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Abstract: Single point incremental forming (SPIF) is a cheap and flexible sheet metal forming process
for rapid manufacturing of complex geometries. Additionally, it is important for engineers to measure
the surface finish of work pieces to assess their quality and performance. In this paper, a predictive
model based on machine learning and computer vision was developed to estimate arithmetic mean
surface roughness (Ra) and maximum peak to valley height (Rz) of Ti6Al4V parts obtained by SPIF.
An image database was prepared to train different classification algorithms in accordance with a
supervised learning approach. A speeded up robust feature (SURF) detector was used to obtain visual
vocabulary so that the classifiers are able to group the photographs into classes. The experimental
results indicated that the proposed predictive method shows great potential to determine the surface
quality, as classifiers based on a support vector machine with a polynomial kernel are suitable for
this purpose.

Keywords: HA-SPIF; surface finish; machine learning; Ti6Al4V

1. Introduction

Market requirements, along with the development of the industrial sector, have led
to parts being demanded under restrictive specifications. As a result, surface finish has
emerged as a key aspect of many products in which this feature is critical.

Single Point Incremental Forming (SPIF) is a rapid manufacturing technique based on
the localized plastic deformation of sheet metal by a hemispherical tool [1]. For that, the
sheet is fixed to a rigid frame and the deformation is produced, moving the tool according
to an helicoidal path and establishing a pitch value to feed the operation. The method has
generated considerable research interest because it overcomes some of the disadvantages
of conventional forming. The SPIF process is characterized by its ability to economically
develop complex geometries by means of reduced tooling costs if short series or prototypes
are being produced, notably in biomedical and aeronautical applications [2–4]. The process
has been applied to commercial copper, some aluminum alloys, and high formability mild
steel. Some application with stainless steel AISI 304 has been also reported [5]. With regard
to titanium alloys, research is mainly recent, and it supposes that their application has the
most potential. However, titanium alloys, particularly Ti6Al4V, have a poor formability at
room temperature which classifies them into the hard-to-form materials group. Thus, it is
necessary to heat the sheet to carry out the SPIF process, also called heat assistant SPIF or
HA-SPIF. Consequently, substantial efforts have been undertaken in recent years to develop
heating methods. Götmann et al. [6] worked on the process of dynamic heating by laser,
previously proposed by Duflou et al. [7]. Fan et al. [8] developed a heating procedure based
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on Joule heating by electric power from the tool to the sheet, which has also been adopted
by other authors [9]. Ambrogio et al. [10] designed an external heating system using electric
bands. Similar systems have been applied by Naranjo et al. [11] and Ortiz et al. [12]. There
have been attempts to improve formability using the local heating generated between the
tool friction on the sheet metal when it rotates at high speed [13]. This procedure is known
as Stir-SPIF. Finally, some methods mixing friction and external sources of heat can be
found in literature [14].

Despite the improvement reached by HA-SPIF methods, the obtained surface finishes
are low quality. There have been some efforts to improve the surface finish after the SPIF
process trying to reduce the friction tool sheet without lubricant [15] or considering the
effect of lubricant on the process [16], but with a few exceptions, the research has been
focused on only room temperature and not on titanium alloys.

Additionally, the influence of surface quality on the operability of the parts promotes
the constant development of measurement methods. In recent decades, this sector has
undergone successive updates in order to obtain a reliable, precise, and flexible technique
to measure surface finish.

Contact profilometry is one of the most common methods in surface finish measuring
despite having several drawbacks. Its use is often restricted to controlled environments
because it is highly sensitive to vibrations and the stylus can cause flaws on the surface of
the part. These limitations, together with its slowness, render it an unsuitable method for
measuring online surface roughness.

Optical non-contact methods arose as a necessary alternative to overcome these draw-
backs. Of these techniques, the procedure developed by Moreas et al. [17] should be
mentioned. In this work, an optical microscope was built to capture images and topog-
raphy was studied using the principle of triangulation. From another perspective, in the
research conducted by Lehmann [18], interferometry techniques were employed in order to
analyze the statistical properties of speckle patterns to obtain significant surface roughness
parameters. However, non-destructive optical methods do not always achieve the level of
precision provided by contact profilometry and samples must be adapted for each of them.
Particularly, optical microscopes equipped with profilometer function could be appropriate
with higher accuracy in the measurement of surface roughness, but the measuring field
is too small and the sample must be split from the part. The dominant key issues for
future research include systematic process planning, tool-path optimization, compensating
unwanted deformations, advanced feature recognition techniques, forming reliable and
robust communication interfaces, flexible hardware, adaptive control methods, the ability
to form newer materials and a wider range of materials, complex shapes with ease and
accuracy, and removing barriers on sizes of components.

