acid including a carbonation pre-treatment. Metals 2020, 10, 811. [Google Scholar] [CrossRef]
- Pavlović, J.; Stopic, S.; Friedrich, B.; Kamberovic, Z. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor. Environ. Sci. Pollut. Res. 2007, 14, 7, 518–522. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, T.; Dreisinger, D.; Doyle, F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 2014, 56, 10–28. [Google Scholar] [CrossRef]
- Ma, Y.; Stopic, S.; Friedrich, B. Selective Recovery and separation of Zr and Hf from sulfuric acid leach solution using anionic exchange resin. Hydrometallurgy 2019, 189, 105–143. [Google Scholar] [CrossRef]
- Wang, H.; Friedrich, B. Development of a highly efficient hydrometallurgical recycling process for automotive Li–Ion batteries. J. Sustain. Metall. 2015, 1, 168–178. [Google Scholar] [CrossRef] [Green Version]
- Mwewa, B.; Stopic, S.; Ndlovu, S.; Simate, G.; Xakalashe, B.; Friedrich, B. Synthesis of Poly-Alumino-Ferric Sulphate Coagulant from Acid Mine Drainage by Precipitation. Metals 2019, 9, 1166. [Google Scholar] [CrossRef] [Green Version]
- Kilicarslan, A.; Voßenkaul, D.; Stoltz, S.; Stopic, S.; Nezihi, M.; Friedrich, B. Selectivity Potential of Ionic Liquids for Metal Extraction from Rare Earth containing Slags—A QEMSCAN assisted approach. Hydrometallurgy 2017, 169, 59–67. [Google Scholar]
- Stankovic, S.; Stopic, S.; Markovic, B.; Sokic, M.; Friedrich, B. Review of the past, present and future of the hydrometallurgical production of nickel and cobalt from lateritic ores. Metall. Mater. Eng. 2020, 199–208. [Google Scholar] [CrossRef]
- Petronijevic, N.; Stankovic, S.; Radovanovic, D.; Sokic, M.; Markovic, M.; Stopic, S.; Kamberovic, Z. Application of the flotation tailings as an alternative material for an acid mine drainage remediation: A case study of the extremely acidic Lake Robule (Serbia). Metals 2019, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Silin, I.; Hahn, K.; Gürsel, D.; Kremer, D.; Gronen, L.; Stopic, S.; Friedrich, B.; Wotruba, H. Mineral Processing and Metallurgical Treatment of Lead Vanadate Ores. Minerals 2020, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Stopic, S.; Friedrich, B. Deposition of silica in hydrometallurgical processes. Mil. Tech. Cour. 2020, 68, 65–78. [Google Scholar] [CrossRef]
- Peters, E.M.; Kaya, Ş.; Dittrich, C.; Forsberg, K. Recovery of scandium by crystallization techniques. J. Sustain. Metall. 2019, 5, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.; Stopic, S.; Friedrich, B. Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment. Environ. Sci. Pollut. Res. 2007, 14, 7, 477–482. [Google Scholar] [CrossRef]
- Rodriguez, J.; Schweda, M.; Stopic, S.; Friedrich, B. Techno-Economical Comparison between Chemical Precipitation and Electrocoagulation for Heavy Metal Removal in Industrial Wastewater. Metals 2007, 2, 208–214. [Google Scholar]
- Rodriguez, J.; Stopic, S.; Friedrich, B. Continuous Electrocoagulation Treatment of Wastewater from Copper Production. Erzmetall World Metall. 2007, 60, 89–95. [Google Scholar]
- Zhao, J.; Stopic, S.; Friedrich, B.; Rudolf, R. Mechanism of gold nanoparticle formation reduction from water solutions. In Proceedings of the European Metallurgical Conference 2013, Weimar, Germany, 23–26 June 2016; pp. 277–281. [Google Scholar]
