Modelling of Microstructure Formation in Metal Additive Manufacturing: Recent Progress, Research Gaps and Perspectives
Abstract
:1. Introduction
2. The Role of Computational Modelling in Advancing the Understanding of Mechanisms
3. A Summary of Modelling Methods
4. Modelling of Nonequilibrium Microstructures Encountered in AM: Recent Progress
5. Machine Learning Models
6. Research Gaps and Opportunities
6.1. Supporting Multiscale Simulations Associated with the Temperature-Microstructure Linkage
- Multiple length scales: The ability to accommodate the microscopic melt pool caused by the AM heat source in the continuum simulations while concurrently allowing for the build of a complete part to be simulated is a major hurdle in this category. In CFD and FEA simulations, which are usually faster than particle-based hydrodynamics versions, using mesh sizes that cater for the microscopic melts can result in an excessive computational load at the part level. While it is possible to resort to adaptive meshing where mesh sizes coarsen as the heat source moves away, there is often a significant computational overhead associated with remeshing. As an alternative, it may be possible to simulate the effect of the heat source at selected strategic locations of the part in finer detail, predict microstructures at those locations, and interpolate between those locations.
- Efficacy and accuracy in passing information between scales: An important part of the multiscale setup is the ability to pass the temperature data, efficiently and accurately, from the larger grid used for its predictions to the smaller meshes used for microstructure formation. A viable computational strategy for this purpose was recently demonstrated [20].
6.2. Accounting for Two-Way Coupling between Temperature and Microstructure
6.3. Impact of Melt Flow at the Mesoscopic Level
6.4. Strategies/Experiments to Obtain Accurate Boundary Conditions
6.5. Improved Models for Grain Nucleation
6.6. Improved Strategies to Account for Multi-Component Diffusion
6.7. The Need for Reliable Thermodynamic and Mobility Databases of Alloys Relevant to AM
6.8. The Need for Reliable Material Data for AM Materials
6.9. Improved Strategies to Account for Solid-State Precipitation
6.10. Predictive Modelling of Hot Tearing
6.11. Accounting for Novel AM Mechanisms at the Microscopic Level
6.12. Strategies for Parallelisation and Preparing for Petascale and Exascale Computing
6.13. Heat Treatment of AM Microstructures
6.14. High Entropy Alloys
6.15. Extracting Additional Scientific Value from ML Models Using a ‘Grey Box Big Data’ Approach
7. Future Perspectives
Funding
Conflicts of Interest
References
- Attaran, M. The rise of 3D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horizons 2017, 60, 677–688. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Altıparmak, S.C.; Yardley, V.A.; Shi, Z.; Lin, J. Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing. Int. J. Light. Mater. Manuf. 2020, 4, 246–261. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.; Wang, C.C.; Shin, Y.C.; Zhang, S.; Zavattieri, P. The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Ngo, T.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Mede, T.; Kocjan, A.; Paulin, I.; Godec, M. Numerical Mesoscale Modelling of Microstructure Evolution during Selective Laser Melting. Metals 2020, 10, 800. [Google Scholar] [CrossRef]
- Bidare, P.; Bitharas, I.; Ward, R.; Attallah, M.; Moore, A. Fluid and particle dynamics in laser powder bed fusion. Acta Mater. 2018, 142, 107–120. [Google Scholar] [CrossRef]
- McMillan, M.; Leary, M.; Brandt, M. Computationally efficient finite difference method for metal additive manufacturing: A reduced-order DFAM tool applied to SLM. Mater. Des. 2017, 132, 226–243. [Google Scholar] [CrossRef]
- Hooper, P.A. Melt pool temperature and cooling rates in laser powder bed fusion. Addit. Manuf. 2018, 22, 548–559. [Google Scholar] [CrossRef]
- Basak, A.; Das, S. Epitaxy and Microstructure Evolution in Metal Additive Manufacturing. Annu. Rev. Mater. Res. 2016, 46, 125–149. [Google Scholar] [CrossRef]
- Körner, C.; Markl, M.; Koepf, J.A. Modeling and Simulation of Microstructure Evolution for Additive Manufacturing of Metals: A Critical Review. Met. Mater. Trans. A 2020, 51, 4970–4983. [Google Scholar] [CrossRef]
