Formation Process of Long-Period Stacking-Ordered Structures in Mg97Zn1Y2 Alloy Comprising HCP and Cubic Phases Fabricated by High-Pressure High-Temperature Annealing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- At a pressure of 3 GPa and above 773 K, as-cast Mg97Zn1Y2 alloy consisting of α-Mg matrix and 18R-type LPSO structure undergoes structural phase transformation, forming D03 superlattices in the α-Mg matrix.
- The alloy consisting of the α-Mg matrix and D03 superlattices transformed into the α-Mg matrix and 18R-LPSO phase upon annealing at ambient pressure.
- Considering from TEM observation results, 18R-type LPSO was continuously present with the 2H phase containing a large number of SFs. When combined with previous report [14,16], the solute atoms concentrate in SF at the almost same time, which is expected by theoretical calculations [10,13,16]. This will be a formation process in the part where the solute concentration is lower than the ideal composition of 18R-type LPSO.
- In the collapse process of the 18R-type LPSO structure under high-pressure and the formation process of the 18R-type LPSO structure at ambient pressure, an intermediate fcc structure with a lattice parameter of 1.42 nm (E phase), which is twice that of D03, emerged. The E phase is considered an intermediate structure between 18R-type LPSO and D03.
- TEM observations for the E phase of the beam direction parallel to [110] confirmed obscure reflections on drections, but they were not confirmed in , though being equivalent directions in fcc. These results indicate the collapse of E phase. Further, these variations of refractions look like a transformation process from fcc to long period stacking, which is observed in natural ZnS from 3C to 6H [23].
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawamura, Y.; Hayashi, K.; Inoue, A.; Masumoto, T. Rapidly solidified powder Metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa. Mater. Trans. 2001, 42, 1172–1176. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.H.; Jin, Q.Q.; Zhou, Y.T.; Yang, H.J.; Zheng, S.J.; Zhang, B.; Chen, Q.; Ma, X.L. Basal shearing of twinned stacking faults and its effect on mechanical properties in an Mg–Zn–Y alloy with LPSO phase. Mater. Sci. Eng. A 2020, 779, 139109. [Google Scholar] [CrossRef]
- Hagihara, K.; Ueyama, R.; Yamasaki, M.; Kawamura, Y.; Nakano, T. Surprising Increase in Yield Stress of Mg Single Crystal Using Long-Period Stacking Ordered Nanoplates. Acta Mater. 2021, 209, 116797. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, Y.; Luo, Q.; Liu, B.; Gu, Q.; Li, Q. A 12R Long-Period Stacking-Ordered Structure in a Mg-Ni-Y Alloy. J. Mater. Sci. Technol. 2018, 34, 2235–2239. [Google Scholar] [CrossRef]
- Egusa, D.; Abe, E. The Structure of Long Period stacking/Order Mg–Zn–RE Phases With Extended Non-Stoichiometry Ranges. Acta Mater. 2012, 60, 166–178. [Google Scholar] [CrossRef]
- Yamasaki, M.; Matsushita, M.; Hagihara, K.; Izuno, H.; Abe, E.; Kawamura, Y. Highly Ordered 10H-Type Long-Period Stacking Order Phase in a Mg–Zn–Y Ternary Alloy. Scr. Mater. 2014, 78-79, 13–16. [Google Scholar] [CrossRef]