Artificial intelligence has become very popular in this field because machine learn-
ing techniques are capable of developing predictive models that provide better results
than analytical ones. Machine learning algorithms have been shown to help reduce the
number of experiments required to establish a correlation between surface roughness and
manufacturing parameters with great effectiveness.

Thus, machine learning has been used to analyze the influence on surface finish of
the parameters involved in the manufacturing process. The aim is to optimize the process
by maximizing the number of suitable parts. In this regard, Abd et al. [19] developed a
gradient boosting regression tree (GBRT) algorithm to establish a correlation between the
operating parameters and surface quality of aluminum/stainless steel (Al/SUS) bimetal
sheets obtained by SPIF. This research used artificial intelligence to expand on bimetal
sheets the results obtained by Echrif and Hrairi [20] in single-layer sheets of aluminum
alloy AA105-0.

The use of machine learning algorithms for measuring surface quality allows the
limitations of traditional methods to be overcome. Models built with this methodology
have proven to be accurate and able to adapt production speeds. In this context, the work by
Mulay et al. [21] focuses on a feedforward backpropagation network that was implemented
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to predict the average surface roughness and maximum forming wall-angle of parts of
aluminum alloy AA5052-H32 obtained by SPIF. This experiment showed that artificial
neural networks are a promising tool with great economic benefits, greater predictability,
and low simulation time.

The work developed by Abu-Mahfouz et al. [22] considered a classifier based on a
support vector machine to obtain surface roughness from vibration signals collected during
the milling of aluminum parts. In addition, this work analyzed the effect of different
types of kernels and sets of features on the performance of the model. Their proposed
classification model was trained with 32 different combinations of the milling process
conditions and managed to predict the surface roughness with an accuracy of 81.25%.

Furthermore, the research by Koblar et al. [23] developed a computer vision method
based on machine learning for surface roughness measurement. Decision trees were used
to solve classification and regression problems on a database formed by 300 commutator
images taken in 8-bit grayscale. This experiment offers new possibilities for evaluating
surface quality and develops a suitable method for applying online roughness measurement
without contact. However, the nature of the work calls for the use of a broad set of samples
with respect to inputs based on manufacturing parameters.

The research conducted by Kurra et al. [24] developed predictive models for the aver-
age and the maximum surface roughness measurement (Ra and Rz) after the SPIF process
based on different techniques: Artificial Neural Networks, Support Vector Regression, and
Genetic Programming. In the training of these models, the effect of tool diameter, step
depth, wall angle, feed rate, and lubricant type were taken into consideration as process
variables. Each parameter was varied over three levels to study different combinations of
manufacturing parameters and achieve a uniform distribution of roughness values. Rough-
ness was thus analyzed from a technical viewpoint, so this method requires knowing in
advance the conditions in which the parts were manufactured.

Other works, such as that by Lin et al. [25], have used deep neural networks, long
short-term memory networks, and one-dimensional convolutional neural networks for the
prediction of arithmetic mean roughness from vibration signals obtained in the milling
process of S45C steel parts. Li et al. [26] compared the results from different classifiers to
predict the surface roughness of polylactic acid intake flanges obtained by 3D printing. In
both studies, Fast Fourier Transform (FFT) was used to extract the features’ raw data and
different techniques were evaluated to build an accurate predictive model.

The literature review showed that several studies have developed predictive models
for surface quality measuring of work pieces produced by different processes. However,
no research has focused on the application of machine learning techniques to predict
the surface quality from images of pieces created by incremental forming, among other
reasons, because of the large number of samples required for the model training and the
amount of time needed to acquire the features. To fill this gap, the aim of this work was to
develop a new methodology for the evaluation of surface quality using photographs of
twenty-one parts formed by SPIF as inputs in machine learning classifiers. This procedure
would allow the surface finish to be determined without the need to previously know the
manufacturing conditions. In this way, surface quality could be studied in real time during
the production process.

The remainder of the paper is organized as follows. Section 2 contains an introduction
on machine learning and explains the experimental setup in detail. Section 3 describes the
data preparation and the training of predictive models. Section 4 presents an evaluation of
the predictive model performance and discusses the experimental results. Finally, Section 5
provides findings and future directions.

2. Materials and Methods

Machine learning is a subset of artificial intelligence, the purpose of which is to train
computers so they are able to learn automatically through experience. Algorithms are used
to build a predictive mathematical model capable of generalizing a behavior without being
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explicitly programmed [27,28]. In this way, the computer acquires the ability to recognize
patterns in sample data to predict future unseen data. Machine learning methods are
usually categorized in accordance with their strategy, data processing, and the objective of
the application.