- Stopic, S.; Friedrich, B. Integrated treatment (electrolytic recovery and cascade line) of highly contaminated wastewaters. In Proceedings of the EMC 2007, Düsseldorf, Germany, 11–14 June 2007; pp. 433–444. [Google Scholar]
- Cvetkovic, V.; Feldhaus, D.; Vukicevic, N.; Barudzija, T.; Friedrich, B.; Jovicevic, J. Investigation on the electrochemical behaviour and deposition mechanism of neodymium in NdF3–LiF–Nd2O3 melt on Mo electrode. Metals 2020, 10, 576. [Google Scholar] [CrossRef]
- Košević, M.; Stopic, S.; Cvetković, V.; Schroeder, M.; Stevanović, J.; Panic, V.; Friedrich, B. Mixed RuO2/TiO2 uniform microspheres synthesized by low-temperature ultrasonic spray pyrolysis and their advanced electrochemical performances. Appl. Surf. Sci. 2019, 464, 1–9. [Google Scholar] [CrossRef]
- Majeric, P.; Rudolf, R. Advances in ultrasonic spray pyrolysis processing of noble metal nanoparticles—Review. Materials 2020, 13, 3485. [Google Scholar] [CrossRef]
- Emil, E.; Alkan, G.; Gurmen, S.; Rudolf, R.; Jenko, D.; Friedrich, B. Tuning the morphology of ZnO nanostructures with the ultrasonic spray pyrolysis process. Metals 2018, 8, 569. [Google Scholar] [CrossRef] [Green Version]
- Ardekani, S.R.; Aghdam, A.S.R.; Nazari, M.; Bayat, A.; Yazdani, E.; Saievar-Iranizad, E. A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter. J. Anal. Appl. Pyrolysis 2019, 141, 104631. [Google Scholar] [CrossRef]
- Kaya, E.E.; Kaya, O.; Alkan, G.; Gürmen, S.; Stopic, S.; Friedrich, B. New proposal for size and size-distribution evaluation of nanoparticles synthesized via ultrasonic spray pyrolysis using search algorithm based on image-processing technique. Materials 2020, 13, 38. [Google Scholar] [CrossRef] [Green Version]
- Stopic, S.; Ilić, I.; Uskoković, D. Preparation and formation mechanism of submicrometer spherical NiO particles from water solution of NiCl2 by ultrasonic spray pyrolysis. J. Sci. Sinter. 1994, 26, 145–156. [Google Scholar]
- Stopic, S.; Ilić, I.; Uskoković, D. Structural and morphological transformations during NiO and Ni particles generations from chloride precursor by ultrasonic spray pyrolysis. Mater. Lett. 1995, 24, 369–376. [Google Scholar] [CrossRef]
- Stopic, S.; Ilić, I.; Uskoković, D. Preparation of nickel submicrometer powders by ultrasonic spray pyrolysis. Int. J. Powder Metall. 1996, 32, 59–65. [Google Scholar]
- Alkan, G.; Yagmurlu, B.; Cakmakoglu, S.; Hertel, T.; Kaya, S.; Gronen, L.; Stopic, S.; Friedrich, B. Novel approach for enhanced scandium and titanium leaching efficiency from bauxite residue with suppressed silica gel formation. Nat. Sci. Rep. 2018, 8, 5676. [Google Scholar] [CrossRef]
- Alkan, G.; Yagmurlu, B.; Friedrich, B.; Dittrich, C.; Gronen, L.; Stopic, S.; Ma, Y. Selective silica gel scandium extraction from iron–depleted red mud slags by dry digestion. Hydrometallurgy 2019, 185, 266–272. [Google Scholar] [CrossRef]
