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Abstract: AgCu nanoparticles were prepared through hydrogen-reduction-assisted Ultrasonic Spray
Pyrolysis (USP) and the Hydrogen Reduction (HR) method. The changes in the morphology and
crystal structure of nanoparticles were studied using different concentrated precursors. The structure
and morphology of the mixed crystalline particles were characterized through X-ray diffraction
analysis (XRD), scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM)
and Energy-dispersive X-ray spectroscopy (EDS). The average particle size decreased from 364 nm to
224 nm by reducing the initial solution concentration from 0.05 M to 0.4 M. These results indicate that
the increase in concentration also increases the grain size. Antibacterial properties of nanoparticles
against Escherichia coli were investigated. The obtained results indicate that produced particles show
antibacterial activity (100%). The AgCu nanoparticles have the usage potential in different areas of
the industry.
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Highlights

AgCu nanoparticles have been produced in one step by ultrasonic spray pyrolysis.
AgCu particle size was controlled by changing the concentration of the solution.
AgCu nanosized particles exhibit improved antibacterial activity.

1. Introduction

In recent years, there has been increasing interest in bimetallic nanoparticles because
of their potential applications to magnetism, catalysis and optics. These nanoparticles are
often called nanoalloys [1]. Bimetallic nanoparticles, either as alloys or as core–shell struc-
tures, exhibit unique electronic, optical and catalytic properties compared to monometallic
nanoparticles [2,3]. Several bimetallic nanoparticles have been recommended for use in a
catalytic system [4–6]. A series of bimetallic catalysts, such as Cu-Au, Cu-Pd, Cu-In and
Cu-Sn, have been introduced to exhibit improved surface activities toward CO. Cu-Pt alloy
or Cu-modified Pt electrocatalysts still could show the capability of Cu to reduce CO2 into
hydrocarbon products [7].

Although a lot of work has been done on the preparation of noble metal alloys, there
are only a few reports on bimetallic particles of copper, especially with silver. Lattice con-
stants of Ag and Cu are 0.409 nm and 0.361 nm, respectively, and this large difference in the
lattice constants of Cu and Ag makes the preparation of their alloy difficult. Additionally, it
is difficult to control the simultaneous reduction of Cu and Ag because of the difference in
redox potential, and the instability of Cu in an aqueous medium is an added difficulty [2].
The fact that copper (Cu) is an important metal used in modern technologies increases its
attention [8]. Nanospheric Cu particles are more attractive than other metals because of
their advantages, such as being cheap, easy to find and their wide range of uses [8,9]. Based
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on these advantages, Cu nanoparticles, capacitor material, catalyst, conductive coating,
ink-jet printing technology, conductive paste, insulating material, oil additive and sintering
additives can be used [10,11]. In particular, Cu has gained more interest because of its
capability to reduce CO2 into hydrocarbon fuels [12]. It has long been known that silver
(Ag) is a very strong antibacterial material in both metallic form and compound forms,
and its inhibitory effect on bacteria has been studied by many researchers [13–15]. Ag
nanoparticles are a gold standard bacteriostatic agent [16]. Ag is known to be used in
antibacterial applications since ancient times, and Ag nanoparticles are often preferred in
biosensor applications [17]. Ag nanoparticles play an important role in increasing the sen-
sitivity of biosensors because of their ability to accelerate the transfer of electrons [16–19].
The seriousness of problems with energy supplies and environmental pollution is creating
greater interest in fuel cells and lithium batteries [20–22]. Fuel cells produce electricity
by electrochemically converting hydrogen and oxygen into water, and noble metals, such
as Pt, are used as a catalyst for the oxygen reduction reaction. However, the high cost
of Pt has sparked a search for a Pt substitute or new ways of reducing the quantity of Pt
required. AgCu bimetallic nanoparticles have proper adsorption strength and become a
good catalyst for the oxygen reduction reaction. Moreover, Ag and Cu are considerably
less expensive than Pt or Pd [6].

