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Abstract: We investigate the effect of the natural age-hardening response of the Al-20Zn-3Cu alloy
with natural aging times up to 12 months. The ultimate tensile strength of the Al-20Zn-3Cu alloy is
drastically enhanced from 308 to 320 MPa after 2 months and from 320 to 346 MPa after 9 months.
Then, natural age hardening becomes saturated after 9 months. A microstructural investigation
reveals that the natural age-hardening mechanism is mainly induced by the diffusion of the Zn
element. First, a rapid decrease in the volume fraction of the eutectoid lamellae (α-Al+η-Zn) is
observed at the early stage of natural aging, leading to an increase in the tensile strength. This
originates from the relatively high diffusivity of Zn due to its low melting temperature. Then, the
diffusion of Zn into the Al matrix induces clusters of solute atoms that enhance the growth rate of the
nanoprecipitates formed in the Al matrix. As a consequence, the tensile strength of the natural-aged
Al-20Zn-3Cu alloy increases drastically after 9 months, whereas the ductility is significantly degraded.

Keywords: natural aging; Al alloy with high Zn; mechanical properties; microstructural evolution

1. Introduction

Automotive components have been developed to reduce the total weight of vehicles
to improve energy efficiency. For achieving the requirement, the number of Al alloys-based
components is widely used in vehicles up to approximately 30% [1–4]. With regard to Al
alloys, these are mainly applied to the transmission case, wheel, engine block, converter
housing, and various structural components in a chassis of vehicles [5,6]. Among several
Al alloys, ADC12 (Al-Si-Cu) alloy is a conventional cast alloy applied to power train and
transmission cases due to its high castability with a low shrinkage rate [7–9]. Nevertheless,
ADC12 has a brittle nature because of the formation of intermetallic phase containing Si
element [7,10–13]. Recently, high-Zn Al-based-alloys have attracted much research interest
as a promising Al-cast alloy for automotive applications. High-Zn Al-based alloys show
high strength, good wear resistance, and damping properties in comparison with such
conventional cast Al-Si alloys [14–17]. In addition, the melting point of Al is gradually
reduced as the amount of Zn increases, leading to a low production cost of the casting
process [18].

In an earlier study, Shin et al. reported non-heat treatable Al-xZn-3Cu (x = 20, 30, 40,
45 in wt%) alloy fabricated using the high-pressure die casting (HPDC) method [19]. Inter-
estingly, the reported die-cast alloys exhibit a significant high tensile strength of 490 MPa
with an elongation of ≈4% even though any post treatments such as homogenization
and artificial aging are not applied onto the alloys. These superior mechanical properties
mainly stem from the unique microstructure induced by the Zn element while the small
amount of Cu is also added in order to increase mechanical strength [19–21]. According to
the reported binary phase diagram of Al-Zn, Zn elements can be dissolved in Al up to 70

Metals 2021, 11, 1485. https://doi.org/10.3390/met11091485 https://www.mdpi.com/journal/metals

https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0003-3128-1020
https://orcid.org/0000-0003-2263-3215
https://doi.org/10.3390/met11091485
https://doi.org/10.3390/met11091485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/met11091485
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met11091485?type=check_update&version=1


Metals 2021, 11, 1485 2 of 9

at % for a wide range of temperatures [18]. No intermetallic compounds are formed in the
Al-Zn binary system due to the very weak chemical interaction between Al and Zn [22].
Instead, Zn forms very fine nanoprecipitates in the Al matrix and complex microstruc-
tures consisting of eutectoid lamellae (α-Al and η-Zn) and the Zn phase in the vicinity of
the grain boundaries [19,23,24]. This complex microstructure is more developed as the
amount of Zn increases such that the mechanical strength of high-Zn Al-based alloys is
correspondingly enhanced according to the amount of Zn.

On the other hand, it has been reported that the Zn element in Al alloy strongly
affects mechanical properties during natural aging [25]. In earlier work, a 3DAP (three-
dimensional atom probe) analysis demonstrated that the Zn element enhances the growth
rate of clusters in the Al matrix during natural aging, leading to the segregation of solute
atoms from the Al matrix into clusters [26]. Then, by natural aging over time, the num-
ber density and volume fraction of clusters are the major factors to increase mechanical
strength [27].