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; van Gerven, T. Recovery of rare earths and other valuable metals from bauxite residue (red mud): A review. J. Sustain. Metall. 2016, 2, 365–386. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. Solvometallurgy: An Emerging Branch of Extractive Metallurgy. J. Sustain. Metall. 2017, 3, 570–600. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Xin, Y.; Wang, H.; Guo, X. Potential-Control selective separation of manganese and cobalt from cobalt slag leaching solution. Hydrometallurgy 2017, 169, 201–206. [Google Scholar] [CrossRef]
- Garg, S.; Judd, K.; Mahadevan, R.; Edwards, E.; Papangelakis, V. Leaching characteristics of nickeliferous pyrrhotite tailings from the Sudbury, Ontario area. Can. Metall. Q. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Kücher, G.; Luidold, S.; Czettl, C.; Storf, C. Successful control of the reaction mechanism for semi-direct recycling of hard metals. Int. J. Refract. Met. Hard Mater. 2020, 86, 105131. [Google Scholar] [CrossRef]
- Milivojevic, M.; Stopic, S.; Friedrich, B.; Stojanovic, B.; Drndarevic, D. Computer modeling of high pressure leaching process of nickel laterite by design of experiments and neural networks. Int. J. Miner. Metall. Mater. 2012, 19, 584–595. [Google Scholar] [CrossRef]
- Hernandes, J. Development of a Predictive Model for the Recovery of Rare Earth Elements from the Leaching Process of Chilean Ores. Appl. Math. Sci. 2018, 12, 551–565. [Google Scholar] [CrossRef]
- Milivojevic, M.; Stopic, S.; Stojanovic, B.; Drndarevic, D.; Friedrich, B. Forward stepwise regression in determining dimensions of forming and sizing tools for self-lubricated bearings. Metall 2013, 67, 147–153. [Google Scholar]
- Ayres, R.U.; Peiró, L.T. Material efficiency: Rare and critical metals. Phylosophical Trans. R. Soc. A 2013, 371, 20110563. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Huiqing, P. Formation cause, composition analysis and comprehensive utilization of rare earth solid wastes. J. Rare Earths 2009, 27, 1096–1102. [Google Scholar]
- Sprecher, B.; Xiao, Y.; Walton, A.; Speight, J.; Harris, R.; Kleijn, R.; Kramer, G.J. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Environ. Sci. Technol. 2014, 48, 3951–3958. [Google Scholar] [CrossRef] [PubMed]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; van Gerven, T.; Yang, Y.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Önal, M.; Borra, C.; Guo, M.; Blanpain, B.; van Gerven, T. Recycling of NdFeB Magnets using sulfation, selective roasting and water leaching. J. Sustain. Metall. 2015, 1, 199–215. [Google Scholar] [CrossRef]
- Önal, M.A.R.; Aktan, E.; Borra, C.R.; Blanpain, B.; van Gerven, T.; Guo, M. Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery. Hydrometallurgy 2017, 167, 115–123. [Google Scholar] [CrossRef]
- Liu, Z.; Li, M.; Hu, Y.; Wang, M.; Shi, Z. Preparation of large particle rare earth oxides by precipitation with oxalic acid. J. Rare Earths 2008, 26, 158–162. [Google Scholar] [CrossRef]
- Silva, R.G.; Morais, C.A.; Teixeira, L.V.; Oliveira, É.D. Selective precipitation of high-quality rare earth oxalates or carbonates from a purified sulfuric liquor containing soluble impurities. Min. Metall. Explor. 2019, 36, 967–977. [Google Scholar] [CrossRef]
- Stopic, S.; Friedrich, B. Method of selective recovery of yttrium oxide from titanium-aluminium based wastes. In Proceedings of the 13th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Belgrade, Serbia, 26 September 2016; pp. 510–516. [Google Scholar]