Various methods have been proposed to synthesize metallic nanoparticles, including
wet chemical reduction, electrochemical, laser ablation and solution combustion [23–27].
Among them, the ultrasonic spray pyrolysis (USP) technique has been rarely used for this
purpose. The USP technique was preferred for its low cost and especially for its simplicity
for fabricating oxides with good qualities [28]. The wet chemical synthesis is based on the
reduction of metals salts by a reducing agent. It consists of many steps to obtain products,
and controlling the process is challenging compared to the USP method. Strong reducing
agents are necessary for producing metallic nanoparticles, such as sodium borohydride [29],
hydrazine [30] and sodium hypophosphite [31]. USP is a process in which solid particles
are produced by evaporation, drying and thermal decomposition/reduction processes in
a controlled atmosphere, starting from droplets obtained from ultrasonic frequency from
metal salt precursors. Single-step and atmospheric pressure droplet to particle conversion
and particle collection processes in USP results in spherical, needle-like, plate, flower-
like, diagonal and micro- or nanosized metal, as well as oxide, ceramic, carbon-based or
nanocomposite-agglomerated materials with a narrow size distribution [32–35].

In this study, we aimed to produce nanoalloy particles, which can be used in energy
supplies (fuel cells, lithium batteries) and antibacterial products. Since there is no previous
study that has been reported on the synthesis of the AgCu nanoalloy by the USP-HR
method, the antibacterial particles were prepared with the one-step method with a con-
trolled Ag content and particle morphology, which is the original aspect presented in this
study. In comparison to the previous synthesis of single nanosized particles of copper and
silver, this USP synthesis from mixed precursors will offer the improved characteristics of
the final AgCu particles [36–40].

2. Experimental

AgCu nanosized particles were synthesized using the aqueous solution of silver
nitrate (AgNO3) and copper nitrate (CuNO3)2.3H2O) under 1 L/min H2 flow rate at an
800 ◦C reduction temperature. The nitrate salts (all from Merck, Darmstadt, Germany)
were dissolved in deionized water and stirred with a magnetic stirrer for 30 min. The metal
concentration in the precursor was between 0.05 mol/L and 0.4 mol/L. The precursor
solution was atomized using an ultrasonic atomizer with a resonant frequency of 1.3 MHz
(RBI-Instrumentation, Meylan, France). The reduction of aerosol droplets occurred at
800 ◦C in the electrically heated furnace with the heating zone of 0.25 m and the diameter
of the quartz tube of 0.02 m (Nabertherm, Germany). The details of the experimental
parameters for the synthesis of AgCu nanosized particles are given in Table 1.
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Table 1. Experimental parameters.

AgNO3
(mol/L)

Cu(NO3)2
(mol/L)

Temperature
(◦C)

H2 Flow Rate
(L/min)

N2 Flow Rate
(L/min)

Ultrasonic
Frequency (MHz)

0.05 0.05 800 1.0 0.5 1.3
0.1 0.1 800 1.0 0.5 1.3
0.2 0.2 800 1.0 0.5 1.3
0.4 0.4 800 1.0 0.5 1.3

X-ray diffraction patterns were obtained for the crystal structure determination of alloy
particles by the Philips-1700 X-ray diffractometer (Philips, Eindhoven, The Netherlands)
employing Cu-Kα radiation. The chemical compositions of particles were analyzed by
energy dispersive spectroscopy (EDS). The particle size and morphology of the samples
were investigated by field emission scanning electron microscopy (FEG-SEM, JEOL JSM
700F, Tokyo, Japan) and transmission electron microscopy (FEI Tecnai G2F20 S-TWIN-TEM,
Hillsboro, OR, USA). The temperature behavior of silver nitrate salt and copper nitrate
salts was investigated by using a differential scanning calorimeter and thermal gravimetry
(DSC-TG SDT Q600, TA Instrument, New Castle, DE, USA). Moreover, the antibacterial
activities of AgCu nanosized particles were evaluated according to the American Society
for Testing and Materials (ASTM) E 2149-01 standard test method.