- Thijs, L.; Kempen, K.; Kruth, J.-P.; Van Humbeeck, J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013, 61, 1809–1819. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, T.M.; Lim, H.; Brown, J. Three-Dimensional Additively Manufactured Microstructures and Their Mechanical Properties. JOM 2019, 72, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Zaeem, M.A.; Clarke, A.J. Rapid Solidification and Phase Transformations in Additive Manufactured Materials. JOM 2016, 68, 928–929. [Google Scholar] [CrossRef] [Green Version]
- Gorsse, S.; Hutchinson, C.; Gouné, M.; Banerjee, R. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 2017, 18, 584–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, B.; Froes, F.H. The additive manufacturing (AM) of titanium alloys. In Titanium Powder Metallurgy; Qian, M., Froes, F.H., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2015; pp. 447–468. [Google Scholar]
- Siwick, B.J.; Arslan, I.; Wang, X. Frontier nonequilibrium materials science enabled by ultrafast electron methods. MRS Bull. 2021. [Google Scholar] [CrossRef]
- Tan, J.H.K.; Sing, S.L.; Yeong, W.Y. Microstructure modelling for metallic additive manufacturing: A review. Virtual Phys. Prototyp. 2019, 15, 87–105. [Google Scholar] [CrossRef]
- O’Toole, P.I.; Patel, M.J.; Tang, C.; Gunasegaram, D.R.; Murphy, A.B.; Cole, I.S. Multiscale simulation of rapid solidification of an aluminium-silicon alloy under additive manufacturing conditions. 2021. Journal article under review. [Google Scholar]
- Yang, M.; Wang, L.; Yan, W. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. NPJ Comput. Mater. 2021, 7, 56. [Google Scholar] [CrossRef]
- Francois, M.; Sun, A.; King, W.; Henson, N.; Tourret, D.; Bronkhorst, C.; Carlson, N.; Newman, C.; Haut, T.; Bakosi, J.; et al. Modeling of additive manufacturing processes for metals: Challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 2017, 21, 198–206. [Google Scholar] [CrossRef]
- Pham, M.-S.; Dovgyy, B.; Hooper, P.A.; Gourlay, C.M.; Piglione, A. The role of side-branching in microstructure development in laser powder-bed fusion. Nat. Commun. 2020, 11, 749. [Google Scholar] [CrossRef]
- Mukherjee, T.; DebRoy, T.; Lienert, T.; Maloy, S.; Hosemann, P. Spatial and temporal variation of hardness of a printed steel part. Acta Mater. 2021, 209, 116775. [Google Scholar] [CrossRef]
- Li, X.; Tan, W. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing. Comput. Mater. Sci. 2018, 153, 159–169. [Google Scholar] [CrossRef]
- Gunasegaram, D.R.; Murphy, A.B.; Matthews, M.J.; DebRoy, T. The case for digital twins in metal additive manufacturing. J. Phys. Mater. 2021, 4, 040401. [Google Scholar] [CrossRef]
- Gunasegaram, D.; Farnsworth, D.; Nguyen, T. Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments. J. Mater. Process. Technol. 2009, 209, 1209–1219. [Google Scholar] [CrossRef]
- Li, C.-Y.; Garimella, S.V.; Simpson, J.E. Fixed-grid front-tracking algorithm for solidification problems, part I: Method and validation. Numer. Heat Transfer Part B Fundam. 2003, 43, 117–141. [Google Scholar] [CrossRef]
- Gandin, C.-A.; Steinbach, I. Modeling of microstructure evolution during solidification processing. In ASM Handbook—Fundamentals of Modeling for Metals Processing; Furrer, D.U., Semiatin, S.L., Eds.; ASM International: Novelty, OH, USA, 2009; pp. 312–321. [Google Scholar]
- Stefanescu, D.M. Numerical microscale modeling of solidification. In Science and Engineering of Casting Solidification; Stefanescu, D.M., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 379–434. [Google Scholar]
- Kavousi, S.; Zaeem, M.A. Quantitative phase-field modeling of solute trapping in rapid solidification. Acta Mater. 2020, 205, 116562. [Google Scholar] [CrossRef]
- Tan, L.; Zabaras, N. A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods. J. Comput. Phys. 2006, 211, 36–63. [Google Scholar] [CrossRef] [Green Version]
- Zakirov, A.; Belousov, S.; Bogdanova, M.; Korneev, B.; Stepanov, A.; Perepelkina, A.; Levchenko, V.; Meshkov, A.; Potapkin, B. Predictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscale. Addit. Manuf. 2020, 35, 101236. [Google Scholar]
- Rodgers, T.; Madison, J.D.; Tikare, V. Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comput. Mater. Sci. 2017, 135, 78–89. [Google Scholar] [CrossRef]
- Cummins, S.; Cleary, P.; Delaney, G.; Phua, A.; Sinnott, M.; Gunasegaram, D.; Davies, C. A Coupled DEM/SPH Computational Model to Simulate Microstructure Evolution in Ti-6Al-4V Laser Powder Bed Fusion Processes. Metals 2021, 11, 858. [Google Scholar] [CrossRef]