- Saal, J.; Wolverton, C. Thermodynamic Stability of Mg-Based Ternary Long-Period Stacking Ordered Structures. Acta Mater. 2014, 68, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, M.; Sasaki, M.; Nishijima, M.; Hiraga, K.; Kawamura, Y. Formation of 14H Long Period Stacking Ordered Structure and Profuse Stacking Faults in Mg–Zn–Gd Alloys During Isothermal Aging at High Temperature. Acta Mater. 2007, 55, 6798–6805. [Google Scholar] [CrossRef]
- Iikubo, S.; Matsuda, K.; Ohtani, H. Phase Stability of Long-Period Stacking Structures in Mg-Y-Zn: A First-Principles Study. Phys. Rev. B 2012, 86, 054105. [Google Scholar] [CrossRef] [Green Version]
- Iikubo, S.; Hamamoto, S.; Ohtani, H. Thermodynamic Analysis of the Mg–RE–Zn (RE = Y, La) Ternary Hcp Phase Using the Cluster Variation Method. Mater. Trans. 2013, 54, 636–640. [Google Scholar] [CrossRef] [Green Version]
- Okuda, H.; Yamasaki, M.; Kawamura, Y.; Tabuchi, M.; Kimizuka, H. Nanoclusters First: A Hierarchical Phase Transformation in a Novel Mg Alloy. Sci. Rep. 2015, 5, 14186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Bai, J.; Yan, K.; Yan, J.; Ma, A.; Jiang, J. Comparative Studies on Evolution Behaviors of 14H LPSO Precipitates in As-Cast and As-Extruded Mg–Y–Zn Alloys During Annealing at 773K. Mater. Des. 2016, 93, 9–18. [Google Scholar] [CrossRef]
- Matsushita, M.; Nagata, T.; Bednarcik, J.; Nishiyama, N.; Kawano, S.; Iikubo, S.; Kubota, Y.; Morishita, R.; Irifune, T.; Yamasaki, M.; et al. Key Factor for the Transformation from Hcp to 18R-Type Long-Period Stacking Ordered Structure in Mg Alloys. Mater. Trans. 2019, 60, 237–245. [Google Scholar] [CrossRef]
- Egusa, D.; Kawaguchi, K.; Abe, E. Direct Observations of Precursor Short-Range Order Clusters of Solute Atoms in a LPSO-Forming Mg-Zn-Gd Ternary Alloy. Front. Mater. 2019, 6, 266. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q.Q.; Shao, X.H.; Yang, L.X.; Zhou, Y.T.; Zhang, B.; Zheng, S.J.; Ma, X.L. Stacking faults and growth twins in long-period stacking ordered structures in a near-equilibrium Mg97Zn1Y2 alloy. Mater. Charact. 2020, 165, 11039. [Google Scholar] [CrossRef]
- Egami, M.; Ohnuma, I.; Enoki, M.; Ohtani, H.; Abe, E. Thermodynamic Origin of Solute-Enriched Stacking-Fault in Dilute Mg-Zn-Y Alloys. Mater. Des. 2020, 188, 108452. [Google Scholar] [CrossRef]
- Itakura, M.; Yamaguchi, M.; Egusa, D.; Abe, E. Density Functional Theory Study of Solute Cluster Growth Processes in Mg-Y-Zn LPSO Alloys. Acta Mater. 2021, 203, 116491. [Google Scholar] [CrossRef]
- Matsushita, M.; Bednarcik, J.; Sakata, Y.; Akamatsu, S.; Nishiyama, N.; Michalikova, J.; Yamasaki, M.; Kawamura, Y. Synchronized collapse and formation of long-period stacking and chemical orders in Mg85Zn6Y9. Phys. B 2015, 461, 147–153. [Google Scholar] [CrossRef]
