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Abstract: Special concentrically braced frames (SCBFs) located in regions close to earthquake faults
may be subjected to near-fault ground motions, often characterized by pulses with long periods.
These near-fault pulses could impose additional seismic demands on structures and increase the
risk for structural collapse. Currently, there is limited research on the seismic collapse risk of SCBFs
under near-fault earthquakes. This paper uses a general simulation-based framework to assess the
seismic collapse risk of SCBFs under near-fault earthquakes. To quantify the large variability and
uncertainty associated with the seismic hazard, a stochastic ground motion (SGM) model is used
where the near-fault pulse characteristics are explicitly incorporated. The uncertainties in the SGM
model parameters (including the near-fault pulse characteristics) are addressed through appropriate
selection of probability distribution functions. To accurately predict the occurrence of collapse,
numerical models capable of capturing the nonlinear and collapse behavior are established and used.
Efficient stochastic simulation approaches are proposed to estimate the seismic collapse risk with or
without considering the near-fault pulse. As an illustration, the seismic collapse risks of two SCBFs
are investigated and compared. Probabilistic sensitivity analysis is also carried out to investigate the
importance of uncertain model parameters within the SGM towards the seismic collapse risk.

Keywords: seismic collapse risk; sensitivity analysis; braced frames; near-fault earthquakes; stochastic
ground motion

1. Introduction

One of the most crucial objectives of the building codes is life safety, which is ensured
by protecting structures against collapse under seismic events. With the advancement
in earthquake engineering, the concept of performance-based earthquake engineering
has gained popularity, which considers the entire range of seismic structural behaviors,
including nonlinear behavior up to collapse. Standard performance levels put forward
by the Applied Technology Council [1] and Federal Emergency Management Agency [2]
include operational, immediate occupancy, life safety, and collapse prevention. Collapse
prevention is the performance level where the structure may experience large damage
to the structural components without collapsing. Although the design methodology is
meant to prevent morbidity, significant social and economic losses could be expected [3].
In regions with high seismicity, special moment resisting frames (SMRF) were considered a
viable option as lateral load-resisting systems for buildings; however, earthquakes such
as the 1994 Northridge earthquake, 1995 Hyogo-Ken Nanbu earthquake, and other recent
earthquakes, led to brittle fractures in many beam-to-column connections, compromising
the integrity of such systems. The more extensive guidelines and restrictions related to the
design of SMRFs have led to a shift towards investigating simplistic yet economical lateral
resisting systems for low and mid-rise buildings, and concentrically braced frames (CBFs)
became a favorable choice for seismic load-resisting systems [4].
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CBFs are one of the most economical lateral load-resisting systems for low-rise struc-
tures, which utilize truss members connected concentrically at beam-to-column joints. The
system provides high stiffness and strength but tends to have low ductility, which hinders
the system’s ability to maintain the overall strength under severe earthquakes. Due to
low ductility, the yielding members may experience low or ultra-low cycle fatigue under
seismic loading. This issue can be resolved by utilizing a special class of CBFs called special
concentrically braced frames (SCBFs) where the members that are expected to yield are care-
fully designed and detailed to achieve higher ductility during inelastic deformations [5].
Studies have been conducted to understand the behavior of braces connected to gusset
plates [6–11] and the overall system performance. These studies resulted in improvements
to the design and connection detailing that improved the overall performance of the system
by further extending the ductility of the SCBFs.

To realize the full potential of SCBFs, an assessment of system response under both and
far-field and near-fault ground motions should be conducted. There are many studies on the
behavior of SCBFs subjected to far-field earthquakes [4,5,11,12]; however, assessment of the
viability of SCBFs to near-field earthquakes has not received similar attention. Structures
located in regions close to earthquake faults may be subjected to near-fault earthquakes.
Near-fault ground motions, often characterized by forward directivity pulses with long
periods, can impose additional and higher seismic demands on structures, which could
increase the likelihood for unpredictable damages, brittle fracture, or low and ultra-low
cycle fatigue of structural components, and even collapse [13]. While the performance
of different structures under near-fault earthquakes have been investigated by different
researchers [6,13–19], overall there is limited research on the seismic collapse risk of SCBFs
under near-fault earthquakes and the impacts of near-fault earthquakes on braced frames,
especially the collapse risk, are still not well understood.

To assess the seismic collapse performance of structures, usually incremental dynamic
analysis (IDA) is used. In IDA nonlinear time history analysis of the structure is carried out
under a set of selected recorded ground motions, and these ground motions are scaled up
until the engineering demand parameters (EDPs) go through the entire range of behavior,
from elastic to inelastic and finally to global dynamic instability [20,21]. IDA can be
used to develop fragility curves for the damage state of collapse [22,23], which represents
the probability of collapse under a given intensity measures and can be further used to
estimate seismic collapse risk by propagating the uncertainties in the intensity measures.
Though helpful in assessing collapse performance, the use of scaled ground motion in
IDA raises concerns. For example, there is the concern on the validity of scaled ground
motions, which may not represent actual ground motions (e.g., in terms of frequency
contents and other characteristics). In addition, typically, ground motions with near-
fault pulse are not explicitly considered due to the scarcity of recorded near-fault ground
motions. In the context of seismic collapse risk assessment under near-fault earthquakes,
the variability in the ground motions may not be properly quantified. Moreover, how
the seismic hazard characteristics and near-fault pulse characteristics impact the seismic
collapse risk is still not well understood. These challenges hinder better understanding of
seismic collapse performance and the risk of structures close to earthquake faults. A better
understanding of such risk can guide the continued improvement of the building codes
and design philosophies.

To investigate the seismic collapse risk of SCBFs under near-fault earthquakes, this
study used a general simulation-based framework, which facilitates the adoption of com-
plex models and the consideration of various sources of uncertainties associated with
the structure and the seismic hazards. To quantify the large variability and uncertainty
associated with the seismic hazard, a stochastic ground motion (SGM) model was used
to generate synthetic ground motions. The near-fault pulse characteristics were explic-
itly incorporated in the SGM model. The uncertainties in the SGM model parameters
(including the near-fault pulse characteristics) were addressed through appropriate selec-
tion of probability distribution functions (PDFs). To accurately predict the occurrence of
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collapse, numerical models capable of capturing the nonlinear and collapse behavior were
established and used in nonlinear time history analysis subject to the stochastic ground
motion excitations. An efficient stochastic simulation was proposed to estimate the seismic
collapse risk under near-fault earthquakes. An efficient approach using Bayes’ theorem
was developed to directly calculate the seismic collapse risk when the near-fault pulse is
neglected without running additional simulations. As an illustration, the seismic collapse
risk of two typical SCBFs (i.e., SCBF with chevron bracing and SCBF with cross bracing)
were investigated. Probabilistic sensitivity analysis was carried out to investigate the
importance of each (or groups of) uncertain model parameters within the SGM including
the near-fault pulse characteristics towards the seismic collapse risk of the two example
braced frames.

2. Quantification of Seismic Collapse Risk of Braced Frames under Near-Fault Earthquakes
2.1. Simulation-Based Framework for Seismic Collapse Risk Quantification

To quantify the seismic collapse risk of braced frames, the simulation-based framework
proposed in [16] for seismic risk assessment of base-isolated structures was adopted, since
it can explicitly quantify the uncertainties in the ground motions and allows adoption of
complex probability models and structure models. In the current study, the focus was
on assessing the seismic collapse risk of braced frames. The framework in the context
of seismic collapse risk quantification is shown in Figure 1. The framework is briefly
reviewed here.

Figure 1. Augmented system model for seismic collapse risk quantification.

