Mechanism Elucidation of High-Pressure Generation in Cellular Metal at High-Velocity Impact
Abstract
:1. Introduction
2. Mechanism of High-Pressure Generation
2.1. Previous Research Results and Analytical Model
2.2. Mechanism of Ultra-High Pressure Generation
3. Differences in Pressure Depending on Geometry of the Specimen
3.1. Proposed Cellular Material Shape (Sample 1)
3.2. Proposed Cellular Material Shape (Sample 2)
3.3. Advantages of High-Pressure Generation with Cellular Materials
- The advantages of the high pressure in each pore of the cellular material are that it can be used to synthesise new materials efficiently in a single experiment.
- The number and shape of the pores can be easily changed, and the sample preparation is relatively simple using a wire electrical discharge machine.
- High pressure is generated inside the cellular material, so the newly synthesised material is easy to recover.
- Colliding the metal jets of the base material is expected to contribute to new material fabrication. Furthermore, it can be applied to the convergence of metal jets using a conical concave metal block [28].
- The adiabatic compression of air can be achieved by filling the pores with air capsules.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ashby, M.; Evans, A.; Fleck, N.; Gibson, L.; Hutchinson, J.; Wadley, H.; Delale, F. Metal Foams: A Design Guide. Appl. Mech. Rev. 2001, 54, B105–B106. [Google Scholar] [CrossRef]
- Shapovalov, V. Porous Metals. MRS Bull. 1994, 19, 24–28. [Google Scholar] [CrossRef]
- Banhart, J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar] [CrossRef]
- Vesenjak, M.; Duarte, I.; Baumeister, J.; Göhler, H.; Krstulović-Opara, L.; Ren, Z. Bending Performance Evaluation of Aluminium Alloy Tubes Filled with Different Cellular Metal Cores. Compos. Struct. 2020, 234, 111748. [Google Scholar] [CrossRef]
- Peixinho, N.; Carvalho, O.; Areias, C.; Pinto, P.; Silva, F. Compressive Properties and Energy Absorption of Metal-Polymer Hybrid Cellular Structures. Mater. Sci. Eng. A 2020, 794, 139921. [Google Scholar] [CrossRef]
- Vesenjak, M.; Hokamoto, K.; Sakamoto, M.; Nishi, T.; Krstulović-Opara, L.; Ren, Z. Mechanical and Microstructural Analysis of Unidirectional Porous (UniPore) Copper. Mater. Des. 2016, 90, 867–880. [Google Scholar] [CrossRef]
- Hokamoto, K.; Vesenjak, M.; Ren, Z. Fabrication of Cylindrical Uni-Directional Porous Metal with Explosive Compaction. Mater. Lett. 2014, 137, 323–327. [Google Scholar] [CrossRef]
- Zuo, Q.; He, K.; Mao, H.; Dang, X.; Du, R. Manufacturing Process and Mechanical Properties of a Novel Periodic Cellular Metal with Closed Cubic Structure. Mater. Des. 2018, 153, 242–258. [Google Scholar] [CrossRef]
- Bai, X.; Nakayama, A. Quick Estimate of Effective Thermal Conductivity for Fluid-Saturated Metal Frame and Prismatic Cellular Structures. Appl. Therm. Eng. 2019, 160, 114011. [Google Scholar] [CrossRef]
- Sato, Y.; Yuki, K.; Abe, Y.; Kibushi, R.; Unno, N.; Hokamoto, K.; Tanaka, S.; Tomimura, T. Heat Transfer Characteristics of a Gas Flow in Uni-Directional Porous Copper Pipes. In Proceedings of the International Heat Transfer Conference, Beijing, China, 10–15 August 2018. [Google Scholar]
- Fiedler, T.; Borovinšek, M.; Hokamoto, K.; Vesenjak, M. High-Performance Thermal Capacitors Made by Explosion Forming. Int. J. Heat Mass Transf. 2015, 83, 366–371. [Google Scholar] [CrossRef]
- Parsons, E.M. Lightweight Cellular Metal Composites with Zero and Tunable Thermal Expansion Enabled by Ultrasonic Additive Manufacturing: Modeling, Manufacturing, and Testing. Compos. Struct. 2019, 223, 110656. [Google Scholar] [CrossRef]
- Hohe, J.; Hardenacke, V.; Fascio, V.; Girard, Y.; Baumeister, J.; Stöbener, K.; Weise, J.; Lehmhus, D.; Pattofatto, S.; Zeng, H.; et al. Numerical and Experimental Design of Graded Cellular Sandwich Cores for Multi-Functional Aerospace Applications. Mater. Des. 2012, 39, 20–32. [Google Scholar] [CrossRef]
- Prabhu, A.; Gadgil, M. Trace Metals in Cellular Metabolism and Their Impact on Recombinant Protein Production. Process Biochem. 2021, 110, 251–262. [Google Scholar] [CrossRef]