Therefore, based on the above considerations, it is evident that the natural aging
response of high-Zn Al-based alloys should be carefully considered when developing
Al-cast alloys for the applications in automotive components. In this study, we investigated
the effect of natural aging on the microstructural evolution and its resultant mechanical
properties of high-Zn Al-based alloys. For the purpose, the Al-20Zn-3Cu alloy was selected
as the representative alloy to demonstrate the natural aging response in high-Zn Al-based
alloy. The Al-20Zn-3Cu alloy was prepared using a conventional gravity casting method.
Then, the as-cast specimen was naturally aged up to 9 months, and the variations of the
mechanical properties were investigated based on structural investigations.

2. Experimental Procedures

Table 1 shows the nominal compositions of the synthesized Al-20Zn-3Cu alloys. High-
purity metals (Al, Cu, Zn) and master alloys (Al-5 wt% Ti, Al-5 wt% Fe, and Al-12 wt%
Zr) were used to fabricate the developed alloys. Additionally, minor elements of Cu, Si,
Fe, Ti, and Zr were added to enhance the castability and mechanical properties. The alloy
components were melted in an electric resistance furnace at 730 ◦C. Then, the molten
alloy was degassed using N2 gas and stabilized in the furnace at 700 ◦C for 30 min. Alloy
ingots were finally fabricated using a gravity casting method at room temperature. Then,
the as-cast specimens were naturally aged for 2 months, 9 months, and 12 months at
room temperature. Tensile tests were performed using a universal testing machine (UTM,
DEAKYUNG TECH. & TESTER Mfg. Co., Ltd., DTU-900MHN, Incheon, Republic of Korea)
with a constant strain rate of 1 mm/min at room temperature. All test specimens were
prepared based on the ASTM E8 standard (Standard Test Method for the Tensile Testing of
Metal Materials) [28]. Tensile tests were performed at least ten times for each alloy in order
to obtain average values.

Table 1. Chemical compositions of Al-20Zn-3Cu alloys (in wt%).

Alloy Zn Cu Ti Zr Fe Si Al

Al-20Zn-3Cu 20 3.0 0.1 0.1 0.5 0.4 Bal.

On the macroscopic scale, the microstructures of synthesized alloys were investigated
using an optical microscope (OM, KEYENCE Co., Ltd., VHX-1000E, Osaka, Japan). Then,
phase identification was done using X-ray diffraction (XRD, BRUKER Co., D8 ADVANCE,
Billerica, MA, USA) having a resolution of 0.01◦ in 2θ. The microscopic structures were
studied in detail using a field-emission scanning electron microscopy (FE-SEM, JEOL
Ltd., JSM-7100F, Akishima, Japan) with an energy-dispersive X-ray spectroscopy (EDXS)
detector. The local nanoscopic microstructure was further investigated using a transmission
electron microscope (FE-TEM, FEI Company, TECNAI ST-F20, Hillsboro, WA, USA). The
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TEM specimens were mechanically polished down to 10–15 µm and then Ar-ion milled at
an acceleration voltage of 4 kV with an incident angle of 6◦ for electron transparency.

3. Results and Discussion

Figure 1 shows the tensile properties of Al-20Zn-3Cu at different natural aging times
from as-cast to 12 months. As reported earlier, the Al-20Zn-3Cu alloy shows fracture
strength (σf) of 308 MPa with elongation of εf = ≈6%. For the natural aging response,
the tensile strength of Al-20Zn-3Cu alloy is naturally aged from σf = 304 (±3.83) MPa
to σf = 320 (±4.28) MPa after 2 months with a slight decrease in the elongation from 6.5
(±1.30)% to 5.4 (±0.87)%. After 9 months, the tensile strength improves drastically to ≈346
(±6.72) MPa with a significant reduction in the degree of elongation at ≈1.2 (±0.64)%.
Then, it mostly plateaus around σf = 346 MPa with a similar elongation rate of ≈1.2%.
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Figure 1. Fracture strength and elongation of Al-20Zn-3Cu with respect to the natural aging time for
the as-cast sample and those at 2 months, 9 months, and 12 months.