The framework defines an augmented system model that includes models for the
excitation, the structure, and the probabilistic performance. Let θ ∈ Θ ⊂ Rnθ represent the
augmented nθ-dimensional vector of uncertain model parameters, where Θ corresponds to
the entire domain for all the possible values for the uncertain parameters. θ is composed of
model parameters for the excitation (denoted θex), the structural system (denoted θs), and
the performance (θh). For given specific θ, the risk consequence measure is denoted h(θ),
which can be evaluated based on the corresponding structural response (denoted y(θ)). To
address the uncertainty in θ, proper PDFs can be assigned, which is denoted p(θ). The
seismic risk H can be quantified as the expected value of h(θ) over the probability models
for θ, H = Eθ[h(θ)] =

∫
Θ h(θ)p(θ)dθ. Based on the different definition for h(θ), different

seismic risk H can be established. In this study, we are interested in the seismic collapse
risk or the probability of collapse. As such, h(θ) = IF(θ), where IF(θ) is the indicator
function for the failure event F (i.e., structural collapse) and takes value of 1 if F occurs and
0 otherwise. The seismic collapse probability or risk PF can be written as

PF =
∫

Θ
IF(θ)p(θ)dθ (1)
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2.2. Stochastic Near-Fault Ground Motion Model

To assess the seismic collapse risk under near-fault earthquakes, the uncertainty associ-
ated with the seismic hazard (including the near-fault characteristics) needs to be properly
quantified. Considering the scarcity in recorded near-fault ground motions, a stochastic
near-fault ground motion (SGM) model was used to generate synthetic ground motions,
instead of using real scaled ground motions. In this study, the probabilistic excitation
model described in [19] was adopted. The near-fault stochastic ground motion (i.e., the
acceleration time history) is established by modeling the high-frequency component and
the near-fault characteristics independently and then combining them to form the final
acceleration time history [24] where the near-fault pulse characteristics are explicitly in-
corporated in the SGM model. Figure 2 illustrates the SGM and shows a sample ground
motion acceleration time history generated by the SGM.
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Figure 2. Illustration of the stochastic near-fault ground motion model and sample ground motion
time history.

By assigning appropriate PDFs to the model parameters, the uncertainty in the seismic
hazard can be conveniently addressed. In addition, since not all near-fault excitations will
have a velocity pulse, the probability of pulse occurrence needs to be integrated into the
stochastic model as well. This is established by introducing a discrete random variable
εp with outcomes as either yes or no (also referred as the pulse existence parameter). The
probability of having pulse (i.e., probability of εp = yes) is estimated as a function related
to the seismicity characteristics [25]. Overall, the uncertain model parameters include
seismological parameters such as moment magnitude M, rupture distance r, parameters
related to the high frequency components θg, and the pulse parameters θp, and white noise
sequence Zw. For completeness, the high-frequency component model and near-fault pulse
model including their model parameters and distributions are described in Appendix A.

3. Seismic Collapse Risk Assessment and Sensitivity Analysis Using Efficient Simulation

This section discusses the efficient simulation-based approach for evaluation of the
seismic collapse risk integral and sample-based approach for probabilistic sensitivity
analysis to identify the relative importance of different uncertain model parameters in
the stochastic ground motion model towards seismic collapse risk. The overall process is
illustrated in Figure 3.
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Figure 3. Flowchart for simulation based approach for seismic collapse risk assessment and proba-
bilistic sensitivity analysis.

3.1. Stochastic Simulation for Seismic Collapse Risk Assessment

To evaluate the risk integral, stochastic simulation can be used, since it is general and
can address complex models and high-dimensional uncertainties. More specifically, using
N samples from some proposal density q(θ), an estimate for PF is established by

P̂F =
1
N

N

∑
j=1

IF(θ
j)

p(θj)

q(θj)
(2)

where θj represents the sample in the jth simulation. The accuracy of the estimation can be
evaluated through its coefficient of variation (c.o.v) δ [26]. Lower values of δ means better
accuracy. To improve the accuracy and efficiency of the estimation, importance sampling
can be adopted, which corresponds to choosing a better proposal density (i.e., importance
sampling density) q(θ) by focusing on regions of the Θ space that contribute more to the
integrand of the risk integral.

For problems with high-dimensional uncertainty, importance sampling density q(θ)
can be established focusing on the important dimensions/parameters that have more
impact than the others towards the integrand. For the current problem, it is expected
that ground motion model parameters such as moment magnitude, rupture distance, and
amplitude of pulse may have large impacts on the seismic collapse risk, and proposal
density will be built with respect to those parameters to improve the estimation accuracy
and efficiency. When the failure probability is small, besides importance sampling, other
advanced stochastic simulation techniques can also be used [27–29].

3.2. Efficient Estimation of Conditional Seismic Collapse Risk

To estimate the seismic collapse risk of the braced frame under stochastic near-fault
ground motions (i.e., with probabilistic pulse), Equation (2) is used. For comparison
purposes, the seismic collapse risk under stochastic ground motions without near-fault
pulse is also calculated to assess the amount of increase of collapse risk due to near-fault
pulses. To evaluate the seismic collapse risk when the near-fault pulse is neglected, instead
of performing additional simulations (i.e., under stochastic ground motions without the
near-fault pulse), which are computationally expensive, an efficient approach using the
Bayes’ theorem is developed to directly calculate the corresponding seismic collapse risk
using the same set of N simulations (i.e., without running additional simulations).

More specifically, the failure probability of the structure when there is no near-
fault pulse in the ground motion, P(F|εp = no), can be written as follows using the
Bayes’ theorem
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P(F|εp = no) =
P(εp = no|F)PF

P(εp = no)
(3)

Based on the existing simulations, using Equation (2), we can establish an estimate
P̂F for PF, which corresponds to the seismic collapse risk. P(εp = no) corresponds
to the marginal probability of no pulse in the ground motion under the prior distri-
bution p(θ), and is equal to 1 − P(εp = yes) where P(εp = yes) corresponds to the
marginal probability of having pulse under the prior distribution and has the expression
P(εp = yes) =

∫
P(εp = yes|θr)p(θr)dθr, where θr corresponds to the rest of the parame-

ters excluding εp. Using the existing N simulations, P(εp = yes) can be estimated through

P̂(εp = yes) =
1
N

N

∑
j=1

[
P(εp = yes|θj

r)p(θj
r)

q(θj
r)

]
(4)

Therefore, P(εp = no) can be estimated as P̂(εp = no) = 1− P̂(εp = yes).
As to P(εp = no|F), it can be estimated from the failure samples from the so-called fail-

ure distribution p(θ|F), which is proportional to the integrand of the seismic collapse risk in-
tegral and has the expression p(θ|F) = IF(θ)p(θ)/PF ∝ IF(θ)p(θ). In particular, using the
existing simulations, a stochastic sampling algorithm (e.g., rejection sampling) can be used
to generate samples from the failure distribution (as illustrated in Figure 3), giving total of
NF failure samples. Then, P(εp = no|F) can be estimated by P̂(εp = no|F) = NF,εp=no/NF
where NF,εp=no corresponds to the number of failure samples that do not have near-fault
pulse. Note that these failure samples will be used later for efficient probabilistic sensitivity
analysis as well.