Firstly, in the supervised learning approach training, data are composed of a set of
previous analyzed examples whose outputs are known. Using these observations as inputs,
the computer can learn general rules and establish a correlation to obtain an inferred
function, being able to determine the output for new data. On the other hand, human
intervention is not required in unsupervised learning algorithms. In this case, a predictive
model is trained with unseen data that have not been studied. As a result, it must identify
a pattern without previous knowledge. Thirdly, reinforcement learning is a method built
on the interaction with its environment. Feedback is used to develop the model through
rewards and punishments. Systems learn by analyzing the behavior of their surroundings
in response to their actions to maximize positive signals.

This paper focuses on supervised learning to build a predictive model to obtain
arithmetic mean roughness from the images of a piece manufactured by incremental
forming; as a result, labelled and categorized photographs are used as training data. To
this end, the developed model must be capable of extracting characteristics from examples
and achieving a relationship between image features and outputs in order to apply this
knowledge on new unobserved data.

Having set the objective, the working methodology can be divided into two separate
stages: the first phase, aimed at measuring the parts and creating a database that would be
used to train machine learning algorithms; the second stage concerning the development
and the validation of the classification model.

Experimental Details of Measuring Process of Workpieces

We measured 0.8 mm thick Ti6Al4V alloy parts obtained by a heat-assisted SPIF
process to determine the 3D average and maximum roughness parameters (Sa and Sz).
The corresponding waviness parameters (Wa and Wz) were also considered. The pieces
consisted of cone trunks with a variable wall angle; the angle of the cones was continuously
increasing with the forming depth in order to determine the SPIF formability of the alloy.
WC and steel tools with a spherical tip of 10 and 12 mm were used and the processing
temperature was within the range of 25–400 ◦C [11]. Parts were created in a Deckel Maho
machining center, model DMC 835V (DMG MORI, CO., LTD.,Bielefeld, Germany). A hole
frame was built to fasten the sheet. An electric suitably isolated mini-oven was specifically
designed and fitted inside the support. The forming strategy adopted was a helical path
with a pitch of 0.5 mm per revolution, a feed rate of 600 mm per min, and without any
lubrication. To minimize any friction between tool and sheet, a counter-rotation speed of
the tool was set at 30 rpm.

The sheet in virgin state always is covered by a TiO2 layer that was not removed by a
previous surface treatment, as it is usual in the SPIF for guaranteeing a same initial surface
state in all tests.

The parts were specially selected to have a heterogeneous collection of surface finish
values (Table 1). The roughness and waviness values reported in Table 1 correspond to
measurements taken in intermediate positions of the rolling direction.

A profilometer Form Talysurf 50 and the Talymap software (6.0, Taylor Hobson Ltd.,
LE4 9JQ, Leicester, UK) were used to measure the roughness and to process the measuring
data. An inductive gauge with a 2 µm radius was employed. A block diagram of the
measurement procedure is shown in Figure 1. Measurements were carried out on surfaces
of 5 mm × 2 mm along three different directions with respect to the rolling direction of the
sheet, that is, 0◦, 45◦, and 90◦. The measuring instrument provided an initial profile with
some differences to the real surface because of the limitations of the contact profilometry,
that is, the gauge radius. From the measured surface, the primary surface is obtained once
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its shape (the curvature in this case) is removed. Finally, by using a gaussian filter, the
irregularities of the primary profile can be split up in the roughness and waviness profiles.

Table 1. Single point incremental forming parameters and surface finish values. The value of wall angle in brackets
corresponds to the maximum angle formed. (Initial sheet thickness = 0.8 mm, pitch = 0.5 mm/rev, feed rate = 600 mm/min).

Test Temp. (◦C) Angle (◦) Max. Depth (mm)
Tool (Diameter

(mm)/
Material)

Ra (µm) Rz (µm) Wa (µm) Wz (µm)