- Ma, Y.; Stopic, S.; Wang, X.; Forsberg, K.; Friedrich, B. Basic sulfate precipitation of zirconium from sulfuric acid leach solution. Metals 2020, 10, 1099. [Google Scholar] [CrossRef]
- Han, K.N. Characteristics of precipitation of rare earth elements with various precipitants. Minerals 2020, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.A.; Lokhande, V.C.; Bulakhe, R.N.; Lokhande, C.D. Amperometric CO2 gas sensor based on interconnected web-like nanoparticles of La2O3 synthesized by ultrasonic spray pyrolysis. Microchim. Acta 2017, 184, 3713–3720. [Google Scholar] [CrossRef]
- Jung, D.S.; Hong, S.K.; Lee, H.J.; Kang, Y.C. Gd2O3: Eu phosphor particles prepared from spray solution containing boric acid flux and polymeric precursor by spray pyrolysis. Opt. Mater. 2006, 28, 530–535. [Google Scholar] [CrossRef]
- Goulart, C.; Djurado, E. Synthesis and sintering of Gd-doped CeO2 nanopowders prepared by ultrasonic spray pyrolysis. J. Eur. Ceram. Soc. 2013, 33, 769–778. [Google Scholar] [CrossRef]
- Emil, E.; Gürmen, S. Estimation of yttrium oxide microstructural parameters using the Williamson–Hall analysis. Mater. Sci. Technol. 2018, 34, 1549–1557. [Google Scholar] [CrossRef]
- Lebedev, V.N.; Schur, T.E.; Maiorov, D.V.; Popova, L.A.; Serkova, R.P. Specific Features of Acid Decomposition of Eudialyte and Certain Rare-Metal Concentrates from Kola Peninsula. Russ. J. Appl. Chem. 2003, 76, 1191–1196. [Google Scholar] [CrossRef]
- Lebedev, V.N. Sulfuric Acid Technology for Processing of Eudialyte Concentrate. Russ. J. Appl. Chem. 2003, 76, 1559–1563. [Google Scholar] [CrossRef]
- Zakharov, V.I.; Skiba, G.S.; Solovyov, A.V.; Lebedev, V.N.; Mayorov, D.V. Some Aspects of Eudialyte Processing. Tsvetnye Met. 2011, 11. [Google Scholar]
- Zakharov, V.I.; Maiorov, D.V.; Alishkinm, A.R.; Matveev, V.A. Causes of Insufficient Recovery of Zirconium during Acidic Leaching of Lovozero Eudialyte Concentrate. Izv. VUZ Tsvetnaya Metall. 2011, 5, 26–31. [Google Scholar]
- Litvinova, T.E.; Chirkist, D.E. Physic-Chemical foundations of the eudialyte processing. In Proceedings of the 2nd Russian Conference with International Participation “New Approaches to Chemical Engineering Minerals. The Use of Extraction and Sorption”, St. Petersburg, Russia, 3–6 June 2013; pp. 84–87. [Google Scholar]
- Dibrov, I.A.; Chirkist, D.E.; Litvinova, T.E. Distribution of the elements after sulfuric acid leaching of eudialyte concentrate. Tsvetnye Met. 2002, 13, 38–41. [Google Scholar]
- Dibrov, I.A.; Chirkist, D.E. Processing technology of eudialyte concentrates. Miner. Process. Extr. Metall. Rev. 1995, 15, 141. [Google Scholar] [CrossRef]
- Davris, P.; Stopic, S.; Balomenos, E.; Panias, D.; Paspaliaris, I.; Friedrich, B. Leaching of rare earth elements from Eudialyte concentrate by supressing silicon dissolution. Miner. Eng. 2017, 108, 115–122. [Google Scholar] [CrossRef]
- Ma, Y.; Stopic, S.; Friedrich, B. Hydrometallurgical Treatment of a Eudialyte Concentrate for Preparation of Rare Earth Carbonate. Johns. Matthey Technol. Rev. 2019, 63, 2–13. [Google Scholar] [CrossRef]