Therefore, in the end, an estimate for P(F|εp = no) can be established as

P̂(F|εp = no) =
P̂(εp = no|F)P̂F

P̂(εp = no)
(5)

3.3. Probabilistic Sensitivity Analysis Using Sample-Based Approach

To identify the uncertain model parameters in the ground motion model (including
the pulse characteristics) that have a higher contribution towards the seismic collapse
risk of braced frames, we use the probabilistic sensitivity measure called relative entropy
proposed in [16]. The foundation of this sensitivity analysis is the definition of an auxiliary
PDF p(θ|F) proportional to the integrand of the seismic collapse risk integral, which in the
current problem corresponds to the failure distribution for θ mentioned earlier. Comparison
between the marginal distribution p(θi|F) and the prior distribution p(θi) indicates the
sensitivity with respect to the uncertain parameter θi. The difference between these two
PDFs is quantified by relative entropy

D(p(θi|F)||p(θi)) =
∫

Θi

p(θi|F) log
[

p(θi|F)
p(θi)

]
dθi (6)

A larger relative entropy value indicates greater importance in affecting the seismic
collapse risk. This idea is not limited to a particular single parameter θi and can be extended
towards a set of uncertain parameters (e.g., group of parameters {θi, θj}) by comparing the
corresponding marginal distributions for these parameters.

To efficiently estimate the relative entropy for each individual parameter and also
groups of parameters, which requires the estimation of the corresponding marginal auxil-
iary distribution (corresponding to multidimensional integral), the sample-based approach
in [16] is used. It relies on generating samples from the joint failure distribution p(θ|F),
also called failure samples. Then, the projection of these samples to spaces representing
each uncertain parameter gives samples from the corresponding marginal failure distri-
bution p(θi|F). Then, based on the marginal samples, an estimate of the marginal PDF
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can be established using kernel density estimation (KDE) [16,30]. More details about the
sample-based approach can be found in [16,31].

In the context of seismic collapse risk estimation, instead of conducting additional
simulations to generate the failure samples, we use the readily available information in
the N simulations for estimating the seismic collapse risk and directly apply rejection
sampling to these samples to generate the failure samples; therefore, the probabilistic
sensitivity analysis is carried out efficiently with no additional simulations (as illustrated
in Figure 3). In addition to continuous variables, relative entropy can also be defined
for discrete variables, where the integration becomes summation over all the values that
the discrete variable can take, and the PDFs correspond to probability mass functions
(PMFs). In the current problem, to explicitly investigate the sensitivity of the seismic
collapse risk with respect to the existence of near-fault pulses, we investigate the sensitivity
with respect to the discrete pulse existence parameter εp. The relative entropy for εp is
calculated through

D
(

P(εp|F)||P(εp)
)
= P(εp = yes|F) log

(
P(εp = yes|F)
P(εp = yes)

)
+ P(εp = no|F) log

(
P(εp = no|F)
P(εp = no)

)
(7)

where P(εp = yes|F) can be estimated by P(εp = yes|F) = NF,εp=yes/NF where NF,εp=yes
is the number of failure samples with pulse and NF is total number of failure samples
generated. P(εp = yes) can be estimated using Equation (4) as described earlier. In the
end, the relative entropy for εp can be established. The relative importance of εp can be
compared with other model parameters by comparing their relative entropy values.

4. Illustrative Example

This section describes the two braced frames that will be studied as an illustration.
The focus is on assessing and comparing their seismic collapse risk, and identifying the
impact of near-fault earthquakes and associated uncertainties on the seismic collapse risk
of the braced frames.

4.1. The Example Braced Frames

In this study, the building from the SAC Joint Venture project (which is a moment-
resisting frame) was used. The model building was designed based on local code require-
ments for three different cities (i.e., Los Angeles, Seattle, and Boston) [32]. For this study, the
three-story model building was redesigned as an office building and modeled as a braced
frame. The floor plan and elevation view of the three-story SAC building are illustrated in
Figure 4. Moment resisting frames are utilized in the periphery of the office building. In
the current study, the braced frames are designed at the perimeter of the penthouse located
at the two bays in each direction of the building. Two configurations of the braced frame
in [33] are considered: chevron bracing with zipper columns and cross-bracing system
(shown in Figure 5).

Figure 4. Floor plan and elevation view of the three-story SAC building.
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Figure 5. Configuration of (a) the chevron-braced frame and (b) the cross-braced frame.

All the loads (dead and live load) acting on the different floor and their distribution
are obtained from Appendix B in FEMA 355C [32]. The self-weight of the steel here is
assumed to be 0.622 kN/m2 [32]. The given loading definition is used to estimate the
seismic mass of the structure, which has values of 10,155 kN, 9386 kN, and 9386 kN for the
mass of roof, third floor, and second floor, respectively. The FEMA guidelines are used to
calculate the lateral load acting on this system. The structure modeled here is assumed to
be located in Los Angeles with site class C.

After the quantification of the load acting on the structure including both lateral and
gravity loads, a load-resisting system was selected to maintain the overall stability and
integrity of the structure under high seismic events. As mentioned earlier, the lateral
load-resisting systems selected in this research are braced frames with chevron bracing and
cross bracing. Next, the design and some details of these systems are presented. For both
braced frames, the structural steel was assumed to be Grade 50 A992 with a modulus of
elasticity E = 200 GPa and yield strength fy = 345 MPa.

The chevron-braced frames are one of the types of SCBFs in which proper detailing and
design can lead to a high-performance system with good ductility and energy dissipation
proficiency [34]; however, these systems can exhibit typical braced frame problems under
high seismicity. Under large lateral displacements, the brace in compression may buckle
prematurely and its axial load carrying capacity is decreased tremendously while the
tension in the other braces continues to increase. This mechanism creates unbalanced
vertical forces on the beam, and thus the overall lateral strength of the system is reduced.
In order to counteract this effect, the zipper columns can be added at the intersection of the
beam and the braces [35]. Here, zipper columns with partial height zipper mechanisms
were adopted as it results in better distribution of the loads and energy over the height
of the structure, thus maintaining the stability of the structure. In order to ensure that
the system behaves in the intended manner, the two-phase design procedure proposed
in [36,37] was used. In the first phase, the frame member sizes are determined to resist the
lateral and the gravity loads calculated in the previous section. This corresponds to the
strength design of the system without the utilization of the zipper column [36]. Hollow
steel section (HSS) members are used for braces. The second phase involves the capacity
design of the system in which the zipper columns are introduced to resist the vertical
unbalanced force generated by the brace at each individual levels. The top story braces
are designed to elastically resist the vertical unbalanced forces collected by the zipper
columns below the top story and the top-floor equivalent earthquake force [33,37]. The
design methodology of the cross-braced system is relatively straightforward. This system
was designed by first deciding the configuration of the braces in the lateral load-resisting
system and then subjecting it to lateral loads. Figure 5 shows the sections used for both
frames.
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4.2. Numerical Modeling of the Example Braced Frames

For numerical modeling and analysis of the braced frames, ZEUS-NL, which is an
open source software, was used [38]. ZEUS-NL can handle large inelastic displacement
analysis for complex frames using the fiber approach and it has a suite of commonly used
material models and elements. The beams, columns, and the braced elements are modeled
as fiber sections. A bilinear elasto-plastic model with kinematic strain hardening material
was utilized for the elements where a strain hardening factor µ = 0.03 is used. The end
condition of the braced frames is taken as ‘pin-connection’ (see Figure 6), which is modeled
by using a zero-length spring element at the brace’s ends with almost zero initial stiffness.
In addition, the initial imperfections in the braces (shown in Figure 6) are assumed to
be in-plane with a value of 0.1% of the effective length of the braces [39]. A shear tab
connection is also assigned between columns and beams when there is no brace connected
to them (see Figure 6). A rotational spring is used to model the shear tab connection at the
top story beam for both frames and also on the first floor for the cross-braced frame. The
damping is modeled using Rayleigh damping with a damping ratio of 5% corresponding to
the fundamental frequency. To validate the above modeling approach, an example braced
frame from OpenSees was analyzed, and the results (from pushover analysis, dynamic
analysis, and eigenvalue analysis) are compared against published results obtained from
the analysis by OpenSees [40]. Then, the above modeling approach was used to build
numerical models for the two example braced frames. To obtain the dynamic properties and
behavior/performance of the braced frames, eigenvalue analysis and pushover analysis
were carried out using the developed numerical models. The chevron-braced frame has a
period of 0.708 s while the cross-braced frame has a slightly longer period of 0.720 s. The
pushover curves for the braced frames are shown in Figure 7.