1 Room Var (30) 11.4 12/WC 0.976 18.2 0.539 5.73
2 200 Var (40) 17.1 12/WC 0.561 9.87 0.356 2.48
3 300 Var (40) 18.1 12/WC 0.534 15.5 0.344 2.82
4 400 Var (50) 21.1 12/WC 0.521 9.95 0.544 3.43
5 400 40 18 12/WC 1.1 34.8 1.39 17.9
6 400 45 18 12/WC 1.37 34.5 1.65 22.6
7 Room Var (30) 11.3 12/STEEL 0.704 13.7 0.716 6.22
8 200 Var (40) 15.6 12/STEEL 0.828 14.4 0.801 6.93
9 300 Var (40) 17.5 12/STEEL 1.11 26.9 1.39 13.1
10 400 Var (50) 20.2 12/STEEL 1.05 25.3 0.93 8.03
11 Room Var (30) 12.5 10/WC 0.862 18.4 0.541 5
12 Room Var (30) 12.5 10/WC 1.18 20.9 0.841 5.08
13 200 Var (40) 16.3 10/WC 0.913 20.1 0.583 5.53
14 200 Var (40) 16.3 10/WC 0.808 20.3 0.68 5.8
15 300 Var (50) 21.5 10/WC 0.775 37 0.569 5.31
16 400 Var (50) 22.1 10/WC 1.61 26.3 2.09 10.8
17 200 Var (40) 16.4 12/STEEL 1.35 31.9 0.946 7.08
18 300 Var (40) 19.1 12/STEEL 0.816 11.6 0.708 6.05
19 300 Var (40) 19.8 12/STEEL 1.45 30.7 0.699 8.66
20 Room Var (30) 11.8 12/STEEL 1.48 23.4 0.668 5.48

Metals 2021, 11, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 1. Measurement procedure. 

According to the shape of the parts obtained by the SPIF process, it was considered 
appropriate to apply a polynomial of degree 7 to remove that shape and obtain the pri-
mary surface. Some filters were then studied in order to separate the roughness and wav-
iness surfaces that comprise the primary surface. The Gaussian filter is currently the most 
widely used filtering tool in three-dimensional models because of its isotropic transmis-
sion and lack of phase shift according to the standards ISO 11562 and ASME B46. Never-
theless, the symmetry of the filter may cause problems in the edge treatment, which must 
be removed. Alternately, the spline filter is based on a matrix algorithm which prevents 
edge defects and is characterized by fast calculations and complex geometry filtering. 
Nevertheless, this filter has not been widely used in the measurement of 3D surfaces be-
cause of its severe anisotropic characteristics. Finally, the robust Gaussian filter used an 
iterative statistical method in order to improve the Gaussian filter response. This tech-
nique allows for a topographic reconstruction without being affected by accidental surface 
defects. However, it demands large amounts of computation time. Finally, a Gaussian fil-
ter, including an edge treatment, was applied by using the Talymap Gold software from 
Taylor Hobson (6.0, Taylor Hobson Ltd., Leicester, UK). 

As a result of the application of the Gaussian filter, roughness and waviness three-
dimensional profiles were obtained. These were then used to gather surface finish param-
eters to build a database. 

Concurrently, an Olympus SZX7 (Olympus Corp., Tokyo, Japan) stereoscopic micro-
scope was used to take photographs of the measured surfaces. The images, with dimen-
sions of approximately 6.2 mm × 6 mm, were labelled in accordance with the direction 
and the position in which they were photographed. Additionally, every image was dis-
tributed in files associated with the part to which it belonged. As an example, Figure 2 
shows the images taken from Part 5 in the rolling direction (0°). Although the references 
of the different areas are represented for a frustum with a variable wall angle, the part 
depicted in Figure 2 corresponds to a constant wall angle cone. 

Figure 1. Measurement procedure.

According to the shape of the parts obtained by the SPIF process, it was considered
appropriate to apply a polynomial of degree 7 to remove that shape and obtain the primary
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surface. Some filters were then studied in order to separate the roughness and waviness
surfaces that comprise the primary surface. The Gaussian filter is currently the most widely
used filtering tool in three-dimensional models because of its isotropic transmission and
lack of phase shift according to the standards ISO 11562 and ASME B46. Nevertheless, the
symmetry of the filter may cause problems in the edge treatment, which must be removed.
Alternately, the spline filter is based on a matrix algorithm which prevents edge defects
and is characterized by fast calculations and complex geometry filtering. Nevertheless, this
filter has not been widely used in the measurement of 3D surfaces because of its severe
anisotropic characteristics. Finally, the robust Gaussian filter used an iterative statistical
method in order to improve the Gaussian filter response. This technique allows for a
topographic reconstruction without being affected by accidental surface defects. However,
it demands large amounts of computation time. Finally, a Gaussian filter, including an
edge treatment, was applied by using the Talymap Gold software from Taylor Hobson (6.0,
Taylor Hobson Ltd., Leicester, UK).

As a result of the application of the Gaussian filter, roughness and waviness three-
dimensional profiles were obtained. These were then used to gather surface finish parame-
ters to build a database.

Concurrently, an Olympus SZX7 (Olympus Corp., Tokyo, Japan) stereoscopic micro-
scope was used to take photographs of the measured surfaces. The images, with dimensions
of approximately 6.2 mm × 6 mm, were labelled in accordance with the direction and the
position in which they were photographed. Additionally, every image was distributed
in files associated with the part to which it belonged. As an example, Figure 2 shows
the images taken from Part 5 in the rolling direction (0◦). Although the references of the
different areas are represented for a frustum with a variable wall angle, the part depicted
in Figure 2 corresponds to a constant wall angle cone.
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3. Data Preparation and Model Training

Building a database is highly time consuming, not only to process the collected images,
but also to train predictive models with them. For this purpose, it is necessary to previously
know the functionality of the model.

