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Abstract: This study presents conductance modulation in a Pt/TiO2/HfAlOx/TiN resistive memory
device in the compliance region for neuromorphic system applications. First, the chemical and
material characteristics of the atomic-layer-deposited films were verified by X-ray photoelectron
spectroscopy depth profiling. The low-resistance state was effectively controlled by the compliance
current, and the high-resistance state was adjusted by the reset stop voltage. Stable endurance and
retention in bipolar resistive switching were achieved. When a compliance current of 1 mA was
imposed, only gradual switching was observed in the reset process. Self-compliance was used after an
abrupt set transition to achieve a gradual set process. Finally, 10 cycles of long-term potentiation and
depression were obtained in the compliance current region for neuromorphic system applications.

Keywords: resistive switching; synaptic device; self-compliance; bilayer stack

1. Introduction

Resistive switching behavior is observed in many dielectrics under an electric field [1].
The non-volatile resistance states are reversible in the high-resistance and low-resistance
states. The types of switching are largely divided into unipolar and bipolar switching [2].
The memory state of the unipolar resistive switching memory can be changed by the electric
stress at the same polarity. The reset process from a low-resistance state (LRS) to a high-
resistance state (HRS) occurs by rupture of the conducting filament by Joule heating [3].
In contrast, the set and reset processes of the bipolar resistive type occur via the opposite
polarity of the electric field. Among the many resistive switching materials, metal oxides
are the most popular, owing to their good stability, reproducibility, and repeatability [4–17].
Representative metal oxide-based resistive random access memory (RRAM) materials
include TaOx, TiO2, Al2O3, and HfO2 [4–17], with different configurations like anodic
oxidation and physical vapor deposition (PVD), and chemical vapor deposition (CVD). It is
worth noting that a bilayer stack of metal oxide exhibits relatively better resistive switching
performance, such as endurance, retention, and variability performance, compared with
a single-layer stack [18–22]. In a previous study, low-power operation was achieved by
controlling oxygen vacancies in the case of a HfO2/TiOx bilayer RRAM [20]. In another
study, the switching uniformity was improved for a HfO2/TiO2 bilayer device owing to
stabilized filament formation and rupture [21]. In the case of a double insulating layer
sandwiched by electrodes with a large difference in work function, self-rectifying I–V curves
have been reported, which can reduce the sneak current in the cross-point array [22].

Resistive switching dielectrics can be deposited by various methods, such as sputter-
ing. Atomic layer deposition (ALD) systems have the advantages of uniform deposition,
excellent step coverage, and accurate thickness control [23]. Therefore, they are suitable for
a 3D vertical RRAM structure [24] as well as a conventional 2D cross-point RRAM structure.

Neuromorphic systems are being studied to implement a better and more efficient
computing system than the existing von Neumann computing structure [25]. Neuromor-
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phic computing enables data operation and storage to be processed as closely as possible.
Parallel data processing with low energy is achieved by adopting a structure in which
the RRAM element array acts as an artificial synapse [26–30]. To implement an RRAM-
based synaptic array in a neuromorphic system, it is important that the state of RRAM
has a multi-level cell (MLC) [26–30]. Therefore, gradual change in the conductance value
in an RRAM device is essential to obtain MLCs easily. Through gradual conductance
changes, synaptic plasticity is imitated frequently [26–30]. To achieve a gradual change,
the current of a RRAM cell should not be changed abruptly by the applied electric field.
Filamentary-type resistive switching generally exhibits an abrupt transition in the set pro-
cess [31]. There have been reports of a gradual transition in the set process using a bilayer
stack [32,33]. This gradual set process, by self-compliance, could improve the synaptic
properties of a neuromorphic system. A Ti/TaOx/HfO2/Pt device exhibits gradual set
and reset processes owing to the oxygen reservoir of the thin TaOx layer [32]. In addition,
a Ni/SiN/Al2O3/TiN device shows gradual set and reset I–V characteristics due to the
tunnel barrier of Al2O3 [33].

In this study, we demonstrated gradual synaptic modulation in an ALD-deposited
TiO2/HfAlOx RRAM device. So far, not much has been reported about ALD-deposited
TiO2-based resistive memory. In previous studies, it was found that a high-k alloy type
RRAM device can adjust the dielectric band gap while controlling the composition ratio,
which can tune the resistance change switching properties [11,34].