Figure 6. Visualization of joint element and imperfection in braces.

Figure 7. Pushover curves for the braced frames.
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Previous research has shown that the braces in SCBFs are susceptible to low-cycle
fatigue and fatigue induced fracture under strong earthquakes. To accurately capture
the impact of the local brace behavior on the global seismic performance of the SCBFs,
different models have been proposed in the literature [39,41–47]. For example, in OpenSees,
a modified rainflow cycle counting algorithm is used to accumulate fatigue damage in
a material, based on Coffin–Manson criterion, using Miner’s rule. Element stress/strain
relationships become zero when fatigue life is exhausted. This model has been used to
capture the low-cycle fatigue of braces in SCBFs. Further, Hsiao et al. [43] proposed
a fracture modeling approach that simulated the nonlinear, cyclic response of SCBFs by
correlating onset of fracture to the maximum strain range in the brace (i.e., the total distance
between the maximum positive and maximum negative strain). The model accounts for
important brace design parameters including slenderness, compactness, and yield strength;
fracture data from over 40 tests were used to calibrate the model. In this paper, we use the
maximum strain range formula developed in [43] to determine whether low-cycle fatigue
rupture occurred or not, i.e., if the maximum strain range exceeds the limit given by the
formula then fatigue rupture occurs. To do this, we keep track of the strain time history
of all the braces in the frame during the time history analysis and use this information
to calculate the maximum strain range under given ground motion. Although specific
low-cycle fatigue fracture model is used in this study, the flexibility of the seismic collapse
risk assessment framework can allow other models to be directly incorporated in the
framework as needed.

To conduct initial assessment of the performance of the braced frames under cyclic
load due to earthquakes, we first run the dynamic time history analysis for both frames
under a selected ground motion. Here, the ground motion in [40] was used. Figure 8 shows
the force deformation relationship at the middle of the braces in different stories in the
chevron-braced frame. One important observation is that the third-story braces behave
elastically as intended by design. As mentioned earlier, the top-story braces are designed
to elastically resist the vertical unbalanced forces collected by the zipper columns below
the top story and the top-floor equivalent earthquake force [33,37]. Figure 9 shows the
hysteretic behavior of the chevron-braced frame including the story shear vs. interstory
drift ratio (in %) for each story. Overall, the second story has the largest story drift, while
the top story has the smallest story drift and is much smaller than the other two stories.
This behavior (i.e., the third story has the smallest drift) is expected since the braces remain
elastic, and the frame is designed to behave in such a manner. Figures 10 and 11 show the
respective behaviors for the cross-braced frame. For this frame, the braces at all stories
undergo inelastic deformations. The top-story drift is much larger than that of the chevron-
braced frame, and it is also the largest among all the stories with the second story having
the smallest drift.
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Figure 8. Axial force-axial displacement for the braces in the chevron-braced frame.
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Figure 9. Hysteretic behavior of the chevron-braced frame.
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Figure 10. Axial force-axial displacement for the braces in the cross-braced frame.
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Figure 11. Hysteretic behavior of the cross-braced frame.

4.3. Implementation Details of the Simulation-Based Assessment of Seismic Collapse Risk

To evaluate the seismic collapse risk, the stochastic simulation-based approach for
risk estimation described earlier was used. The simulation-based approach requires N
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evaluations of the structural response under simulated ground motions, which corresponds
to nonlinear time history analysis and is the most computationally expensive task in the
overall seismic risk assessment. For each simulation, the maximum interstory drift ratio
of the braced frame was calculated and the maximum strain range was also calculated
for all the braces in the frame based on the strain time history. In terms of the definition
of structural collapse (i.e., failure), besides the interstory drift ratio, we also consider the
low-cycle fatigue failure of braces, i.e., we assume that collapse occurs when either the
maximum interstory drift ratio exceeds the collapse threshold (taken as 5% here) or the any
of the braces fails due to low-cycle fatigue rupture. Note that the occurrence of collapse
may depend on many factors and the collapse threshold typically also has variability, which
can be considered by introducing uncertainty in this threshold (i.e., another parameter in
θ). Here, since the focus is on uncertainty in the ground motion, a deterministic collapse
threshold was used. Then, using results from all the simulations, the seismic collapse risk
was calculated using Equation (2) for both braced frames. Subsequently, information from
this set of simulations was used within rejection sampling algorithm to generate samples
from the failure distribution p(θ|F). These failure samples are then used within a sample-
based approach to efficiently evaluate the relative entropy for sensitivity analysis. The
relative entropy values are used to identify the relative importance of different uncertain
model parameters in the stochastic ground motion model towards seismic collapse risk.

For the case studies, the prior distributions for the above uncertain model parameters
are as follow. The uncertainty in the moment magnitude for seismic events, M is modeled
by Gutenberg–Richter relationship truncated in [Mmin, Mmax] = [6, 9] which leads to the
following PDF

p(M) =
bM exp (−bM M)

exp (−bM Mmin)− exp (−bM Mmax)
(8)

where bM = 0.9ln 10. The rupture distance r is assumed to follow a lognormal distribution
with a median of rmed = 12 km and c.o.v of rcov = 45%. The error for the amplitude of
pulse Ap, eAp, follows normal distribution with mean µeAp = 0 and standard deviation
σeAp = 0.187. Here, M and r are assumed to be independent for modeling convenience,
with the understanding that for specific source geometries the rupture distance may
not be independent of the moment magnitude. For example, a large magnitude event
would most likely entail larger rupture area, so proximity of the site to the fault may
not be independent of magnitude. These distribution models are selected and modified
based on [19] to illustrate the proposed framework. While such selection affects the
exact results for the illustrative example, it does not affect the validity of the proposed risk
assessment framework. Since the framework is general, it can easily accommodate different
probability distribution models, and when detailed information regarding the site-specific
fault geometry and the joint distribution of moment magnitude and rupture distance
is available for the interested site, it can be directly incorporated in the risk assessment
framework.

To carry out the stochastic simulation, we need to have some proposal density q(θ) to
generate realizations for the model parameters θ. The selection of this proposal density
will affect the overall efficiency and accuracy of the seismic collapse risk estimation and
the efficiency of the rejection sampling algorithm. Since typically collapse corresponds to
rare events, if we directly use the prior distribution p(θ) as proposal density, we would
need many simulations to generate realizations that will lead to collapse. From the view of
importance sampling, we need to have a proposal density that can simulate more samples
that lead to collapse. Intuitively, large earthquakes or earthquakes with strong intensity will
tend to lead to structural collapse. It makes sense to select a proposal density that generates
more samples with large earthquakes. To this end, proposal densities are prescribed for M
(moment magnitude), r (rupture distance), and Ap (amplitude of pulse) with the idea that
q(θ) should be selected so that there are more samples for large M, small r, and large Ap.
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The following proposal densities are used for the above uncertain parameters. q(M) is
selected as a truncated Gaussian distribution between [6, 9] with a mean of 8.5 and standard
deviation of 1. The proposal density for r is selected as lognormal distribution with median
rmed = 6 km (i.e., smaller rupture distance) and c.o.v of rcov = 45%. The proposal density
for the amplitude of pulse characteristics depends upon the new proposal density for
rupture distance and eAp; the latter is selected as the normal distribution with the mean
0.15 and standard deviation of 0.187. For the rest of the parameters, the corresponding prior
distributions are used. With the above selection of proposal density, N = 5000 samples are
used for the stochastic simulation.

