Characterisation of Compressive Behaviour of Low-Carbon and Third Generation Advanced High Strength Steel Sheets with Freely Movable Anti-buckling Bars
Abstract
:1. Introduction
2. Methods
2.1. Horizontal Sheet Compression Tester with Moving Anti-Buckling Bars
2.2. Materials
2.3. Uniaxial Tensile Test
2.4. Tensile and Compressive Tests under Side Force
2.5. Finite Element Analysis
3. Results and Discussion
3.1. Uniaxial Behaviour
3.2. Tension and Compression Behaviour of the Low-Carbon Steel
3.3. Tension and Compression Behaviour of the 3G AHSS
4. Conclusions
- The tensile and compressive stress–strain curves under side force were successfully measured at room temperature and 175 °C using a novel sheet compression tester. The freely movable anti-buckling bars removed open regions in the specimen, which may cause buckling.
- The measured apparent stress–strain curves of the low-carbon steel under side force showed the flow stress asymmetry of tension and compression, although low-carbon steel is known to have symmetric tension–compression strengths.
- The finite element simulations confirmed that the flow stress asymmetry of the low-carbon steel originated from the biaxial stress effect (localisation of normal stress in the thickness direction because of non-uniform deformation) and the thickness effect (the change in the actual side force and thus the friction force due to thinning and thickening).
- Decreasing the friction coefficient and side force is beneficial for the reduction in the apparent asymmetry.
- A data correction procedure based on the finite element method was proposed, and the corrected stress–strain curves of the low-carbon steel were symmetric.
- The correction procedure was applied to the 3G AHSS at room temperature and 175 °C. The corrected compressive stress–strain curve was larger in magnitude than the tensile curve at room temperature, which is attributed to the TRIP effect. However, the asymmetry was significantly reduced at 175 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoshida, F.; Uemori, T.; Fujiwara, K. Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain. Int. J. Plast. 2002, 18, 633–659. [Google Scholar] [CrossRef]
- Chung, K.; Lee, M.G.; Kim, D.; Kim, C.; Wenner, M.L.; Barlat, F. Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions part I: Theory and formulation. Int. J. Plast. 2005, 21, 861–882. [Google Scholar]
- Lee, M.G.; Kim, D.; Kim, C.; Wenner, M.L.; Wagoner, R.H.; Chung, K. Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions part II: Characterization of material properties. Int. J. Plast. 2005, 21, 883–914. [Google Scholar]
- Kim, J.H.; Lee, M.G.; Kim, S.J.; Chung, K.; Wagoner, R.H. Reverse effect of tensile force on sidewall curl for materials with tensile/compressive strength difference. Metals Mater. Int. 2009, 15, 353–363. [Google Scholar] [CrossRef]
- Sun, L.; Wagoner, R.H. Complex unloading behavior: Nature of the deformation and its consistent constitutive representation. Int. J. Plast. 2011, 27, 1126–1144. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, M.G.; Barlat, F. Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction. Int. J. Plast. 2012, 29, 13–41. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.Y.; Barlat, F.; Wagoner, R.H.; Chung, K.; Lee, M.G. Extension of quasi-plastic-elastic approach to incorporate complex plastic flow behaviour—Application to springback of advanced high-strength steels. Int. J. Plast. 2013, 45, 140–159. [Google Scholar] [CrossRef]
- Lee, E.H.; Stoughton, T.B.; Yoon, J.W. A new strategy to describe nonlinear elastic and asymmetric plastic behaviors with one yield surface. Int. J. Plast. 2017, 98, 217–238. [Google Scholar] [CrossRef]
- Jung, J.; Jun, S.; Lee, H.S.; Kim, B.M.; Lee, M.G.; Kim, J.H. Anisotropic hardening behaviour and springback of advanced high-strength steels. Metals 2017, 7, 480. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Hur, Y.C.; Jun, S.; Lee, H.S.; Kim, B.M.; Kim, J.H. Constitutive modeling of asymmetric hardening behavior of transformation-induced plasticity steels. Int. J. Automot. Technol. 2019, 20, 19–30. [Google Scholar] [CrossRef]
- Merklein, M.; Lechner, M.; Gröbel, D.; Löffler, M.; Schneider, T.; Schulte, R.; Hildenbrand, P. Innovative approaches for controlling the material flow in sheet-bulk metal forming processes. Manuf. Rev. 2016, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Lyu, T.; Löhnert, S.; Wriggers, P. Multilevel Material Modeling to Study Plastic Deformation for Sheet-Bulk Metal Forming Under Different Loading Histories. In Sheet Bulk Metal Forming; TCRC73 2020. Lecture Notes in Production Engineering; Merklein, M., Tekkaya, A.E., Behrens, B.A., Eds.; Springer: Cham, Switzerland, 2021; pp. 334–353. [Google Scholar]
- Alves, L.; Nielsen, C.; Martins, P. Revisiting the Fundamentals and Capabilities of the Stack Compression Test. Exp. Mech. 2011, 51, 1565–1572. [Google Scholar] [CrossRef]