Two types of problems can generally be distinguished when a supervised learning
approach is used. First, classification questions are intended to categorize unknown data
into known discrete ranges named classes, while the aim of regression algorithms is to
predict a continuous value.

Initially, this work seeks to categorize images into several classes according to their
surface roughness. Figure 3 depicts a block diagram where data processing and the training
procedure are shown in detail. At this second stage, the classification learner from MATLAB
software (2019b, MathWorks, Natick, MA, USA) was used.
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Firstly, classes must be defined. Thus, the intervals for the arithmetic roughness, Ra,
were class A [0.495, 0.799] µm, class B (0.799, 1.11] µm, and class C (1.11, 2.81] µm for three
different class definitions. In this endeavor, it is necessary to collect the surface quality
values from the name with which each image has been identified. In this way, it will be
possible to set optimum roughness ranges to avoid imbalance in classes. As the number
of groups increases, the accuracy required will be greater. Therefore, work begins on
three classes. In accordance with the database used, trained models will only be able to
solve classification tasks, whereas if we wanted to address regression tasks, a much larger
number of images would be required.

Secondly, the photographs were processed and distributed in the specified classes. The
aim of image processing is to maximize the picture features to facilitate their classification.
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Coloring or dimensions are some of the characteristics that were analyzed. According
to the literature, machine learning algorithms based on computer vision demand a large
number of samples. For this reason, the possibility of splitting images into the prediction
of average values was studied in order to increase the database.

The image characteristics were then extracted by using a speeded up robust feature
(SURF) detector (2019b, MathWorks, MA, USA) in order to develop a visual vocabulary.
The number of attributes was modified to optimize the accuracy of the predictive model. In
addition, following the supervised learning method, the name of the classes was considered
as another feature.

Next, the classification learner, included in Matlab tool boxes (2019b, MathWorks, MA,
USA) was invoked, a software tool capable of training supervised learning algorithms from
the table of characteristics and assessing the results obtained. A portion of the feature table
created for training is shown in Table 2, where the class column can be seen.

Table 2. Part of the feature table used by the classification learner.

Image
Number

Image
Features 1

Image
Features 2

Image
Features 3

Image
Features 4 Class

1 0.0232 0.0266 0.0598 0.0730 A
2 0.0300 0.0233 0.0566 0.0933 A
3 0.0149 0.0298 0.0410 0.0298 A
4 0.0517 0.0574 0.0345 0.0345 A
5 0.0101 0.0236 0.0608 0.0642 A
6 0.0667 0.0500 0.0083 0.0917 A
7 0.0416 0.0740 0.0416 0.0694 A
8 0.0091 0.0000 0.0091 0.0000 A
9 0.0270 0.0420 0.0480 0.0960 A

10 0.0509 0.0477 0.0477 0.0668 A

The support vector machine (SVM) is a supervised learning algorithm applied in
countless fields to solve classification and regression problems [29]. Furthermore, following
the literature [22,24,26], it has proven to be an effective technique to classify the surface
roughness using higher dimensional data.

The operating principle of this classifier is based on finding an optimal hyperplane
ensuring the best separation between classes, that is to say, to maximize the margin between
the boundary function and the closest samples. The separation hyperplane can be defined
by Equation (1), depending on its orthogonal vector w and intersection coefficient b and
where x refers to the vector coordinates. Symbol T represents the transpose matrix-vector.

wT · xi + b = 0 (1)

In mathematical terms, this question becomes a quadratic programming optimization
with the objective of minimizing the named margin inverse function (Equation (2)). The
second term of Equation (2) represents the action of adjustment variables, ξi, where the C
is a balancing factor.

Φ(x) =
1
2
||w ||2 + C ·∑n

i=0 ξi (2)

In our view, the distribution of the samples as well as the number of classes demands
this issue be addressed as a higher dimensional classification with non-linear separable data.
To tackle this challenge, the original area must be mapped into a higher dimensional space
in order to enable developing an appropriate separation function in the new conditions.
This transformation is achieved with the help of kernel functions and its effect on the
problem is reflected in the SVM dual formulation (Equation (3)), where the Lagrangian is
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utilized to solve the quadratic programming problem and the coefficients α reference the
Lagrange multipliers.