5. Results and Discussions
5.1. Seismic Collapse Risk Assessment Results
5.1.1. Chevron-Braced Frame

With the selected probability models, using Equation (2) with N = 5000 simulations,
the seismic collapse risk of the chevron-braced frame is estimated to be P̂F = 0.43%. To
investigate the impact of including or not the near-fault pulse in the stochastic ground
motion, the seismic collapse risk when there is no near-fault pulse in the stochastic ground
motion is also evaluated. As mentioned earlier, this is performed using Equation (5)
without running additional simulations. More specifically, P(εp = no|F) = NF,εp=no/NF
is estimated to be 9.62%. Using Equation (4) (to calculate P(εp = yes)) and P(εp = no) =
1− P(εp = yes), P(εp = no) is estimated to be 86.28%. Plugging the values of P(εp = no|F),
P̂F, and P(εp = no) into Equation (5) yields the failure probability P(F|εp = no), which
is estimated to be 0.05%. Compared to the seismic collapse risk of 0.05% when near-fault
pulses are neglected, considering the probabilistic pulses leads to seismic collapse risk
of 0.43%, which corresponds to an increase of almost 9 times the seismic collapse risk;
therefore, for the current example, neglecting the near-fault pulse may lead to significantly
underestimated seismic collapse risk.

Similar to calculation of P(F|εp = no), P(F|εp = yes), which corresponds to the
seismic collapse risk when assuming all the ground motions have near-fault pulses, can
be estimated as well. P(F|εp = yes) is estimated to be 2.82%, which further and more
directly shows the impacts of near-fault pulses on the seismic collapse risk. From another
perspective, under the prior distribution, the percentage of samples or ground motions that
have near-fault pulse is P(εp = yes) = 13.72%. In comparison, for the failure distribution, in
the samples or ground motions that caused failure, the percentage of ground motions that
have near-fault pulse is P(εp = yes|F) = 90.38%, which corresponds to significant increase
compared to P(εp = yes). This further highlights that the occurrence of collapse failure
in the considered chevron-braced frame is highly correlated to the existence of near-fault
pulse. The results and comparisons here highlight the significant impacts of near-fault
pulses on the seismic collapse risk estimation of the chevron-braced frame.

Besides the collapse failure probability, the variation of failure probability under
different interstory drift ratio thresholds (i.e., the thresholds that define failure) is plotted in
Figure 12 for both the case of considering probabilistic near-fault pulse and not considering
near-fault pulse. To show the impact of low-cycle fatigue on the seismic collapse risk,
the failure probability for the case when failure due to low-cycle fatigue is neglected is
also shown in the figure (see Figure 12b). From Figure 12a, it can be observed that as
the threshold increases the failure probability decreases first, which is expected, and then
after certain drift ratio threshold (e.g., around 0.03 for chevron-braced frame), the failure
probability does not decrease anymore and levels off. The latter is in contrast with the
observation in Figure 12b, which shows that the failure probability will keep decreasing
when the drift ratio threshold increases. The reason for this difference lies in the difference
in the failure definition. In Figure 12a, beyond certain drift ratio threshold, the failure will
be determined by the fatigue failure rather than the failure due to exceeding the drift ratio
threshold, or in other words, the failure probability due to fatigue is always larger than
the failure probability due to drift ratio exceedance. To further verify this, we also directly
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calculated the probability of failure due to only low-cycle fatigue, which is 0.43% and is the
same value as the failure probability that the curve levels off at. Similar trend is observed
for the case when the near-fault pulse is neglected. The above observations highlight the
importance of incorporating low-cycle fatigue in the seismic collapse assessment of braced
frames. The failure probabilities corresponding to different damage states are reported in
Table 1 for both the case of considering probabilistic near-fault pulse and not considering
near-fault pulse where the interstory drift ratio thresholds for ‘slight damage’, ‘moderate
damage’, and ‘extensive damage’ are selected as 0.004, 0.008, and 0.025, respectively. As
can be seen, for the case where there is no near-fault pulse in the ground motion, the
corresponding failure probabilities for all the different levels of damage states are much
smaller. This shows the importance of the near-fault pulse and how it can significantly
increase the probability of failure in the structure. When the near-fault pulse is neglected,
the corresponding seismic risk will be significantly underestimated; therefore, in general,
for more accurate seismic risk assessment, it is important to accurately and properly
characterize the near-fault pulses that might exist in near-fault ground motions.

chevron-braced frame
chevron-braced frame (no pulse)
cross-braced frame
cross-braced frame (no pulse)

chevron-braced frame
chevron-braced frame (no pulse)
cross-braced frame
cross-braced frame (no pulse)

Figure 12. Seismic risk for the two frames under different performance thresholds, where for (a) the
failure definition also includes the failure due to low-cycle fatigue, and for (b) the failure definition
does not include the failure due to low-cycle fatigue.

Table 1. Failure probability of braced frames corresponding to different damage states (in %).

Damage Chevron-Braced Frame Cross-Braced Frame
State P(F|εp = yes, no) P(F|εp = no) P(F|εp = yes, no) P(F|εp = no)

‘Slight’ 34.73 26.63 56.16 45.99
‘Moderate’ 8.89 5.50 20.65 14.64
‘Extensive’ 0.55 0.10 4.54 1.86
‘Collapse’ 0.43 0.05 3.92 1.11

5.1.2. Cross-Braced Frame

Similarly, the failure probability P̂F for the cross-braced frame is also calculated, which
is estimated to be P̂F = 3.92%. Using Equation (5), the failure probability P(F|εp = no) is
estimated to be 1.11%. As can be seen, similar to the chevron-braced frame, considering
near-fault pulse in the ground motions leads to increased seismic collapse risk for the
cross-braced frame, highlighting the significant impacts of near-fault pulses on the seismic
collapse risk estimation of the cross-braced frame. For cross-braced frame, P(F|εp = yes)
is estimated to be 21.60%, which further and more directly shows the impacts of near-
fault pulses on the seismic collapse risk. In the samples or ground motions that caused
failure, the percentage of ground motions that have the near-fault pulse is P(εp = yes|F)
= 75.62%, which also corresponds to a significant increase compared to P(εp = yes) =
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13.72%, highlighting the strong correlation between the occurrence of collapse failure and
the existence of a near-fault pulse. Overall, similar to the chevron-braced frame, the results
show the importance of incorporating the near-fault pulses that might exist in near-fault
ground motions for accurate estimation of the seismic collapse risk of cross-braced frames.

Besides the collapse failure probability, the variation of failure probability under
different interstory drift ratio thresholds is also plotted in Figure 12 for both the case of
considering probabilistic near-fault pulse and not considering near-fault pulse. The failure
probabilities under different damage states are also reported in Table 1 for both the case
of considering probabilistic near-fault pulse and not considering near-fault pulse. Similar
trends to the chevron-braced frame are observed.

5.1.3. Comparison between the Two Braced Frames

Comparing the results for the two braced frames, it can be seen that the cross-braced
frame has a much higher probability of failure for both the case of considering probabilistic
near-fault pulse in the ground motions and the case of not considering near-fault pulse in
the ground motions. The seismic collapse risk of the chevron-braced frame is around 0.43%,
while the value for cross-braced frame is around 3.92%. The corresponding risks when not
considering near-fault pulse are 0.05% and 1.11%, respectively. The higher seismic collapse
risk for the cross-braced frame aligns with our observations in the earlier section when
comparing the pushover analysis results for these two braced frames. For the pushover
analysis, it was observed that after the braces buckle/yield for the cross-braced frame, it
did not have any ultimate strength; therefore, the overall stiffness of the system decreased
with the lateral displacement as opposed to the chevron-braced frame. This behavior
conforms to the general braced frame behavior where braces act as the primary component
for resisting the lateral forces due to seismic action. For the chevron-braced frame, the
introduction of the zipper columns can also be enhancing the overall performance of the
system. Based on earlier discussion on the behavior of the chevron-braced frame, the lower
failure probability could also be attributed to the much smaller drift at the third story (as
seen in Figure 9) and the fact that the third-story braces are designed to elastically resist
the vertical unbalanced forces collected by the zipper columns below the top story and the
top-floor equivalent earthquake force.