- Ma, Y.; Stopic, S.; Gronen, L.; Obradovic, S.; Milivojevic, M.; Friedrich, B. Neural network modeling for the extraction of rare earth elements from eudialyte concentrate by dry digestion and leaching. Metals 2018, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Stopic, S.; Dertmann, C.; Gulgans, U.; Friedrich, B. New modular reactor for dry unearthing of silicate-rich ores and concentrates and for the extraction of critical metals. World Metall. Erzmetall 2019, 72, 180–181. [Google Scholar]
- Calow, R.J. The Industrial Chemistry of the Lanthanons, Yttrium, Thorium, and Uranium; Pergamon Press: Oxford/London/Edinburgh, UK, 1967; Volume 7, p. 248. [Google Scholar]
- Yun, Y.; Stopic, S.; Friedrich, B. Valorization of Rare Earth Elements from a Steenstrupine Concentrate via a Combined Hydrometallurgical and Pyrometallurgical Method. Metals 2020, 10, 248. [Google Scholar] [CrossRef] [Green Version]
- Vijayalakshmi, R.; Mishra, S.; Singh, H.; Gupta, C. Processing of xenotime concentrate by sulfuric acid digestion and selective thorium precipitation for separation of rare earths. Hydrometallurgy 2001, 61, 75–80. [Google Scholar] [CrossRef]
- Stopic, S.; Friedrich, B. Leaching of rare earth elements with sulfuric acid from bastnasite ores. Mil. Tech. Cour. 2018, 66, 757–770. [Google Scholar] [CrossRef] [Green Version]
- Stopic, S.; Friedrich, B. Leaching of rare earth elements from bastnasite ore: Second part. Mil. Tech. Cour. 2019, 67, 241–254. [Google Scholar] [CrossRef]
- Stopic, S.; Friedrich, B. Leaching of rare earth elements from bastnasite ore (third part). Mil. Tech. Cour. 2019, 67, 561–572. [Google Scholar] [CrossRef]
- Milicevic, K.; Friedrich, B. Special Feature: Electrowinning of didymium. Appl. Mineral. 2017, 2, 2–4. [Google Scholar]
- Vogel, H.; Flerus, B.; Stoffner, F. Reducing greenhouse gas emission from the neodymium oxide electrolysis. Part I: Analysis of the anodic gas formation. J. Sustain. Metall. 2016, 3, 99–107. [Google Scholar] [CrossRef]
- Vogel, H.; Friedrich, B. Reducing greenhouse gas emission from the neodymium oxide electrolysis. Part II: Basics of a process control avoiding PFC emission. Int. J. Nonferrous Metall. 2017, 6, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Haas, T.; Hilgendorf, S.; Vogel, H.; Friedrich, B.; Pfeiffer, H. A Comparison between Two Cell Designs for Electrochemical Neodymium Reduction Using Numerical Simulation. Metall. Mater. Trans. B 2017, 48, 2187–2194. [Google Scholar] [CrossRef]
- Cvetković, V.; Vukićević, N.; Feldhaus, D.; Barudžija, T.; Stevanović, J.; Friedrich, B.; Jovićević, J. Study of Nd Deposition onto W and Mo Cathodes from Molten Oxide-Fluoride Electrolyte. Int. J. Electrochem. Sci. 2020, 15, 7039–7052. [Google Scholar] [CrossRef]
- Kuang-Taek, R. Effects of rare earth elements on the environment and human health: A literature review. Toxicol. Environ. Health Sci. 2016, 8, 189–200. [Google Scholar]
- Mancheri, N.A.; Sprecher, B.; Bailey, G.; Ge, J.; Tukker, A. Effect of Chinese policies on rare earth supply chain resilience. Resour. Conserv. Recycl. 2019, 142, 101–112. [Google Scholar] [CrossRef]