- Jaivignesh, M.; Babu, A.S.; Arumaikkannu, G. In-Vitro Analysis of Titanium Cellular Structures Fabricated by Direct Metal Laser Sintering. Mater. Today Proc. 2020, 22, 2372–2377. [Google Scholar] [CrossRef]
- Attar, H.; Ehtemam-Haghighi, S.; Soro, N.; Kent, D.; Dargusch, M.S. Additive Manufacturing of Low-Cost Porous Titanium-Based Composites for Biomedical Applications: Advantages, Challenges and Opinion for Future Development. J. Alloys Compd. 2020, 827, 154263. [Google Scholar] [CrossRef]
- Wu, Q.; Luo, M.; Han, J.; Peng, W.; Zhao, Y.; Chen, D.; Peng, M.; Liu, J.; de Groot, F.M.F.; Tan, Y. Identifying Electrocatalytic Sites of the Nanoporous Copper–Ruthenium Alloy for Hydrogen Evolution Reaction in Alkaline Electrolyte. ACS Energy Lett. 2020, 5, 192–199. [Google Scholar] [CrossRef]
- Qin, C.; Zheng, D.; Hu, Q.; Zhang, X.; Wang, Z.; Li, Y.; Zhu, J.; Ou, J.Z.; Yang, C.; Wang, Y. Flexible Integrated Metallic Glass-Based Sandwich Electrodes for High-Performance Wearable All-Solid-State Supercapacitors. Appl. Mater. Today 2020, 19, 100539. [Google Scholar] [CrossRef]
- Novak, N.; Hokamoto, K.; Vesenjak, M.; Ren, Z. Mechanical Behaviour of Auxetic Cellular Structures Built from Inverted Tetrapods at High Strain Rates. Int. J. Impact Eng. 2018, 122, 83–90. [Google Scholar] [CrossRef]
- Nishi, M.; Tanaka, S.; Vesenjak, M.; Ren, Z.; Hokamoto, K. Experimental and Computational Analysis of the Uni-Directional Porous (UniPore) Copper Mechanical Response at High-Velocity Impact. Int. J. Impact Eng. 2020, 136, 103409. [Google Scholar] [CrossRef]
- Tanaka, S.; Hokamoto, K.; Irie, S.; Okano, T.; Ren, Z.; Vesenjak, M.; Itoh, S. High-Velocity Impact Experiment of Aluminum Foam Sample Using Powder Gun. Measurement 2011, 44, 2185–2189. [Google Scholar] [CrossRef]
- Tetsuo, I.; Ayako, K.; Shizue, S.; Toru, I.; Hitoshi, S. Ultrahard Polycrystalline Diamond from Graphite. Nature 2003, 421, 599–600. [Google Scholar]
- Kamegawa, A.; Kataoka, R.; Okadaa, M. High Pressure Synthesis of Novel Li-TM Hydrides (TM = Nb, Ta). Energy Procedia 2012, 29, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Nemat-Nasser, S.; Okinaka, T.; Nesterenko, V. Experimental Observation and Computational Simulation of Dynamic Void Collapse in Single Crystal Cooper. Mater. Sci. Eng. A 1998, 249, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Meyers, M.; Murr, E.L. Shock Waves and High-Strain-Rate Phenomena in Metals; Springer: London, UK, 1981. [Google Scholar]
- Crossland, B. Explosive Welding of Metals and Its Application; Clarendon Press: Oxford, UK, 1982. [Google Scholar]
- Grignon, F.; Benson, D.; Vecchio, K.S.; Meyers, M.A. Explosive Welding of Aluminum to Aluminum: Analysis, Computations and Experiments. Int. J. Impact Eng. 2004, 30, 1333–1351. [Google Scholar] [CrossRef]
- Kira, A.; Takaenoki, D.; Hamashima, H.; Tomoshige, R.; Fujita, M.; Hokamoto, K.; Itoh, S. Optical Observation of Extremely High Impulsive Pressure Generator Using Collision of High Velocity Metal Jets. Mater. Sci. Forum 2004, 465, 265–270. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishi, M.; Tanaka, S.; Mori, A.; Vesenjak, M.; Ren, Z.; Hokamoto, K. Mechanism Elucidation of High-Pressure Generation in Cellular Metal at High-Velocity Impact. Metals 2022, 12, 128. https://doi.org/10.3390/met12010128
Nishi M, Tanaka S, Mori A, Vesenjak M, Ren Z, Hokamoto K. Mechanism Elucidation of High-Pressure Generation in Cellular Metal at High-Velocity Impact. Metals. 2022; 12(1):128. https://doi.org/10.3390/met12010128
Chicago/Turabian StyleNishi, Masatoshi, Shigeru Tanaka, Akihisa Mori, Matej Vesenjak, Zoran Ren, and Kazuyuki Hokamoto. 2022. "Mechanism Elucidation of High-Pressure Generation in Cellular Metal at High-Velocity Impact" Metals 12, no. 1: 128. https://doi.org/10.3390/met12010128
APA StyleNishi, M., Tanaka, S., Mori, A., Vesenjak, M., Ren, Z., & Hokamoto, K. (2022). Mechanism Elucidation of High-Pressure Generation in Cellular Metal at High-Velocity Impact. Metals, 12(1), 128. https://doi.org/10.3390/met12010128