3. Results and Discussion
3.1. Thermodynamic Analysis of Ag and Cu Nitrate Salts

In order to understand the reaction mechanism in the production of nanosized AgCu
alloy particles with USP and HR, the breakdown of the Ag and Cu nitrate salts was
investigated using thermochemical analysis. For this purpose, the thermal behavior of
the Ag and Cu nitrate solutions were investigated, respectively, then the free energy
changes of the nitrate salts in the nitrogen and hydrogen atmosphere under the heat
dissolution/reduction reactions were investigated using the enthalpy (H), entropy (S) and
heat capacity (C) HSC (Outotec, Espoo, Finland) program. The thermal behavior of the
nitrate salts used as starting material in experimental studies was carried out by using
Differential Scanning Calorimeter-Thermal Gravimetry (DSC-TG), (TA Instrument, New
Castle, DE, USA) between the room temperature and 1000 ◦C using a heating rate of
10 ◦C/min in a nitrogen atmosphere. Figures 1 and 2 show the thermal behavior of the
AgNO3 and Cu(NO3)2.3H2O salts, respectively.
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The expected reaction of the thermal decomposition ware proposed below with
Equations (1) and (2):

2AgNO3 = 2Ag + 2NO2(g) + O2(g) (1)

2Cu(NO3)2 = 2CuO + 4NO2(g)+ O2(g) (2)

The DSC curve shown in Figure 1 gives a peak indicating that there is an endothermic
reaction at a temperature of about 200 ◦C, while the TG curve indicates some loss of mass at
this temperature. The loss of this mass is due to the small amount of crystal water present
in the AgNO3 salt. The TG curve indicates a significant loss of mass (about 40%) in the
structure around 400 ◦C, and this mass loss continues to a temperature of 500 ◦C. After
500 ◦C, it is observed that there is no mass loss in the structure, and the structure maintains
its stability. Considering this and the endothermic reaction peak shown by the DSC curve
at the same temperature, it can be said that the AgNO3 salt of this mass loss is subjected
to thermal breakdown and the NO2 gas is away from the structure. The stable structure
resulting from this thermal decomposition (after 500 ◦C) is silver and indicates the melting
point of endothermic peak silver at about 950 ◦C.

The DSC curve shown in Figure 2 shows that there is a mass loss of up to about 250 ◦C.
This mass loss is caused by the removal of the crystal water in the Cu(NO3)2 salt. The
DSC curve seen in the temperature range of this mass loss gives a peak indicating the
endothermic reaction. The TG curve indicates a significant loss of mass (approximately
50%) in the structure around 250 ◦C, and this mass loss continues to a temperature of
about 310 ◦C. After 310 ◦C, it is observed that there is no mass loss in the structure, and
the structure maintains its stability. Considering this and the endothermic reaction peak
of the DSC curve at the same temperature, it can be said that this mass loss is caused by
the thermal breakdown of Cu(NO3)2 salt. The stable structure resulting from this thermal
decomposition (after 310 ◦C) is Cu and indicates the melting point of the endothermic peak
copper formed at about 880 ◦C.

In particle production by the USP-HR method, the hydrogenation temperature of the
aerosols obtained by atomizing the high purity metal salt is of great importance. For this
purpose, the HSC program was used in the investigation of nitrogen and hydrogen gases
and thermal decomposition thermodynamics of AgNO3 and Cu(NO3)2 salts, which we
used in our experiments.

Figure 3 shows the graph of the temperature-free energy change obtained by the Fact-
Sage program (FactSage, Montreal, QC, Canada and Aachen, Germany) for decomposition
of AgNO3 and Cu(NO3)2. The thermodynamic reaction for hydrogen reduction of AgNO3
and Cu(NO3)2 can be described as in Equations (3) and (4).

AgNO3 + H2 = Ag + NO2(g) + H2O(g) (3)

Cu(NO3)2 + 2H2(g)→ Cu + 2NO2(g) + 2H2O (4)
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Figure 3. The change of the Gibbs Free Energy value with temperature in the reaction of the AgNO3

salt with hydrogen and nitrogen.

As seen from Figure 3, the reduction of AgNO3 salt with hydrogen is thermodynami-
cally possible at room temperature, where Gibbs free energy is negative, and a decrease
in free energy is observed with increasing temperature. In the analysis for the thermal
decomposition of AgNO3 in a nitrogen atmosphere, it is seen that the Gibbs free energy
change of the reaction remained in the positive zone at low temperatures and decreased
with increasing temperature. It is also seen that the thermal decomposition reaction in the
nitrogen atmosphere of AgNO3 will begin to occur at 420 ◦C, where the thermodynamically
Gibbs free energy change passes to the negative region. The reduction of Cu(NO3)2 salt
by hydrogen is thermodynamically possible even at 0 ◦C, where Gibbs free energy is
negative. It is also seen that the thermal decomposition reaction in the nitrogen atmosphere
of Cu(NO3)2 begins to occur at 390 ◦C, where the thermodynamically Gibbs free energy
exchange passes to the negative region Equations (1)–(4) and Figure 3 proved that silver
and copper could be formed through the hydrogen reduction of silver and copper nitrates.