Θ(α) = −1
2
·∑i ∑j αiαjyiyj · K

(
xixj

)
−∑i αi (3)

Kernel functions are chosen according to the nature of the problem. The suitability of
different types in relation to the surface roughness prediction was discussed in the work
by Abu-Mahfouz et al. [22], where a linear kernel was shown to be the most promising
function. Nevertheless, all Kernel functions implemented in MATLAB® [30] were tested in
order to find that one leading the best results, i.e., the highest precision.

Finally, the validation procedure depends on the database size. In this work, two
techniques were used to avoid overfitting: holdout validation and cross validation. In
holdout validation, a portion of data is selected to train the predictive model, whereas the
remaining samples are used as a test set. For this reason, holdout validation is suitable
for large data sets. On the other hand, cross validation is characterized by the splitting of
the initial samples into folds. Each block is trained with the observations not belonging to
the fold and is validated with the remaining images. Test error is calculated as an average
of the mistakes in each fold. Therefore, according to the number of classes and images,
different validation methods were used.

4. Results and Discussion

Considering only the right answers in measuring the effectiveness of the model may
lead to an erroneous perception of the machine behavior. For this reason, a confusion
matrix was used to assess the performance of the supervised learning algorithms. In
contrast to other metrics, a confusion matrix is capable of distinguishing between different
types of errors. It is a square matrix where each row represents the actual classes, while
each column refers to predicted classes. As a result, its main diagonal reflects the correct
predictions, and the rest of its cells represent misclassifications.

In addition to the accuracy of the classifiers, two other measures are provided by a
matrix confusion, namely precision and recall. Precision is used to obtain the percentage
of correct predictions in every class, meaning the degree of reliability, while recall is
used to represent the fraction of samples which were correctly recognized, that is, the
model’s detection capability. Both measures were calculated using Equations (4) and (5). In
these equations, TP (True Positive) refers the number of predictions where the classifier
correctly predicts the positive class as positive, TN (True negative) indicates the number of
predictions where the classifier correctly predicts the negative class as negative, FP (False
Positive) depicts the samples incorrectly associated with a class, and FN (False Negative)
represents the experiments belonging to a specific class that were wrongly labelled.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Combining both previous indicators, the F-score value can be obtained according to the
Equation (6), which evaluates the harmonic mean of true positives and true negative cases.

F =
2 · Precision · Recall
Precision + Recall

(6)

As discussed, the approach consisted of developing an effective model to predict the
average surface roughness and to extrapolate the results to complementary variables. To
this end, 153 simulations were carried out based on the procedure indicated in Figure 3.
This led us to optimize the process parameters and maximize the accuracy of the predictive
model. All the results are set out below, in a detailed description of the optimized model.
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The model was trained with images obtained in JPG format with dimensions of
1148 × 1076 pixels, which were converted into RGB. These pictures were not split, since
it has been proven that increasing the number of training images does not justify the
deviation between the measured roughness and the value of the fragmented photograph.
Additionally, features were extracted in each image through a SURF object recognition. At
this point, the appropriate number of features was analyzed to optimize the accuracy of
the model. Hence, models were trained using 2000, 1500, 1000, and 500 attributes, among
other values.

In Table 3, some training tests are selected from the whole probes carried out. Par-
ticularly, those classified using Medium Gaussian SVM algorithm with three classes and
using a photograph division from 1 into 4 (2 × 2) are shown. The number of features is
correlated with the difficulty of classifying the photograph correctly, that is, the higher
number of features, the more demanding requirements must be fulfilled. Thus, as it can be
appreciated, the accuracy obtained is lower as the number of features is higher.

Table 3. Comparison between the number of features extracted and the model accuracy with a
medium Gaussian SVM classifier.

Model Number of
Features Classifier Number of

Classes
Photograph

Fragmentation F-Score

91 2000 Medium Gaussian SVM 3 2 × 2 0.54
55 1500 Medium Gaussian SVM 3 2 × 2 0.57
57 1000 Medium Gaussian SVM 3 2 × 2 0.57
59 750 Medium Gaussian SVM 3 2 × 2 0.58
- <500 Medium Gaussian SVM 3 2 × 2 >0.60

Finally, an initial value of 500 features was selected. In such a way, a thorough analysis
could be performed to assess the impact of each characteristic on the prediction capacity,
and thus counterproductive features could be removed.

Under those conditions, all classifiers were trained. The supervised learning algo-
rithms used to train the different models are shown in Figure 4.

Metals 2021, 11, x FOR PEER REVIEW 11 of 17 
 

 

Table 3. Comparison between the number of features extracted and the model accuracy with a me-
dium Gaussian SVM classifier. 