2. Materials and Methods

A Pt/TiO2/HfAlOx/TiN RRAM device was prepared as follows. A 100 nm thick TiN
layer was deposited on a SiO2/Si wafer via reactive sputtering. Thereafter, a 7 nm thick
HfAlOx layer was deposited by the ALD system. Tetrakis (ethylmethylamino) hafnium
(TEMAH) and trimethylaluminum (TMA) were used as the metal precursors for the HfO2
and Al2O3 layers, respectively. H2O was used as the oxidant for both layers. One cycle of
(TMA + H2O) deposition and 11 cycles of (TEMAH + H2O) deposition were conducted
for the alloyed-type dielectric. Next, a 7 nm thick TiO2 layer was deposited using tita-
nium tetraisopropoxide (TTIP) and H2O as reactants. Finally, a 100 nm thick Pt layer was
deposited using an electron-beam evaporator via a shadow mask with circular patterns
100 µm in diameter. XPS depth analysis was conducted using a Nexsa photoelectron spec-
trometer (Thermo Fisher Scientific, Waltham, MA, USA) with a microfocus monochromatic
X-ray source (Al-Kα (1486.6 eV)), a sputter source (Ar+), an ion energy of 2 kV, a sputter
rate of 0.5 nm/s for SiO2, and a beam size of 100 µm. The current–voltage (I–V) curves
and transient curves of the RRAM cells were measured using a semiconductor parame-
ter analyzer (Keithley 4200-SCS and 4225-PMU ultrafast module, Keithley Instrumnets,
Cleveland, OH, USA), while a bias was applied to the Pt top electrode, and the TiN bottom
electrode was grounded.

3. Results and Discussion

Figure 1a shows a schematic of the Pt/TiO2/HfAlOx/TiN device. XPS analysis was
performed as the X-ray was incident from the TiO2 surface, and analysis was conducted
on the inner thin film through Ar+ etching. Overall, ALD-deposited film had better
stoichiometry compared with films deposited by other sputtering systems [35]. Figure 1b,c
shows the Ti 2p spectra for an etch time of 2 s and an etch time of 35 s, which correspond to
the TiO2 layer and the TiN bottom electrode, respectively. The Ti 2p XPS spectra included
Ti 2p3/2 and Ti2p1/2, as shown in Figure 1b,c. The peak binding energies of Ti 2p3/2 and Ti
2p1/2 were located at approximately 458.94 eV and 464.5 eV for Ti-O bonds [36]. However,
the peak binding energies of Ti 2p3/2 and Ti 2p1/2 were found at approximately 454.92 eV
and 460.93 eV for Ti-N bonds [37]. Figure 1d shows the Hf 4f spectra at an etch level of 9.
Hf 4f7/2 and Hf 4f5/2 doublet peaks were found at 18.63 eV and 20.03 eV, respectively, for
Hf-O bonds in the Hf-dominated HfAlOx film. Figure 1e shows the Al 2p spectra at an
etch time of 9 s. Because the Al content was low in the HfAlOx film, the Al intensity was
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low and some noise was observed, but a distinct peak was observed for the Al-O bond at
approximately 75.4 eV [12].
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Figure 1. (a) Schematic of the Pt/TiO2/HfAlOx/TiN device. XPS spectra of the TiO2/HfAlOx/TiN
stack: (b) Ti 1p for Ti-O bonds, (c) Ti 1p for Ti-N bonds, (d) Hf 4f, and (e) Al 2p spectra.