- Ambaye, T.; Vaccari Castro, F.; Prasad, S.; Rtimi, S. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: A review on progress, challenges, and perspectives. Environ. Sci. Pollut. Res. 2020, 27, 36052–36074. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Walton, A.; Sheridan, R.; Gth, K.; Gauß, R.; Gutfleisch, O.; Buchertm, M.; Stenari, B.M.; van Gerven, T.; Jones, O.T.; et al. REE Recovery from End-of Life NdFeB permanent magnet scrap: A Critical review. J. Sustain. Metall 2017, 3, 122–149. [Google Scholar] [CrossRef]
- Liu, Y.; Jeon, H.S.; Lee, M.S. Solvent extraction of Pr and Nd from chloride solution by the mixtures of Cyanex 272 and amine extractants. Hydrometallurgy 2014, 150, 61–67. [Google Scholar] [CrossRef]
- Abreu, R.D.; Morais, C.A. Study on separation of heavy rare earth elements by solvent extraction with organophosphorous acids and amine reagents. Miner. Eng. 2014, 61, 82–87. [Google Scholar] [CrossRef]
- Elwert, T.; Goldmann, D.; Römer, F. Separation of lanthanides from NdFeB magnets on a mixer-settler plant with PC-88A. World Metall. 2014, 67, 287–296. [Google Scholar]
- Kaya, E.; Kaya, O.; Stopic, S.; Gürmen, S.; Friedrich, B. NdFeB Magnets recycling process: An alternative method to produce mixed rare rarth oxide from scrap NdFeB magnets. Metals 2021, 11, 716. [Google Scholar] [CrossRef]
- Gussone, J.; Reddy, C.; Vijay, V.; Haubrich, J.; Milicevic, K.; Friedrich, B. Effect of vanadium ion valence state on the deposition behavior in molten salt electrolysis. J. Appl. Chem. 2018. [Google Scholar] [CrossRef]
- Milicevic, K.; Feldhaus, D.; Friedrich, B. Conditions and mechanism of gas emission from didymium electrolysis and its process control. Light Met. 2018, 1435–1441. [Google Scholar] [CrossRef]
- Kruse, S.; Raulf, K.; Trentmann, A.; Pretz, T.; Friedrich, B. Processing of grinding slurries arising from NdFeB Magnet production. Chem. Ingen. Tech. 2015, 87, 1589–1598. [Google Scholar] [CrossRef]
- Michelis, I.; Ferrela, F.; Fioravante Varelli, E.; Veglio, F. Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses. Waste Manag. 2011, 31, 2056–2068. [Google Scholar] [CrossRef]
- Poscher, A.; Luidold, S.; Kaindl, M.; Antrekowitsch, H. Recycling of Rare Earth from Spent Phosphors. In Proceedings of the EMC Conference, Weimar, Germany, 23–26 June 2013; pp. 1217–1222. [Google Scholar]
- Stopic, S.; Lerch, M.; Gerke-Cantow, R.; Friedrich, B. Hydrometallurgical Recovery of Yttrium from Waste Crucible Materials. In Proceedings of the European Metallurgical Conference in Weimar, Aachen, Germany, 23–26 June 2013; pp. 939–944. [Google Scholar]
- Stopic, S.; Friedrich, B. Kinetics of yttrium dissolution from waste ceramic dust. Mil. Tech. Cour. 2016, 64, 383–395. [Google Scholar] [CrossRef]
- Stopic, S.; Kalabis, S.; Friedrich, B. Recovery of yttrium oxide from titanium-aluminium based wastes. J. Eng. Process. Manag. 2018, 10, 9–20. [Google Scholar] [CrossRef]
- Keller, V.; Stopic, S.; Xakalashe, B.; Ma, Y.; Ndlovu, S.; Simate, G.; Friedrich, B. Effectiveness of Fly Ash and Red Mud as Strategies for Sustainable Acid Mine Drainage Management. Minerals 2020, 10, 707. [Google Scholar] [CrossRef]
- Stopic, S.; Ma, Y.; Mwewa, B.; Ndlovu, S.; Simate, G.; Xakalashe, B.; Friedrich, B. Hydrometallurgical treatment of acid mine drainage (AMD) solution. In Proceedings of the 20th Yucorr Conference, Tara, Serbia, 21–24 May 2018; pp. 44–48. [Google Scholar]