Model 
Number of 

Features Classifier 
Number of 

Classes 
Photograph 

Fragmentation F-Score 

91 2000 Medium Gaussian SVM 3 2 × 2 0.54 
55 1500 Medium Gaussian SVM 3 2 × 2 0.57 
57 1000 Medium Gaussian SVM 3 2 × 2 0.57 
59 750 Medium Gaussian SVM 3 2 × 2 0.58 
- <500 Medium Gaussian SVM 3 2 × 2 >0.60  

Finally, an initial value of 500 features was selected. In such a way, a thorough anal-
ysis could be performed to assess the impact of each characteristic on the prediction ca-
pacity, and thus counterproductive features could be removed. 

Under those conditions, all classifiers were trained. The supervised learning algo-
rithms used to train the different models are shown in Figure 4. 

 
Figure 4. Compilation of classifiers used. 

Regarding the outcome evaluation, given the limited number of training data avail-
able, a fivefold cross validation was used. Consequently, the best performance was ob-
tained in Model 141 with a support vector machine with a quadratic kernel, the confusion 
matrix of which is shown in Figure 5. This model achieved an accuracy of 69.4%. 

Figure 4. Compilation of classifiers used.

Regarding the outcome evaluation, given the limited number of training data available,
a fivefold cross validation was used. Consequently, the best performance was obtained in
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Model 141 with a support vector machine with a quadratic kernel, the confusion matrix of
which is shown in Figure 5. This model achieved an accuracy of 69.4%.
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According to the recall matrix, the confusion is greater when distinguishing images
belong to Classes B and C. Based on percentages, 23% of Class B images were incorrectly
associated with Class C, whereas 19% of Class C samples were wrongly linked to Class
B. Therefore, the predictive model displayed a better detection capability for roughness
values in the first interval (Class A). Additionally, the precision matrix reflects a similar
performance to that of the recall matrix, and so Class A presents the greatest reliability.

As can be seen from Figure 5, the intermediate class presented less reliability and
recall with regard to the other ones, given it was more difficult to extract specific features
of this class. This was a recurring issue that, among other problems, may be associated
with a narrow roughness range and an insufficient database.

On the one hand, non-uniform distribution of roughness values resulted in a reduction
in inequalities between categories. As a result, there are fewer specific characteristics
that lead to further confusion in the classification. On the other hand, the inaccuracy of
measuring instruments gains importance, since a small error, around 10 µm, might derive
in an incorrect classification.

Once the average surface roughness had been studied, new predictive models were
built to assess the methodology on complementary parameters, such as the maximum
peak to valley height and the arithmetic mean waviness. Of these, we should highlight the
following model trained to predict the average primary surface.

Model 169 was trained and validated using the same settings as the previous one. In
this case, an accuracy of 80% was reached with a support vector machine with a cubic
kernel. Figure 6 depicts the model confusion matrix.
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As can be seen, recall and precision are approximately 80% in all classes. This improve-
ment can be explained by the greater coherence between photographs and parameters,
given that the images used represent an overlapping between roughness and waviness. In
accordance with the better model performance, not only could the effectiveness of machine
learning algorithms in this field be proved, but also, the application of filters on samples is
considered for further work.

After running 169 simulations, changing processing parameters to build predictive
models for surface quality measuring, the best results were those reported in Table 4.

Table 4. Results of the models developed. Intervals for the arithmetic roughness, Ra, are: 3 classes—
class A [0.495, 0.799] µm; class B (0.799, 1.11] µm; class C (1.11, 2.81] µm; 4 classes—class A [0.407,
0.7] µm; class B (0.7, 0.95] µm; class C (0.95, 1.15] µm; class D: (1.15, 2.81] µm.

Model Variable Classes Classifier Kernel F-Score Validation Training
Time (s)

141 Ra 3 SVM Quadratic 0.69 Cross 1.7324
166 Ra 4 KNN Fine 0.57 Cross 0.9927
163 Wa 3 SVM Quadratic 0.72 Holdout 0.3857
164 Wa 4 SVM Cubic 0.61 Holdout 1.0731
167 Rz 3 SVM Cubic 0.56 Cross 1.6442
168 Wz 3 KNN Cosine 0.63 Cross 0.9684
169 Pa 3 SVM Cubic 0.80 Holdout 0.3651

The active participation of the support vector machine as main classifier supports the
findings obtained in the literature [22,24,26]. Additionally, it is clear that this methodology
is more appropriate for average parameter measuring.