Figure 2a shows the I–V current characteristics, including 200 cycles of the Pt/TiO2/
HfAlOx/TiN device. It was noted that initial forming curve is similar to the subsequent
I–V curve of the set process, indicating that the device can be operated with a constant set
voltage without the need for an additional forming process. We used filamentary model for
resistive switching here, referring to existing literature [38,39]. The set process occurred by
sweeping from 0 V to –0.7 V. An abrupt set transition was observed from the HRS to LRS,
in which the decrease in resistance was due to soft breakdown in the two insulator layers.
Here, a compliance current (CC) of 1 mA was used to control the conducting filament.
Moreover, the oxygen vacancies in the double insulating layers were created under the
applied bias [40]. It should be noted that the negative bias on the Pt/TiO2/HfAlOx/TiN
device is relatively more favorable for resistive switching because the TiON interfacial
layer acts as an oxygen reservoir [41]. The oxygen can easily move to the TiN layer to form
TiON when a negative bias is applied on Pt. The detailed mechanisms have been discussed
in previous studies [34,40,42]. The reset process was conducted to return the device to
the HRS by sweeping from 0 V to 1 V. The reset process occurs because of the rupture
of the conducting filament based on oxygen vacancies. The oxygen ions move from the
TiON layer under a positive bias, and the recombination occurs with oxygen vacancies.
Subsequently, the conducting filament can be ruptured, which indicates a decrease in
conductance. Figure 2b shows up to 200 cycles, in which LRS and HRS possessed a read
voltage of 0.3 V. Uniform LRS and HRS were achieved even though a small on/off ratio
was observed. To increase the on/off ratio, the CC and reset stop voltages can be increased.
The LRS current increased with an increase in CC, and the HRS current decreased with
an increase in the reset stop voltage. An on/off ratio of 10 times or more was achieved
by a CC of 10 mA and a reset sweep voltage of 2 V for 200 endurance cycles, as shown in
Figure 2c. Good retention properties in the LRS and HRS were observed for 1 h (Figure 2d).

Next, we demonstrated the fine modulation of the LRS and HRS by varying the
reset stop voltage. Figure 3a–c shows the I–V characteristics of the Pt/TiO2/HfAlOx/TiN
device with reset stop voltages of 1.1 V, 1.2 V, and 1.3 V. Stable and uniform switching
was observed for 21 cycles in each case. It can be noted that the LRS and HRS currents
decreased with the increasing reset stop voltage in Figure 3d. The higher the voltage, the
more the conducting filament ruptures, and thus, the HRS current decreases. It was also
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observed that the current gradually decreased as the reset stop voltage increased in the
DC sweep mode, as shown in Figure 3e. However, MLC can be achieved by CC for the set
process, which is not desirable for device control.
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Figure 2. (a) I–V characteristics of the Pt/TiO2/HfAlOx/TiN RRAM device. (b) Endurance at a
compliance current (CC) of 1 mA in the high-resistance state (HRS) and low-resistance state (LRS).
(c) Endurance at a CC of 10 mA. (d) Retention characteristics for 3600 s.

Figure 3. I–V characteristics of the Pt/TiO2/HfAlOx/TiN RRAM device at reset stop voltages of (a) 1.1 V, (b) 1.2 V, and
(c) 1.3 V. (d) Read current distribution as a function of reset stop voltage. (e) MLC by reset stop voltage.

To overcome the limitation of the abrupt set process, we used different current regions
in self-compliance for the gradual set process. Figure 4a shows the self-compliance curve
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after the CC controlled the I–V curves of the Pt/TiO2/HfAlOx/TiN device. The self-
compliance region is clearly observed on the linear scale in Figure 4b. The current gradually
increased with the voltage in the self-compliance region after an abrupt transition from
432.7 µA to 2 mA at −0.55 V. This gradual transition region is suitable for achieving MLC.
The self-compliance behavior during the set transition due to the TiON layer acted as
series resistance [43]. Furthermore, the gradual reset switching was maintained after the
self-compliance set process.

Metals 2021, 11, x FOR PEER REVIEW 5 of 8 
 

 

 
Figure 3. I–V characteristics of the Pt/TiO2/HfAlOx/TiN RRAM device at reset stop voltages of (a) 1.1 V, (b) 1.2 V, and (c) 
1.3 V. (d) Read current distribution as a function of reset stop voltage. (e) MLC by reset stop voltage. 