- Sui, S.; Chen, J.; Li, Z.; Li, H.; Zhao, X.; Tan, H. Investigation of dissolution behavior of laves phase in inconel 718 fabricated by laser directed energy deposition. Addit. Manuf. 2020, 32, 101055. [Google Scholar] [CrossRef]
- Zheng, M.; Li, C.; Zhang, X.; Ye, Z.; Yang, X.; Gu, J. The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition. Addit. Manuf. 2020, 37, 101660. [Google Scholar] [CrossRef]
- Bermingham, M.; StJohn, D.; Krynen, J.; Tedman-Jones, S.; Dargusch, M. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Mater. 2019, 168, 261–274. [Google Scholar] [CrossRef]
- Mohammadpour, P.; Plotkowski, A.; Phillion, A. Revisiting solidification microstructure selection maps in the frame of additive manufacturing. Addit. Manuf. 2019, 31, 100936. [Google Scholar] [CrossRef]
- Raghavan, N.; Dehoff, R.; Pannala, S.; Simunovic, S.; Kirka, M.; Turner, J.; Carlson, N.; Babu, S.S. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing. Acta Mater. 2016, 112, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Karimi, P.; Sadeghi, E.; Ålgårdh, J.; Keshavarzkermani, A.; Esmaeilizadeh, R.; Toyserkani, E.; Andersson, J. Columnar-to-equiaxed grain transition in powder bed fusion via mimicking casting solidification and promoting in-situ recrystallization. Addit. Manuf. 2021, 46, 102086. [Google Scholar]
- Cattenone, A.; Morganti, S.; Auricchio, F. Basis of the Lattice Boltzmann Method for Additive Manufacturing. Arch. Comput. Methods Eng. 2019, 27, 1109–1133. [Google Scholar] [CrossRef]
- Boettinger, W.J.; Coriell, S.R. Microstructure formation in rapidly solidified alloys. In Science and Technology of the Undercooled Melt: Rapid Solidification Materials and Technologies; Sahm, P.R., Jones, H., Adam, C.M., Eds.; Springer: Dordrecht, The Netherlands, 1986; pp. 81–109. [Google Scholar]
- Sargent, N.; Jones, M.; Otis, R.; Shapiro, A.; Delplanque, J.-P.; Xiong, W. Integration of Processing and Microstructure Models for Non-Equilibrium Solidification in Additive Manufacturing. Metals 2021, 4, 570. [Google Scholar] [CrossRef]
- Wu, K.; Pal, D.; Hope, A.; Mason, P. Development of Non-Equilibrium Thermodynamic Tools for Additive Manufacturing. Available online: https://www.thermocalc.com/content/uploads/Seminars_Presentations/development-of-non-equilibrium-thermodynamic-tools-for-additive-manufacturing-tms2020.pdf (accessed on 30 August 2021).
- Diffusion Module DICTRA. Available online: https://thermocalc.com/products/add-on-modules/diffusion-module-dictra/ (accessed on 30 August 2021).
- Thermo-Calc. Available online: https://thermocalc.com/products/thermo-calc/ (accessed on 30 August 2021).
- Keller, T.; Lindwall, G.; Ghosh, S.; Ma, L.; Lane, B.; Zhang, F.; Kattner, U.R.; Lass, E.; Heigel, J.C.; Idell, Y.; et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater. 2017, 139, 244–253. [Google Scholar] [CrossRef]
- Steinbach, I.; Zhang, L.; Plapp, M. Phase-field model with finite interface dissipation. Acta Mater. 2012, 60, 2689–2701. [Google Scholar] [CrossRef]
- Nomoto, S.; Segawa, M.; Watanabe, M. Non- and quasi-equilibrium multi-phase field methods coupled with calphad database for rapid-solidification microstructural evolution in laser powder bed additive manufacturing condition. Metals 2021, 11, 626. [Google Scholar] [CrossRef]
- Liu, C.; Garner, A.; Zhao, H.; Prangnell, P.B.; Gault, B.; Raabe, D.; Shanthraj, P. CALPHAD-informed phase-field modeling of grain boundary microchemistry and precipitation in Al-Zn-Mg-Cu alloys. Acta Mater. 2021, 214, 116966. [Google Scholar] [CrossRef]
- Mohebbi, M.S.; Ploshikhin, V. Simulation of primary particle development and their impact on microstructural evolution of sc-modified aluminum alloys during additive manufacturing. Metals 2021, 11, 1056. [Google Scholar] [CrossRef]
- Gunasegaram, D.R.; Murphy, A.; Barnard, A.; DebRoy, T.; Matthews, M.; Ladani, L.; Gu, D. Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing. Addit. Manuf. 2021, 46, 102089. [Google Scholar]
- Gunasegaram, D.R.; Venkatraman, M.S.; Cole, I.S. Towards multiscale modelling of localised corrosion. Int. Mater. Rev. 2014, 59, 84–114. [Google Scholar] [CrossRef]
- Bhutada, A.; Kumar, S.; Gunasegaram, D.; Alankar, A. Machine Learning Based Methods for Obtaining Correlations between Microstructures and Thermal Stresses. Metals 2021, 11, 1167. [Google Scholar] [CrossRef]