The development of this work was subject to limitations that explain the results
obtained, such as the small number of training images, considering the difficulty of the
feature extraction in these types of images, the narrowness of the working range and the
non-uniform distribution of the roughness values. Some of these are now discussed with
a view to achieving better predictive models in future works. Firstly, the working range
must be taken into account. Because of the narrowness of the average surface roughness
interval, specific feature extraction for each class becomes a more complex task. Moreover,
a strong adhesive mechanism existed in the tribology system modelled. This involved
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a non-uniform surface in all the cases considered herein. Thus, the surfaces presented
scattered areas with removal of material and ploughing with material accumulations,
besides the typical erosive abrasive with no clear tendency across the different SPIF process
conditions (Figure 7). Figure 7 depicts the surface of a part measured in a 45◦ direction
with respect to the rolling one, in different areas. In Figure 7a, the plastic deformation
caused by the overlap between passes of the tool is marked as a regular macro-ploughing
effect, indicated by arrows in the image. Figure 7b shows some hints of peeling pits (some
of which are marked inside circles), while in Figure 7d, some re-adhesion of previous
removed material can be observed. All these phenomena contrast with an almost uniform
worn surface (Figure 7c) with only a micro-ploughing phenomenon with some isolated
areas of peeling pits.
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Figure 7. Surfaces of a part obtained by SPIF process at 400 ◦C with a WC tool of 12 mm diameter;
surfaces correspond to 45◦ with respect to the rolling direction and from different zones of the part;
(a–d) photographs correspond to zones 1 to 4 according to the reference of Figure 2. Zone 4 is
the deepest.

Only one major adhesive mechanism was confirmed with the temperature, but its
influence on the part does not always occur in the same area (Figure 7a–d). Some evidence
of this can be observed in Figure 8, where the re-adhesion process is clearly noticeable in
different areas of the images (marked areas). Moreover, the peeling–adhesion phenomena
can dominate the topography of a study area, as can be seen in Figure 8a.
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according to the reference of Figure 2.

Increasing the number of observations, and thus the database size, would allow us not
only to develop a margin of separation between classes, but also to define each category
more accurately. While our work sets no margin, studies such as that conducted by Abu-
Mahfouz et al. [22] established a distance of up to 0.18 µm between adjacent classes. As a
result, classifiers based on machine vector supports using polynomial kernels achieved an
81.25% success rate.

In short, non-uniform distribution of training data demands a greater level of accuracy
in both the measurement and the photography. The rigor required could be reached
through the following steps:

- Noise reduction: numerous measurements of the same area could allow more stable
values to be obtained.

- Modification of photography technique: the strategy proposed by Moreas and Bil-
stein [31] emphasized the relationship between the surface roughness and the peaks
and valleys area. In this sense, an improvement to take into account in future work
would be to use oblique illumination in an optical microscope.

Secondly, another limitation is the dataset size. The small amount of training data is a
common problem in studies using machine learning algorithms. Following the literature,
the number of samples required varies according to the purpose of the application. Whereas
experiments using processing parameters utilize considerably fewer than a hundred obser-
vations, those using images to predict variables demand hundreds of photographs. This
is evidenced by the work by Koblar et al. [23], in which 300 pictures were used to deter-
mine whether parts were suitable for commercialization in accordance with the difference
between the highest peak and the lowest valley.

It is also necessary to emphasize the importance of a uniform distribution of images
that allows us to use a suitable classification strategy without class imbalance. It only and
exclusively depends on the manufacturing system as, in many cases, these conditions affect
the surface finish of the parts in range and typology.

Finally, together with these limitations, the nature of the images must be considered.
Roughness and waviness are overlapped in each photograph, so it is important to develop
a filtering methodology in order to ensure that every picture faithfully represents the
measured value.

5. Conclusions

In this paper, models based on machine learning were developed to predict surface
quality from photographs of Ti6Al4V parts created by single point incremental forming.
Training data were collected using a surface profilometer and a stereoscopic microscope,
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and more than one hundred and fifty simulations were run to optimize the processing
parameters and to find the most suitable classifier. The main findings derived from the
current work are as follows:

- The support vector machine has proven to be a competent classifier to predict the
surface finish according to the methodology used.

- The best results are achieved using second- and third-degree polynomial kernels.
- Working with grayscale images emphasizes the most advisable features to measure

the surface roughness.
- Dividing photographs to increase the database does not justify the deviation between

images and actual values when average parameters are measured.

Overcoming the limitations of this work will provide the basis for the use of a re-
gression model, instead of a classification one, to predict continuous values. One future
direction will be to build a large and uniform database to avoid a class imbalance and to
apply normalization and filtering techniques in order to obtain stable roughness values
and to reduce the noise in pictures, respectively. In this way, it will be possible to build a
reliable model with high detection capacity to be deployed in a productive environment.

In the future, this measuring strategy is expected to be used on real-time video
transmission in a manner that enables automatic and fast selection of parts according to
tolerance requirements.
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