Figure 2 shows the 2θ scan profiles recorded by XRD from the Al-20Zn-3Cu alloy for
different natural aging times. The XRD profiles consist of the strongest major peaks of
α-Al with the weak peaks for second phases that formed in the synthesized alloys. In the
as-cast Al-20Zn-3Cu alloy, the major peaks of Al are found at 2θ values of 38.64◦/44.89◦,
which can be indexed as {111}Al for 38.64◦ and {200}Al for 44.89◦. The experimental 2θ
values are compared with the calculated 2θ values based on the reported crystallographic
information of Al (fcc, Fm3m, 225). The calculated 2θ values of {111}Al and {200}Al are
respectively 38.472◦ and 44.738◦. Considering the experimental 2θ values of Al, the peaks
are slightly shifted to a higher 2θ angle, indicating the existence of compressive strain in the
Al matrix. This may stem from the residual stress induced during the solidification process
due to the high content of Zn element, which is often observed in a gravity-cast processing
of high-Zn-based Al alloys. The major peaks of Al are constant regardless of the natural
aging time. This indicates that the residual stress existing in the Al matrix is not affected
by the level of natural aging. For the weak XRD peaks, the as-cast Al-20Zn-3Cu alloy
consists of the secondary phases of Zn (hcp, P63/mmc, 194), Cu (fcc, Fm3m, 225), Al3Zr
(tetragonal, I4/mmm, 139), and Al2Cu (tetragonal, I4/mcm, 140), which are determined
using the reported crystallographic information. On the other hand, the peak intensities
of the secondary phases gradually change with longer natural aging times. In the XRD
profiles of the Al-20Zn-3Cu alloy, the peak related to the Zn phase abruptly decreases after
2 months, while other secondary peaks remain nearly identical. The configuration of the
XRD scan profile shows no distinct changes after 9 months. As shown in Figure 1, the
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natural age-hardening response is observed after 2 months of natural aging. Therefore,
considering the XRD profiles, the microstructural changes observed in the XRD profiles are
closely related to the mechanical properties.
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Figure 3 shows back-scattered electron (BSE) images of Al-20Zn-3Cu with respect to
the natural aging times. For the as-cast Al-20Zn-3Cu alloy (Figure 3a), as reported in a
previous study [19], the grain boundary regions of the Al-20Zn-3Cu alloy mainly consists
of pure Cu and a complex lamellae structure, respectively indicated as I and II in Figure 3a.
The inset of Figure 3a is a magnified image of the complex lamellae structure consisting
of α-Al and η (Zn, HCP). This microstructure is still observed after 2 months, as shown
in the inset of Figure 3b. However, the volume fraction of the complex lamellae structure
decreases drastically after 9 months, as shown in Figure 3c,d. As demonstrated earlier, the
eutectoid lamellae in the grain boundaries impedes the crack propagation, resulting in
the increase in elongation of Al-20Zn-3Cu alloy [19]. Therefore, the significant decrease
in elongation shown in Figure 1 is considered to be a result from the significant reduction
eutectoid lamellae in the grain boundaries of Al-20Zn-3Cu alloy.
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Figure 4 shows the elemental mapping results of Al-20Zn-3Cu for the different natural
aging times. In the as-cast Al-20Zn-3Cu alloy, the Cu and Zn elements are mostly found in
the vicinity of the grain boundaries, correspondingly indicated here by I and II, as shown
in Figure 4a. As demonstrated in the BSE images (Figure 3), the Cu and Zn elements found
in the grain boundaries form large particles of pure Cu and eutectoid lamellae consisting
of Al and Zn phases. The elemental mapping outcome of the Al-20Zn-3Cu alloy indicates
that the Zn constituents gradually migrate into the Al matrix with longer natural aging
times. Thus, a decrease in the Zn element leads to a decrease in the volume fraction of the
η phase in the grain boundaries, resulting in a decrease in the eutectoid lamellae structures,
as demonstrated in Figure 3a–d. It was reported that Zn-contained alloy is naturally aged
even at room temperature due to the relatively high diffusivity of Zn. This originates
from the low melting point of Zn. Resultantly, the Zn-added Al alloys show enhanced
natural age-hardening responses compared to a Zn-free alloy [26,29]. In contrast to the Zn
element, the large Cu particles show no obvious changes in the naturally aged Al-20Zn-3Cu
alloy. Hence, the increase in the tensile strength of the Al-20Zn-3Cu alloy after 2 months is
considered to originate from the decrease in the eutectoid lamella structures in the vicinity
of the grain boundaries. However, after 2 months of natural aging time, the volume fraction
of the eutectoid lamellae slowly decreases such that the enhancement of the tensile strength
after 2 months of natural aging time should be considered at microscopic scale. This will
be discussed further in conjunction with the results of the TEM investigation.
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Figure 4. Elemental mapping results of Al-20Zn-3Cu: (a) as-cast, (b) 2 months, (c) 9 months, and
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Figure 5 shows Z-contrast images of the Al-20Zn-3Cu alloys according to the natural
aging times, in this case as-cast and 9 months. As shown in Figure 5a,b, the Al-20Zn-
3Cu alloy consists of very fine nanoprecipitates. Two types of nanoprecipitates can be
observed in the α-Al matrix of the Al-20Zn-3Cu alloy, as indicated by the I and II arrows in
Figure 5a. A chemical investigation showed that the nanoprecipitates I and II are respec-
tively composed of a Zn-Cu-rich and a Zn-rich phase. More details of phase identification
can be found elsewhere [30]. Nanoprecipitate I (Zn-Cu-rich phase) has average dimensions
of ≈5 × 15 nm2 in terms of the length and width, while nanoprecipitate II (Zn-rich phase)
has an average diameter of ≈3 nm. Due to the very fine sizes of these nanoprecipitates,
the corresponding [110] electron diffraction (ED) pattern has no distinct patterns of the
nanoprecipitates that formed in the α-Al matrix. Similarly, as shown in Figure 5b, the
morphology of nanoprecipitates in the α-Al matrix shows no significant change after
2 months of natural aging time. In contrast, severe microstructural evolution is observed
after 9 months of natural aging time. As shown in Figure 5c, fine nanoprecipitates of
Zn-Cu-rich and Zn-rich phases drastically grow compared to the as-cast Al-20Zn-3Cu alloy.
Accordingly, the satellite electron spots around the election spots in the α-Al matrix are
evidence of the coarsened nanoprecipitates.
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Figure 5. Typical Z-contrast images respectively recorded from (a) as-cast, (b) 2 months, and (c) 9 months natural-aged
Al-20Zn-3Cu alloys. Corresponding electron diffraction patterns are presented in the insets.