3.2. Structural Characterization of AgCu Particles

X-ray diffraction patterns of the AgCu alloy nanoparticles produced at an 800 ◦C re-
duction temperature using the solutions with different concentrations are given in Figure 4.
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In Figure 4, the peaks at 38◦, 44◦, 64◦ and 77◦ according to 2θ values are assigned
to the (111), (200), (220) and (311) reflection lines, and it confirms the formation of a face-
centered cubic structure of Ag (JCPDS Card No: 01-087-0719). The face-centered cubic
Cu phase at 2θ = 43◦, 50◦ and 74◦ coincide with (111), (200) and (220) (JCPDS Card No:
04-0836). According to the XRD results, the alloy consisted of FCC1 (α) and FCC2 (β).
The diffraction peaks for the stable Ag-rich (α) and Cu-rich (β) phase were observed in
Figure 5. In addition, Cu2O nanoparticles phases were found in the cubic structure at 36◦

in 2θ values (111) at only a 0.2 M concentration. When the initial solution concentration
decreases, the peaks’ expansion and the peak’s intensity decrease, which can be explained
by the decrease in crystalline and particle size. In addition, crystallite sizes were calculated
using the Scherrer Equation (5) from the diffraction pattern of the X-ray diffractogram in
Figure 5 (see Figure 6).

D =
K ∗ λ

B ∗ cos θ
(5)

where D is the average crystalline size, B is the broadening of the diffraction line measured
at half of the maximum intensity, λ is the wavelength (Cu-Kα = 1.541874 Å), θ is the Bragg
angle for a given diffraction, and K is a constant, which is a value ranging from 0.85 to 0.9
for powders. Figure 5 shows the average crystalline size of nanosized particles depending
on the concentration of the precursor.
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Figure 5 shows the crystalline size calculated using the Scherrer Equation of the
nanoparticles produced from the initial solutions with different concentrations, respectively,
from 16 nm to 26 nm for silver and from 20 nm to 28 nm for copper. The nanosized particles
obtained using 0.2 M solution exhibit the lowest crystallite size.

3.3. Morphological Characterization of AgCu Nanocomposite Particles

SEM images of the particles obtained by increasing solution concentrations (0.05, 0.1,
0.2 and 0.4 mol/L) at 800 ◦C are given in Figure 6. All samples exhibit spherical shape
morphology and almost smooth surfaces. With the reduction of the solution concentration,
it is seen that particles that have a finer particle size and generally a narrower particle size
distribution are produced. It was observed that large-grained particles together with very
fine grains were present in samples produced from solutions with different concentrations.
Furthermore, these produced particles show a tendency to cluster. Growing silver-copper
nanoparticles showed a tendency to cluster more with a decrease in concentration. The
differences in the agglomeration of the particles produced in the environment where all
the conditions except the concentration are the same are explained by the surface area and
activity of the particles.

EDS analyses of the nanosized particles are given in Table 2. The presence of Ag
and Cu was affirmed by EDS analysis. Any possible impurities, such as nitrogen due to
undecomposed reactants, were not detected in the EDS spectrums. However, as a result of
EDS analysis of the solution with a concentration of 0.05 M, the presence of oxygen here
comes from the possible oxide structure in the sample preparation and is not seen as an
impurity in the produced particles.

Table 2. EDS results of AgCu nanoparticles produced at different concentrations at 800 ◦C.