5.2. Probabilistic Sensitivity Analysis Results

In this section, probabilistic sensitivity analysis was carried out to quantify the impor-
tance of uncertain model parameters in the stochastic near-fault ground motion towards
the seismic collapse risk. The calculation details for the relative entropy values for both
continuous variables and discrete variables have been discussed in the earlier sections.
Note that the same set of simulations were used to generate the failure samples from
the failure distribution and no additional simulations were used to establish the relative
entropy values for all the uncertain model parameters in the stochastic ground motion
model. Additionally, the importance of the pulse existence parameter εp is also calculated
using Equation (7). The relative entropy results for some of the important parameters in
the SGM that have a relatively large impact on the seismic collapse risk are presented for
both frames.

Two general cases are considered. The first case corresponds to when there is prob-
abilistic near-fault pulse in the stochastic ground motion (i.e., the existence of pulse has
a certain probability, which is calculated based on Equation (A4)). This case is denoted
as εp = {yes, no}. The second case corresponds to when there is no near-fault pulse (i.e.,
only considering the high-frequency components in the stochastic ground motion). This
case is denoted as εp = {no}. For the second case, essentially the model parameters in
the stochastic ground motions will not have any of those parameters that are related to
the pulse characteristics. The relative entropy for θi in this case is calculated between
p(θi|F, εp = no) (instead of p(θi|F)) and the prior distribution p(θi), i.e.,
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D
(

p(θi|F, εp = no||p(θi)
)
=
∫

Θi

p(θi|F, εp = no) log
[

p(θi|F, εp = no)
p(θi)

]
dθi (9)

where p(θi|F, εp = no) is estimated (i.e., using KDE) based on the failure samples for θi
that do not have near-fault pulse. For both cases, only some of the important parameters
for the corresponding case are presented. In addition to individual parameters, relative
entropy is also evaluated for some groups of parameters to investigate the joint effects of
these parameters. In terms of sensitivity analysis for resultant parameters, besides the ones
discussed in Appendix A, the sensitivities for the two commonly used seismic intensity
measures Sa (corresponding to the first mode) and PGV are also calculated.

5.2.1. Chevron-Braced Frame

The relative entropy values for the chevron-braced frame are reported in Table 2.
For the εp = {yes, no} case, in terms of independent parameters, it is evident that the
moment magnitude M dominates the risk with the rupture distance r having a much
smaller influence. The group parameter [M, r] had the highest importance in seismic
collapse risk. The higher importance of these parameters are expected since they are the
primary seismological parameters that affect seismic risk. In terms of resultant parameters,
Sa has the highest importance, this is expected and consistent with research findings in the
literature. Further, Sa has been frequently used as the intensity measure to establish seismic
collapse fragility considering the strong correlation between failure and the Sa values.
Similarly, high importance is observed for PGV as well, followed by the upper and lower
frequencies of the high-frequency components in the ground motion fa and fb. Further, the
pulse existence parameter εp has high sensitivity values, demonstrating the importance of
near-fault pulses on the seismic collapse risk. It can also be noted that the primary pulse
characteristics (e.g., pulse period Tp, pulse amplitude Ap) had a significant influence on
the seismic collapse risk. The higher relative entropy values for Tp is expected considering
its direct dependence on the moment magnitude M (see Equation (A3)). Overall, the
pulse characteristics are shown to be crucial in seismic collapse risk assessment, and these
characteristics and associated uncertainties should be included when assessing the seismic
collapse risk of structures situated close to earthquake faults. For the case εp = {no},
since there is no near-fault pulse, all parameters related to the pulse characteristics are
not considered.

Table 2. Probabilistic sensitivity analysis results for ground motion with probabilistic pulse and no
pulse for chevron-braced frame.

Independent
Parameters

Relative Entropy Resultant
Parameters

Relative Entropy

εp = {yes, no} εp = {no} εp = {yes, no} εp = {no}
M 3.201 2.806 Sa 3.765 4.053
r 0.481 0.279 PGV 3.051 3.129
eb 0.339 0.555 fa 2.772 2.131
ee 0.103 0.109 fb 2.576 2.005
εp 1.493 e 2.380 1.791
eAp 0.050 Tp 2.109
eTp 0.003 L 1.721
[M, r] 3.853 3.286 Ap 0.445
[M, eTp ] 3.074
[r, eAp ] 0.572

To facilitate a more in-depth understanding of the sensitivity analysis results, Figure 13
shows the samples for primary seismic hazard characteristics M and r from the joint
PDF p(M, r), the joint failure distribution p(M, r|F), as well as from the conditional fail-
ure distributions p(M, r|F, εp = yes), p(M, r|F, εp = no). Looking at the samples from
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p(M, r|F, εp = yes) (i.e., the failure samples that have near-fault pulses), it can be observed
that even with low seismic moment magnitude, the existence of pulse can lead to col-
lapse in the structure if the distance between site and fault is low. This again confirms
the importance of near-fault pulse for seismic collapse risk assessment, which should not
be ignored when designing the structure close to fault regions. On the other hand, for
p(M, r|F, εp = no), the failure samples mainly concentrated in regions with relatively high
moment magnitude M (but not quite high, e.g., below 8.5) and relatively small rupture
distance. The reason that not many failure samples have larger than 8.5 moment magnitude
may be because of the fact that based on Equation (A4) when r is small as M becomes
larger, the probability of having near-fault pulse becomes larger, hence resulting in fewer
samples without pulse.

Figure 13. Samples from (a) p(M, r), (b) p(M, r|F), (c) p(M, r|F, εp = yes), and (d) p(M, r|F, εp = no).
All the plots are for chevron-braced frame.

Besides M and r, to relate the risk assessment results to the underlying seismic
hazard, the respective samples for the commonly used seismic intensity measures Sa
(corresponding to the first mode) and PGV from the joint PDF p(Sa, PGV), the joint
failure distribution p(Sa, PGV|F), as well as from the conditional failure distributions
p(Sa, PGV|F, εp = yes), p(Sa, PGV|F, εp = no) are also plotted and are shown in Figure 14.
For the prior distribution, the Sa and PGV concentrated in lower value regions, while
for the failure samples from p(Sa, PGV|F), they correspond to much higher Sa and PGV
values. This is expected, since both intensity measures have been found to be correlated to
the failure of structures and higher values of Sa and PGV are more likely to cause failure
of structures. When comparing the samples from p(Sa, PGV|F, εp = yes) with those from
p(Sa, PGV|F, εp = no), the interesting observation is that while both have relatively large
values of Sa, the samples from p(Sa, PGV|F, εp = yes) have much higher PGV values
than those from p(Sa, PGV|F, εp = no). This is because the corresponding failure samples
with near-fault pulse have large pulse amplitude Ap for the velocity pulse, which results
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in higher PGV values for the corresponding ground motion. This further highlights the
correlation of PGV and near-fault pulse to seismic collapse.

Figure 14. Samples from (a) p(Sa, PGV), (b) p(Sa, PGV|F), (c) p(Sa, PGV|F, εp = yes), and
(d) p(Sa, PGV|F, εp = no). All the plots are for chevron-braced frame.