- Stopic, S.; Dertmann, C.; Xakalashe, B.; Alkan, G.; Yagmurlu, B.; Lucas, H.; Friedrich, B. A near zero waste valorization vision for bauxite residue through experimental results. In Proceedings of the 21st YuCorr Conference, Tara, Serbia, 16–19 September 2019; pp. 120–125. [Google Scholar]
- Lukas, H.; Stopic Xakalashe, B.; Ndlovu, S.; Friedrich, B. Synergism Red Mud-Acid Mine Drainage as a Sustainable Solution for Neutralizing and Immobilizing Hazardous Elements. Metals 2021, 11, 620. [Google Scholar] [CrossRef]
- Yagmurlu, B.; Alkan, G.; Xakalashe, B.; Schier, C.; Gronen, L.; Koiwa, I.; Dittrich, C.; Friedrich, B. Synthesis of Scandium Phosphate after Peroxide Assisted Leaching of Iron Depleted Bauxite Residue (Red Mud) Slags. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kaußen, F.; Friedrich, B. Reductive smelting of red mud for iron recovery. Chem. Ing. Tech. 2015, 87, 1535–1542. [Google Scholar] [CrossRef]
- Valeev, D.; Zinoveev, D.; Kondratiev, A.; Lubyanoi, D.; Pankratov, D. Reductive Smelting of Neutralized Red Mud for Iron Recovery and Produced Pig Iron for Heat-Resistant Castings. Metals 2019, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Rychkov, V.N.; Kirillov, E.V.; Kirillov, S.V.; Semenishchev, V.S.; Bunkov, G.M.; Botalov, M.S.; Smyshlyaev, D.V.; Malyshev, A.S. Recovery of rare earth elements from phosphogypsum. J. Clean. Prod. 2018, 196, 674–681. [Google Scholar] [CrossRef]
- Mahandra, H.; Hubert, B.; Ghahreman, A. Recovery of Rare Earth and Some Other Potential Elements from Coal Fly Ash for Sustainable Future. In Clean Coal Technologies. Beneficiation; Utilization, Transport Phenomena and Prospective; Rajesh, K.J., Pankaj, K.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 339–380. [Google Scholar] [CrossRef]
- Pan, J.; Nie, T.; Hassas, B.; Rezaee, M.; Wen, Z.; Zhou, C. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching. Chemosphere 2020, 248, 248–126112. [Google Scholar] [CrossRef]
- Prasad, B.; Kumar, H. Treatment of Lignite Mine Water with Lignite Fly Ash and Its Zeolite. Mine Water Environ. 2019, 38, 24–29. [Google Scholar] [CrossRef]
- Matus, C.; Stopic, S.; Friedrich, B. Carbonation of Minerals and Slags under High Pressure in an Autoclave. Mil. Tech. Cour. 2021, 69, 2. [Google Scholar] [CrossRef]
- Vavlekas, D. Microbial Recovery of Rare Earth Elements from Metallic Wastes and Scrap; University of Birmingham, College of Life and Environmental Sciences: Birmingham, UK, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stopic, S.; Friedrich, B. Advances in Understanding of the Application of Unit Operations in Metallurgy of Rare Earth Elements. Metals 2021, 11, 978. https://doi.org/10.3390/met11060978
Stopic S, Friedrich B. Advances in Understanding of the Application of Unit Operations in Metallurgy of Rare Earth Elements. Metals. 2021; 11(6):978. https://doi.org/10.3390/met11060978
Chicago/Turabian StyleStopic, Srecko, and Bernd Friedrich. 2021. "Advances in Understanding of the Application of Unit Operations in Metallurgy of Rare Earth Elements" Metals 11, no. 6: 978. https://doi.org/10.3390/met11060978
APA StyleStopic, S., & Friedrich, B. (2021). Advances in Understanding of the Application of Unit Operations in Metallurgy of Rare Earth Elements. Metals, 11(6), 978. https://doi.org/10.3390/met11060978