Considering the above, in consequence, the change in the mechanical properties of the
Al-20Zn-3Cu alloy (Figure 1) is strongly affected by the diffusion of Zn into the Al matrix.
The diffusivity of Zn element is known to be relatively high at room temperature due to
the low melting point of Zn [29], meaning that natural aging proceeds spontaneously. In
addition, it has been reported that the Zn element accelerates the aggregation of clusters in
the Al matrix [26], which enhances the strength and lowers the ductility. The decrease in
the Zn phase can also be confirmed from the XRD profiles shown in Figure 2. The amount
of the Zn phase obviously decreases after 2 months of natural aging in the Al-20Zn-3Cu
alloys. As demonstrated in Figure 5, the clusters are induced by the Zn element in the
growth of nanoprecipitates with an increase in the natural aging time.

4. Conclusions

In this study, we investigated the effects of natural aging on the tensile properties of the
Al-20Zn-3Cu alloy. It was demonstrated that the change of tensile properties according to
natural aging times resulted from the microstructural evolution of Al-20Zn-3Cu alloy. The
microstructural change is caused by the relatively high diffusivity of the Zn element at room
temperature. First, the diffusion of the Zn element from the grain boundaries into the α-Al
matrix induces a decrease in the volume fraction of large eutectoid structures consisting of
the α-Al and η (Zn) phases in the Al-20Zn-3Cu alloy with 2 months of natural aging. As
a result, the tensile strength of the Al-20Zn-3Cu alloy increases from 308 to 320 MPa. As
the natural aging grows longer, gradual Zn diffusion facilitates the formation of clusters
in the α-Al matrix, causing the size of the nanoprecipitates in the Al-20Zn-3Cu alloy to
increase drastically, which is very similar to the effect of the peak-aging process. Then, the
significant growth of nanoprecipitates enables the highest tensile strength of ≈346 MPa in
the Al-20Zn-3Cu alloy with significantly reduced ductility by approximately 1%.
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