In addition, to highlight the relationship between collapse and the pulse period and
duration of the near-fault pulse (denoted tduration,p) in the ground motion, Figure 15a shows
the histogram for the ratio of pulse period (Tp) to the fundamental period (T) of the frame
given failure and pulse existence, that is it shows the samples from p(Tp|F, εp = yes), and
Figure 15b shows the samples for pulse period and pulse duration conditional on failure
and εp = yes (i.e., samples from p(Tp, tduration,p|F, εp = yes)). From Figure 15a, it can be
seen that for the failure samples with near-fault pulses, the ratios of the period of the
near-fault pulse to the fundamental period of the considered frame are much larger than
one. There are two potential reasons for this observation. One is because the structural
behavior near collapse is usually characterized by highly inelastic responses and significant
elongation of the effective structural period; therefore, ground motions with longer pulse
periods can be more damaging because they may coincide with the elongated effective
fundamental period of the structure [18]. Another one is because the failure samples have
large M, which based on Equation (A3) means that the pulse period will be large as well.
From Figure 15b, it can be seen that there is strong correlation between the pulse period
and pulse duration, and the failure samples thus have longer duration as well. Based on
earlier discussions for Figure 12a, the collapse failure is determined by the low-cycle fatigue
failure rather than drift ratio exceedance; therefore, the longer pulse duration may have
contributed to the more failure due to low-cycle fatigue. Overall, the above observations
further highlight the importance of the period and duration of the near-fault pulse in
near-fault ground motions on the seismic collapse performance of braced frames, and it is
expected that ground motions with longer pulse period and pulse duration may lead to
higher seismic collapse risk.
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Figure 15. (a) Samples for ratio of pulse period to fundamental period of structure conditional on
failure and εp = yes (i.e., samples from p(Tp|F, εp = yes)). (b) Samples for pulse period and pulse
duration conditional on failure and εp = yes (i.e., samples from p(Tp, tduration,p|F, εp = yes)). Both
plots are for the chevron-braced frame.

5.2.2. Cross-Braced Frame

Similarly, sensitivity analysis was carried out for the cross-braced frames and some
of the important uncertain parameters are presented in Table 3 for both cases. For the
ground motion with probabilistic pulse εp = {yes, no}, the sensitivity results are similar
to those for the chevron-braced frame. Overall, the existence of near-fault pulses and
pulse characteristics are shown to be crucial in seismic collapse risk assessment of the
cross-braced frame.

Table 3. Probabilistic sensitivity analysis results for ground motion with probabilistic pulse and no
pulse for cross-braced frame.

Independent
Parameters

Relative Entropy Resultant
Parameters

Relative Entropy

εp = {yes, no} εp = {no} εp = {yes, no} εp = {no}
M 1.749 2.055 Sa 2.610 2.928
r 0.432 0.098 PGV 2.620 2.199
eb 0.084 0.315 fa 1.489 1.803
ee 0.049 0.137 fb 1.386 1.498
εp 0.983 e 1.185 1.141
eAp 0.066 Tp 1.269
eTp 0.014 L 1.243
[M, r] 2.370 2.235 Ap 0.441
[M, eTp ] 1.770
[r, eAp ] 0.496

Similar to chevron-braced frame, Figure 16 shows the samples for primary seis-
mic hazard characteristics M and r from the joint PDF p(M, r), the joint failure distri-
bution p(M, r|F), as well as from the conditional failure distributions p(M, r|F, εp = yes),
p(M, r|F, εp = no). Similar trends to those for chevron-braced frame are observed for the
crossed-braced frame. Looking at the samples from p(M, r|F, εp = yes) it can be observed
that even with low seismic moment magnitude, the existence of pulse can lead to collapse
in the structure if the distance between site and fault is low, further confirming the im-
portance of near-fault pulse in seismic collapse risk assessment. For p(M, r|F, εp = no),
similar to chevron-braced frame, the failure samples mainly concentrated in regions with
relatively high moment magnitude M (but not quite high, e.g., below 8.5) and relatively
small rupture distance.
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Figure 16. Samples from (a) p(M, r), (b) p(M, r|F), (c) p(M, r|F, εp = yes), and (d) p(M, r|F, εp = no).
All plots are for cross-braced frame.

Similar to the chevron-braced frame, Figure 17 shows the respective samples for the
commonly used seismic intensity measures Sa and PGV from the joint PDF p(Sa, PGV), the
joint failure distribution p(Sa, PGV|F), as well as from the conditional failure distributions
p(Sa, PGV|F, εp = yes) and p(Sa, PGV|F, εp = no). Similar trends to those for the chevron-
braced frame are observed for the crossed-braced frame. For the failure samples with
near-fault pulse, the higher PGV values stem from the larger pulse amplitude Ap for the
velocity pulse, compared to those without near-fault pulse. This highlights the importance
of PGV and near-fault pulse to seismic collapse. Comparing Figures 14 and 17, it can be
seen that the failure samples for the chevron-braced frame in general have larger Sa and
PGV values than those for the cross-braced frame, which is expected considering the much
smaller failure probability for the chevron-braced frame, which means larger Sa and PGV
values are needed to lead to failure.

Figure 18a shows the failure samples from p(Tp|F, εp = yes), and Figure 18b shows the
failure samples from p(Tp, tduration,p|F, εp = yes)). Similar trends to those for the chevron-
braced frame are observed, i.e., the ratios of the period of the near-fault pulse to the
fundamental period of the considered frame are much larger than one. When comparing
Figures 15 and 18, it can be observed that for the cross-braced frame, the failure samples
for Tp/T shifted toward lower values compared to those for the chevron-braced frame,
and accordingly, there is a shift of pulse duration towards lower values as well. This is
expected considering the higher failure probability for the cross-braced frame.
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Figure 17. Samples from (a) p(Sa, PGV), (b) p(Sa, PGV|F), (c) p(Sa, PGV|F, εp = yes), and
(d) p(Sa, PGV|F, εp = no). All plots are for cross-braced frame.

Figure 18. (a) Samples for ratio of pulse period to fundamental period of structure conditional on
failure and εp = yes (i.e., samples from p(Tp|F, εp = yes)). (b) Samples for pulse period and pulse
duration conditional on failure and εp = yes (i.e., samples from p(Tp, tduration,p|F, εp = yes)). Both
are for the cross-braced frame.

6. Conclusions

This paper investigated the significance of the near-fault pulse on the seismic collapse
risk of SCBFs close to earthquake faults. To properly include the near-fault pulse character-
istic in the earthquake excitation, a near-fault stochastic ground motion model was used.
The uncertainties associated with ground motion parameters and the pulse characteristics
were described by using proper probability models. A simulation-based approach was
adopted to propagate the uncertainties in the ground motion and estimate the seismic
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collapse risk of the SCBFs where collapse was assessed by running a nonlinear time history
analysis of the SCBFs under the simulated ground motions. An efficient sample-based
approach was adopted to estimate the probabilistic sensitivity measure called relative
entropy to evaluate the importance of the model parameters (including those related to the
near-fault pulse characteristics) and associated uncertainties in contributing towards the
seismic collapse risk. Two braced frames, chevron-braced frame and cross-braced frame,
were investigated as an illustration. The results showed that for both frames the seismic col-
lapse risks were significantly higher when the near-fault pulse was included in the ground
motion compared to the cases when near-fault pulses were neglected. When neglecting
the near-fault pulses, the seismic risk will be significantly underestimated. The sensitivity
results showed that the moment magnitude and the existence of near-fault pulse as well
as the amplitude and period of the near-fault pulses were the most important parameters
affecting the overall seismic collapse risks for both frames. Even for some earthquakes with
small moment magnitude, the near-fault pulse (with potentially large amplitude) could
be present, which could potentially lead to much higher structural responses. Comparing
the results for both frames in this study, it was found that the chevron-braced frame had a
much lower seismic collapse risk than the cross-braced frame, and chevron-braced frame
seemed to be a better choice when trying to reduce the seismic collapse risk. Overall, the
results highlighted the importance of incorporating near-fault pulse in the ground motion
for accurate estimation of seismic collapse risk for structures located close to earthquake
faults.