Concentration
(mol/L)

Element (%)
Ag Cu O

0.05 32.2 46.4 21.4
0.1 48.1 51.9 -
0.2 52.1 47.9 -
0.4 49.1 50.9 -

In order to measure the sizes of particles obtained from the initial solutions of different
concentrations, the mean particle sizes were calculated by measuring the dimensions of the
particles seen on the SEM images with the help of the ImageJ program (NIH, Maryland,
USA) (Figure 7).
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When the particle size obtained from 0.05 M silver nitrate-copper nitrate was ap-
proximately 224 nm in size, the particles were grown with increasing concentrations, and
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particles the size of 364 nm were formed in the 0.4 M concentration. TEM analyses of
AgCu nanoparticles produced from silver nitrate and copper nitrate starting solutions
with 0.05 M–0.4 M concentrations by the USP-HR technique were performed using the FEI
Tecnai G2 F20 S—TWIN 200 kV STEM/TEM device. Particles stored in ethanol were kept
in the ultrasonic homogenizer, and the possible agglomerations were removed from the
structure. Then, it was covered with copper grids by the immersion method. The results of
these characterization studies are given in Figure 8.
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When Figure 8 is examined, primary particles with a particle size less than 100 nm
from the TEM images have been clearly identified (Figure 8a,c,e,g). In addition, secondary
particles (≥100 nm) formed by the incorporation of primary particles are clearly seen
(Figure 8b,d,f,h). It was determined that the hollow structure was replaced by the dense
particle due to sintering at a high temperature.

3.4. Antibacterial Properties of AgCu Nanosized Particles

The measurement of antibacterial activity was made with the AgCu alloy nanoparticles
shown in Table 1. The antibacterial activity of the nanosized particles defined in Table 1 was
assessed against E. coli (gram-negative) bacteria (American Type Culture Collection (ATCC)
35218) via planting the bacteria in the agar medium according to the American Society for
Testing and Materials (ASTM) E 2149-01 standard under dynamic contact conditions. The
measurement was made after incubation at 37 ◦C for 24 h. This test standard is suitable for
particles that do not have migrations property. The antibacterial activity of these particles
against E. coli bacteria was given in Table 3.

Table 3. The value of antibacterial activity of the nanosized particles against Escherichia coli bacteria
after 24 h.

The Sample of Specimen Bacterial Reduction (%)

Untreated reference sample +140.00
0.05 mol/L −100.00
0.1 mol/L −100.00
0.2 mol/L −100.00
0.4 mol/L −100.00

As shown in Table 3, the improved antibacterial (ASTM E 2149-01) properties of AgCu
nanoparticles were observed via a decrease in bacterial reduction (approx. 100%)

4. Conclusions

AgCu nanoparticles were successfully synthesized via the hydrogen-reduction-assisted
ultrasonic spray pyrolysis method in one step at 800 ◦C using an aqueous solution of sil-
ver/copper nitrates as a precursor. The USP-HR method was used for the production of
AgCu nanoparticles in the desired size and morphology by using nitrogen as the inert gas
and hydrogen as the carrier/reducing gas. The effects of various precursor concentrations
on the morphology and crystal structure of the AgCu nanoparticles were investigated. The
average particle size decreased from 364 nm to 224 nm by reducing the initial solution
concentration from 0.4 mol/L to 0.05 mol/L. The size range of the AgCu nanoparticles
produced in experimental studies is 20 nm–100 nm for the solution where the concentration
is 0.05 mol/L, 100–450 nm for 0.1 mol/L, 180–1100 nm for 0.2 mol/L and 50–1050 nm
for 4 mol/L. These results indicate that the increase in concentration also increases the
grain size. In XRD analysis, silver and copper particles were determined to be cubic
structures. The particle crystalline sizes calculated for the concentrations of 0.05 mol/L,
0.1 mol/L, 0.2 mol/L and 0.4 mol/L according to the Scherrer equation, respectively, for
silver, 19.92 nm, 24.3 nm, 15.91 nm and 27 nm, and for copper, 20.84 nm, 24.05 nm, 20.4 nm
and 28.7 nm for 34 nm. In the TEM images of nanosized AgCu particles, primary particles
of smaller than 100 nm and larger secondary particles were observed. Furthermore, the
elimination of 100% bacteria was achieved by all synthesized AgCu nanoparticles. Im-
proved antibacterial (ASTM E 2149-01) properties of AgCu nanoparticles demonstrated
that these nanoparticles could be used as antibacterial agents in various areas.
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