- Johnson, N.S.; Vulimiri, P.; To, A.; Zhang, X.; Brice, C.; Kappes, B.; Stebner, A. Invited review: Machine learning for materials developments in metals additive manufacturing. Addit. Manuf. 2020, 36, 101641. [Google Scholar]
- Chalmers, B. Structures formed during solidification in terms of composition. Trans. AIME 1956, 200, 132–146. [Google Scholar]
- Glicksman, M.E. Constitutional supercooling. In Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts; Glicksman, M.E., Ed.; Springer: New York, NY, USA, 2011; pp. 213–235. [Google Scholar]
- Aziz, M.J. Model for solute redistribution during rapid solidification. J. Appl. Phys. 1982, 53, 1158–1168. [Google Scholar] [CrossRef] [Green Version]
- Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Rappaz, M.; Thévoz, P.H. Solute diffusion model for equiaxed dendritic growth. Acta Metall. 1987, 35, 1487–1497. [Google Scholar] [CrossRef]
- Uddagiri, M.; Spee, J.; Hubig, S.; Steinbach, I. Columnar-equiaxed transition in continuous casting based on a micro-macro solidification model with long-range solutal mixing. IOP Conf. Ser. Mater. Sci. Eng. 2020, 861, 012014. [Google Scholar] [CrossRef]
- Pandat Software. Available online: https://computherm.com/software (accessed on 30 August 2021).
- van Mourik, T.; Bühl, M.; Gaigeot, M.-P. Density functional theory across chemistry, physics and biology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120488. [Google Scholar] [CrossRef] [Green Version]
- Dhara, S. Formation, Dynamics, and Characterization of Nanostructures by Ion Beam Irradiation. Crit. Rev. Solid State Mater. Sci. 2007, 32, 1–50. [Google Scholar] [CrossRef]
- Polmear, I.J.; St John, D.; Nie, J.F.; Ma, Q. Light Alloys, Metallurgy of the Light Metals, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Bourgeois, L.; Zhang, Y.; Zhang, Z.; Chen, Y.; Medhekar, N.V. Transforming solid-state precipitates via excess vacancies. Nat. Commun. 2020, 11, 1248. [Google Scholar] [CrossRef] [Green Version]
- Precipitation Module (TC-PRISMA). Available online: https://thermocalc.com/products/add-on-modules/precipitation-module-tc-prisma/ (accessed on 30 August 2021).
- Safarzade, A.; Sharifitabar, M.; Afarani, M.S. Effects of heat treatment on microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process. Trans. Nonferrous Met. Soc. China 2020, 30, 3016–3030. [Google Scholar] [CrossRef]
- Tascioglu, E.; Karabulut, Y.; Kaynak, Y. Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing. Int. J. Adv. Manuf. Technol. 2020, 107, 1947–1956. [Google Scholar] [CrossRef]
- Savage, N. Striking a balance with high-entropy alloys. Nature 2021, 595, S4–S5. [Google Scholar] [CrossRef]
- Alber, M.; Buganza Tepole, A.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.; Perdikaris, P.; Petzold, L.; et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit. Med. 2019, 2, 115. [Google Scholar] [CrossRef] [PubMed]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Nathaniel, J. Explainable AI: Physics in Machine Learning? Available online: https://towardsdatascience.com/explainable-ai-physics-in-machine-learning-d6374d2f4635 (accessed on 30 August 2021).
- Metal Additive Manufacturing Market to Record an Incremental Growth of USD 4.42 Billion. 2021. Available online: https://www.prnewswire.com/news-releases/metal-additive-manufacturing-market-to-record-an-incremental-growth-of-usd-4-42-billiontechnavio-301275507.html (accessed on 30 August 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunasegaram, D.R.; Steinbach, I. Modelling of Microstructure Formation in Metal Additive Manufacturing: Recent Progress, Research Gaps and Perspectives. Metals 2021, 11, 1425. https://doi.org/10.3390/met11091425
Gunasegaram DR, Steinbach I. Modelling of Microstructure Formation in Metal Additive Manufacturing: Recent Progress, Research Gaps and Perspectives. Metals. 2021; 11(9):1425. https://doi.org/10.3390/met11091425
Chicago/Turabian StyleGunasegaram, Dayalan R., and Ingo Steinbach. 2021. "Modelling of Microstructure Formation in Metal Additive Manufacturing: Recent Progress, Research Gaps and Perspectives" Metals 11, no. 9: 1425. https://doi.org/10.3390/met11091425
APA StyleGunasegaram, D. R., & Steinbach, I. (2021). Modelling of Microstructure Formation in Metal Additive Manufacturing: Recent Progress, Research Gaps and Perspectives. Metals, 11(9), 1425. https://doi.org/10.3390/met11091425