It is important to keep in mind that the results presented in this study are based
on a given selection of prior distributions of the seismicity characteristics. For different
selections of prior distributions, results will change accordingly for the seismic collapse
risk as well as the difference between considering near-fault pulse or not. To generalize
the results to other cases, some additional considerations and investigations are needed.
The results are for three-story braced frames with fundamental periods around 0.7 s. For
the failure samples with near-fault pulses, it was found that the ratios of the period of the
near-fault pulse and the fundamental period of the structure are much larger than one
for most of the failure samples; therefore, it is expected that for taller frames with higher
fundamental periods, the near-fault pulse might lead to even higher seismic collapse risk
(e.g., due to resonance), and the difference between considering near-fault pulse or not
might be even higher. This will be investigated in future research. Future development in
near-fault ground motions can help with a more accurate prediction of seismic collapse
risk of braced frames and other structures. In this study, the impact of near-fault pulse on
the seismic collapse risk of two types of braced frames was investigated. It is expected
that the existence of a near-fault pulse will also have large impacts on other structures,
especially for those with longer periods considering that the near-fault pulse typically has
long periods. These are all future research areas of interest.
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Appendix A. Stochastic Near-Fault Ground Motion Model

The stochastic near-fault ground motion model establishes the seismic excitation (i.e.,
the acceleration time history) by modeling the high-frequency component and the near-
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fault characteristics independently and then combining them to form the final acceleration
time history [24]. For the prediction of structural performance and for risk assessment
purposes, this stochastic near-fault ground motion model can be used to simulate near-
fault ground motions, especially for regions with limited recorded ground motion data.
Additionally, this model can accommodate different earthquake faults and different soil
conditions by adjusting the model parameters.

Appendix A.1. High-Frequency Component

The high-frequency component of the ground motion is generated by a point-source
stochastic model [48]. According to the point-source model, the acceleration time history
can be obtained by modulating a white noise sequence Zw = [Zw(i∆t) : i = 1, 2, . . . , NT ]
first by a time envelope function e(t; M, r) and then by a radiation spectrum A( f ; M, r),
where the parameters of both e(t; M, r) and A( f ; M, r) depend on moment magnitude M,
rupture distance r, and local site conditions. Details about e(t; M, r) and A( f ; M, r) can be
found in [48].

The uncertain model parameters θg, associated with high-frequency component of
the ground motion, include: (i) parameters related to the displacement source spectrum
characteristics, i.e., fa, fb , and e, where fa and fb are the lower and upper frequencies and e
is the weighting parameter; (ii) parameters related to the local site diminution, i.e., κo and
fmax; and (iii) parameters related to the time envelope function, i.e., Tw, λt, ηt where Tw is
the duration of strong ground motion. This leads to θg = [ fa, fb, e, κo, fmax, Tw, λt, ηt].
The parameters fa, fb, e and Tw are related to the characteristics of the seismic event
(M and/or r) through the following predictive relationships: log fa = 2.181− 0.496M;
log fb = 2.41− 0.408M; loge = 0.605 − 0.255M; and Tw = 1/2 fa + 0.05Rr where
Rr =

[
hd

2 + r2]1/2 is the radial distance from the earthquake source to the site with
log hd = 0.15− 0.05M a moment dependent, nominal “pseudo-depth”. The remaining
parameters are related to site’s tectonic characteristics [48].

PDFs are assigned to these parameters to represent the uncertainties in the ground mo-
tion excitation [49]. These uncertainties provide synthetic ground motions with increased
variability that is comparable to the variability in real ground motions [50], and also more
importantly facilitate evaluation of the importance of different uncertain parameters in
affecting the system performance (i.e., collapse risk in this study). The distribution of each
uncertain parameter in θg is chosen according to [51]. The parameter κo follows a uniform
distribution within [0.02 0.04]; for the remaining parameters, lognormal distribution is
assumed with coefficient of variation (c.o.v) γ f = 20% for parameters corresponding to
the frequency characteristics of the amplitude spectrum and c.o.v of γt = 40% for those
corresponding to the temporal characteristics of the time-domain envelope. Based on
previous research [52] the median values of the parameters fmax, λt and ηt are assigned
as 25 Hz , 0.2 and 0.05 respectively. The median values of fa, fb, e and Tw are calculated
through predictive relationships discussed earlier.

The following auxiliary parameters are assigned in order to directly evaluate the
influence of the uncertainty in the predictive relationships [19],

ea = [ln( fa/ f̄a)]/γ f , eb = [ln( fb/ f̄b)]/γ f
ee = [ln(e/ē)]/γ f , et = [ln(Tw/T̄w)]/γt

(A1)

These auxiliary parameters directly represent the uncertainties in the values of fa, fb, e and
Tw, and are utilized to describe the seismic hazard characteristics since they are not depen-
dent on remaining hazard parameters. Based on the probability models discussed earlier,
these variable follow a standard Gaussian distribution. So the uncertain model parame-
ters related to high-frequency component of the near-fault ground motions can be taken
as θg = {κo, fmax, λt, ηt, et, ea, eb, ee} (also referred as independent parameters), based on
which fa, fb, e, Tw (referred as resultant parameters) can be calculated from Equation (A1).
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Appendix A.2. Long-Period Pulse

To describe the pulse characteristics of the near-fault ground motion, the mathematical
model in [24] for the velocity pulse is used,

V =
Ap
2 [1 + cos( 2π fp

γp
(t− to))] cos(2π fp(t− to) + νp)

t ∈ [to − γp/
(
2 fp
)
, to + γp/

(
2 fp
)
]; =0 otherwise

(A2)

where Ap is the signal amplitude, fp the dominating frequency, vp the phase angle, γp
the number of half cycles, and to the time shift. These parameters can be related to the
seismicity characteristics such as moment magnitude M or rupture distance r. Based on
recommendations in [53,54], the pulse amplitude Ap and period Tp can be established
through the following predictive relationships

Ap = Ip100.9(2.04−0.032r+eAp); Tp = 10−2.9+0.5M+eTp (A3)

where eAp and eTp are zero mean Gaussian variables with standard deviations 0.187 and
0.143, respectively, and Ip is the indicator function describing whether the pulse exists
or not. The probability models for γp is chosen as Gaussian with mean 1.8 and standard
deviation 0.3, while vp is assumed to follow an uniform distribution between [0, π] [19].

Since not all near-fault excitations will have a velocity pulse, the probability of pulse
occurrence needs to be integrated in the stochastic model as well. This is established
by introducing a discrete random variable εp with outcomes as either yes or no. The
probability of having pulse (i.e., probability of εp = yes) can be estimated as a function
related to the seismicity characteristics. For strike-slip faults, the probabilistic model in [25]
is used to predict this probability,

P(εp = yes|r, s) =
1

1 + exp(0.642 + 0.167r− 0.075s)
(A4)

where r is the rupture distance and s is the distance between epicenter and site projec-
tion on the fault plane surface. s is taken as 1/4 of the total length of rupture L fol-
lowing the simplified process in [55]. L is established by the predictive equation [56]
log10(L) = −3.55 + 0.74M + eL, where eL is a zero mean Gaussian variable with standard
deviation of 0.23. In the end, if εp = yes, then there is pulse and Ip = 1, otherwise,
if εp = no, then Ip = 0. Similar to the high frequency component of the excitation,
the uncertain model parameters that characterize the long-period pulse are taken as
θp = {eAp, eTp, γp, vp, eL, εp}, which are independent from the remaining seismic hazard
characteristics [19].
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