To overcome the limitation of the abrupt set process, we used different current re-
gions in self-compliance for the gradual set process. Figure 4a shows the self-compliance 
curve after the CC controlled the I–V curves of the Pt/TiO2/HfAlOx/TiN device. The self-
compliance region is clearly observed on the linear scale in Figure 4b. The current gradu-
ally increased with the voltage in the self-compliance region after an abrupt transition 
from 432.7 µA to 2 mA at −0.55 V. This gradual transition region is suitable for achieving 
MLC. The self-compliance behavior during the set transition due to the TiON layer acted 
as series resistance [43]. Furthermore, the gradual reset switching was maintained after 
the self-compliance set process. 

 
Figure 4. Self-compliance characteristics of the Pt/TiO2/HfAlOx/TiN RRAM device: (a) log-scale; (b) 
linear scale. 

Next, the potentiation and depression characteristics were mimicked to apply the 
Pt/TiO2/HfAlOx/TiN device to a neuromorphic system. For potentiation, repetitive pulses 
with a voltage of −0.8 V and a width of 1 ms were used, as shown in Figure 5. Figure S1 
shows the transient characteristics of the set and reset process. A low read pulse voltage 

-1.0 -0.5 0.0 0.5 1.0 1.5
10-6

10-5

10-4

10-3

C
ur

re
nt

 (A
)

Voltage (V)

CC = 1 mA

Reset voltage = 1.1 V
21 Cycles

-1.0 -0.5 0.0 0.5 1.0 1.5
10-6

10-5

10-4

10-3

C
ur

re
nt

 (A
)

Voltage (V)

CC = 1 mA

Reset voltage = 1.2 V
21 Cycles

-1.0 -0.5 0.0 0.5 1.0 1.5
10-6

10-5

10-4

10-3

C
ur

re
nt

 (A
)

Voltage (V)

CC = 1 mA

Reset voltage = 1.3 V
21 Cycles

0.0 0.5 1.0 1.5 2.0

0.000

0.002

0.004

0.006

C
ur

re
nt

 (A
)

Voltage (V)

(a) (b) (c)

(d) (e

150.0µ

200.0µ

250.0µ

300.0µ

R
ea

d 
cu

rre
nt

 (A
)

450.0µ

500.0µ

550.0µ

600.0µ

R
ea

d 
cu

rre
nt

 (A
)

Reset stop volage (V)
1.1 V 1.2 V 1.3 V

VREAD: 0.3 V

VREAD: 0.3 V

LRS

HRS

(a) (b)
self-complianceself-compliance

-1.0 -0.5 0.0 0.5 1.0
10-5

10-4

10-3

10-2

C
ur

re
nt

 (A
)

Voltage (V)
-1.0 -0.8 -0.6 -0.4 -0.2 0.0

0.0

1.0m

2.0m

3.0m

4.0m

5.0m

C
ur

re
nt

 (A
)

Voltage (V)

Figure 4. Self-compliance characteristics of the Pt/TiO2/HfAlOx/TiN RRAM device: (a) log-scale;
(b) linear scale.

Next, the potentiation and depression characteristics were mimicked to apply the
Pt/TiO2/HfAlOx/TiN device to a neuromorphic system. For potentiation, repetitive pulses
with a voltage of −0.8 V and a width of 1 ms were used, as shown in Figure 5. Figure S1
shows the transient characteristics of the set and reset process. A low read pulse voltage
(0.3 V) was used to not affect the conductance change during the reading. It should be noted
that for gradual conductance modulation in the self-compliance region, we demonstrated
10 cycles of long-term potentiation and long-term depression, and found no significant
degradation of the MLC.
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4. Conclusions

In this study, multilevel cells were achieved in a Pt/TiO2/HfAlOx/TiN RRAM device
by gradual resistive switching in the compliance region for neuromorphic system appli-
cations. The chemical and material characteristics of the TiO2/HfAlOx/TiN stack were
confirmed by XPS depth profiling. The LRS was varied by the CC at a compliance current
of 1 mA, and the HRS was accurately controlled by the reset stop voltage. Repetitive en-
durance and stable retention characteristics were observed in different compliance current
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modes. The self-compliance current region was used to improve the gradual resistive
switching during the set process. Finally, stable and repetitive long-term potentiation
and depression were obtained owing to the gradual resistive switching in the compliance
current region for neuromorphic system applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/met11081199/s1. Figure S1: Transient characteristics of the set and reset processes.
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