- Matsushita, M.; Sakata, Y.; Senzaki, T.; Yamasaki, M.; Yamada, I.; Saitoh, H.; Shinmei, T.; Irifune, T.; Nishiyama, N.; Kawamura, Y. Phase relations among D03, α-Mg, and Long-period stacking orders in Mg85Zn6Y9 alloy under 3 GPa. Mater. Trans. 2015, 56, 910–913. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, M.; Yamamoto, S.; Nishiyama, N.; Sakata, Y.; Yamasaki, M.; Bednarcik, J.; Irifune, T.; Kawamura, Y. D03 + hcp mixed phase with nanostructures in Mg85Zn6Y9 alloy obtained by high-pressure and high-temperature treatments. Mater. Lett. 2015, 155, 11–14. [Google Scholar] [CrossRef]
- Jiang, W.; Zou, C.; Huang, H.-T.; Ran, Z.; Wei, Z. Crystal Structure and Mechanical Properties of a New Ternary Phase in Mg-Zn-Y Alloy Solidified under High Pressure. J. Alloy. Compd. 2017, 717, 214–218. [Google Scholar] [CrossRef]
- Ono, A.; Abe, E.; Itoi, T.; Hirohashi, M.; Yamasaki, M.; Kawamura, Y. Microstructure Evolutions of Rapidly-Solidified and Conventionally-Cast Mg97Zn1Y2 Alloys. Mater. Trans. 2008, 429, 990–994. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Sun, X.; Xu, H.; Konishi, H.; Wang, Y.; Lu, Y.; Gao, K.; Wang, C.; Zhou, H. Microstructural characterization and in-situ sulfur isotopic analysis of silver bearing sphalerite from the Edmond hydrothermal field, Central Indian Ridge. Ore Geol. Rev. 2018, 92, 318–347. [Google Scholar] [CrossRef]
Element | X | Y | Z | Site Occupancy |
---|---|---|---|---|
Mg | 0.50 | 0.50 | 0.50 | 1 |
Mg | 0.25 | 0.25 | 0.25 | 0.67 |
Mg | 0.00 | 0.00 | 0.00 | 0.18 |
Y | 0.00 | 0.00 | 0.00 | 0.82 |
Zn | 0.25 | 0.25 | 0.25 | 0.33 |
Peaks | 2 Theta | d-Value (nm) | Hkl | Difference (%) |
---|---|---|---|---|
E1 | 10.7 | 0.8258 | (111) | 0.1493 |
Labeled ◇ | 17.4 | 0.5089 | (220) | 0.0924 |
E2 | 20.7 | 0.4286 | (113) | 0.0290 |
(111) of D03 | 21.6 | 0.4109 | (222) | 0.0147 |
(200) of D03 | 25 | 0.3558 | (400) | 0.0130 |
E3 | 27.3 | 0.3263 | (133) | 0.0139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yokota, A.; Matsushita, M.; Geshi, N.; Yamasaki, D.; Shinmei, T.; Yamasaki, M.; Kawamura, Y. Formation Process of Long-Period Stacking-Ordered Structures in Mg97Zn1Y2 Alloy Comprising HCP and Cubic Phases Fabricated by High-Pressure High-Temperature Annealing. Metals 2021, 11, 1031. https://doi.org/10.3390/met11071031
Yokota A, Matsushita M, Geshi N, Yamasaki D, Shinmei T, Yamasaki M, Kawamura Y. Formation Process of Long-Period Stacking-Ordered Structures in Mg97Zn1Y2 Alloy Comprising HCP and Cubic Phases Fabricated by High-Pressure High-Temperature Annealing. Metals. 2021; 11(7):1031. https://doi.org/10.3390/met11071031
Chicago/Turabian StyleYokota, Atsuki, Masafumi Matsushita, Naruhito Geshi, Daiki Yamasaki, Toru Shinmei, Michiaki Yamasaki, and Yoshihito Kawamura. 2021. "Formation Process of Long-Period Stacking-Ordered Structures in Mg97Zn1Y2 Alloy Comprising HCP and Cubic Phases Fabricated by High-Pressure High-Temperature Annealing" Metals 11, no. 7: 1031. https://doi.org/10.3390/met11071031
APA StyleYokota, A., Matsushita, M., Geshi, N., Yamasaki, D., Shinmei, T., Yamasaki, M., & Kawamura, Y. (2021). Formation Process of Long-Period Stacking-Ordered Structures in Mg97Zn1Y2 Alloy Comprising HCP and Cubic Phases Fabricated by High-Pressure High-Temperature Annealing. Metals, 11(7), 1031. https://doi.org/10.3390/met11071031