- Martínez, A.; Miguel, V.; Coello, J.; Manjabacas, M. Determining stress distribution by tension and by compression applied to steel: Special analysis for TRIP steel sheets. Mater. Des. 2017, 125, 11–25. [Google Scholar] [CrossRef]
- Sun, L.; Wagoner, R.H. Proportional and non-proportional hardening behavior of dual-phase steels. Int. J. Plast. 2013, 45, 174–187. [Google Scholar] [CrossRef]
- Seo, K.Y.; Kim, J.H.; Lee, H.S.; Kim, J.H.; Kim, B.M. Effect of constitutive equations on springback prediction accuracy in the TRIP1180 cold stamping. Metals 2017, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Park, T.; Hector, L.G.; Hu, X.; Abu-Farha, F.; Fellinger, M.R.; Kim, H.; Esmaeilpour, R.; Pourboghrat, F. Crystal plasticity modeling of 3G multi-phase AHSS with martensitic transformation. Int. J. Plast. 2019, 120, 1–46. [Google Scholar] [CrossRef]
- Kuwabara, T.; Kumano, Y.; Ziegelheim, J.; Kurosaki, I. Tension–compression asymmetry of phosphor bronze for electronic parts and its effect on bending behavior. Int. J. Plast. 2009, 25, 1759–1776. [Google Scholar] [CrossRef]
- Maeda, T.; Noma, N.; Kuwabara, T.; Barlat, F.; Korkolis, Y.P. Experimental verification of the tension-compression asymmetry of the flow stresses of a high strength steel sheet. Int. Conf. Technol. Plast. 2017, 207, 1976–1981. [Google Scholar] [CrossRef]
- Maeda, T.; Noma, N.; Kuwabara, T.; Barlat, F.; Korkolis, Y.P. Measurement of the strength differential effect of DP980 steel sheet and experimental validation using pure bending test. J. Mater. Process. Technol. 2018, 256, 247–253. [Google Scholar] [CrossRef]
- Lee, M.G.; Kim, J.H.; Kim, D.; Seo, O.S.; Nguyen, N.T.; Kim, H.Y. Anisotropic hardening of sheet metals at elevated temperature: Tension-compressions test development and validation. Exp. Mech. 2013, 53, 1039–1055. [Google Scholar] [CrossRef]
- Ayllón, J.; Miguel, V.; Martínez-Martínez, A.; Coello, J.; Naranjo, J.A. A new approach for obtaining the compression behavior of anisotropic sheet metals application to a wide range of test conditions. Metals 2020, 10, 1374. [Google Scholar] [CrossRef]
- Boger, R.K.; Wagoner, R.H.; Barlat, F.; Lee, M.G.; Chung, K. Continuous, large strain, tension/compression testing of sheet material. Int. J. Plast. 2005, 21, 2319–2343. [Google Scholar] [CrossRef]
- Piao, K.; Lee, J.K.; Kim, J.H.; Kim, H.Y.; Chung, K.; Barlat, F.; Wagoner, R.H. A sheet tension/compression test for elevated temperature. Int. J. Plast. 2012, 38, 27–46. [Google Scholar] [CrossRef]
- Bae, G.H.; Huh, H. Tension/compression test of auto-body steel sheets with the variation of the pre-strain and the strain rate. Mater. Charact. 2011, 72, 213–225. [Google Scholar]
- Cao, J.; Lee, W.; Cheng, H.S.; Seniw, M.; Wang, H.P.; Chung, K. Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals. Int. J. Plast. 2009, 25, 942–972. [Google Scholar] [CrossRef]
- Barienti, K.; Klein, M.; Wackenrohr, S.; Herbst, S.; Nurnberger, F.; Maier, H.J. Influence of pre-strain on very-low-cycle stress-strain response and springback behavior. J. Mater. Eng. Perform. 2021, 30, 33–41. [Google Scholar] [CrossRef]
- Joo, G.; Huh, H. Rate-dependent isotropic—Kinematic hardening model in tension—Compression of TRIP and TWIP steel sheets. Int. J. Mech. Sci. 2018, 146–147, 432–444. [Google Scholar] [CrossRef]
- Stoudt, M.R.; Levine, L.E.; Ma, L. Designing a uniaxial tension/compression test for springback analysis in high-strength steel sheets. Exp. Mech. 2017, 57, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Beeh, E.; Friedrich, H. Influence of tension-compression asymmetry on the mechanical behavior of AZ31B magnesium alloy sheets in bending. J. Mater. Eng. Perform. 2016, 25, 853–865. [Google Scholar] [CrossRef] [Green Version]
- Olson, G.B.; Cohen, M. Stress-assisted isothermal martensitic transformation: Application to TRIP steels. Metall. Trans. A 1982, 13, 1907–1914. [Google Scholar] [CrossRef]
- Iwamoto, T.; Tsuta, T.; Tomita, Y. Investigation on deformation mode dependence of strain-induced martensitic transformation in TRIP steels and modelling of transformation kinetics. Int. J. Mech. Sci. 1998, 40, 173–182. [Google Scholar] [CrossRef]
- Tomita, Y.; Iwamoto, T. Computational prediction of deformation behavior of TRIP steels under cyclic loading. Int. J. Mech. Sci. 2001, 43, 2017–2034. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Ha, J.; Bong, H.J.; Kim, D.; Lee, M.G. Evolutionary anisotropy and flow stress in advanced high strength steels under loading path changes. Mater. Sci. Eng. A 2016, 672, 65–77. [Google Scholar] [CrossRef]
- Stringfellow, R.G.; Parks, D.M.; Olson, G.B. A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metall. Mater. 1992, 40, 1703–1716. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Barlat, F.; Kim, D.; Lee, M. Experiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel. Acta Mater. 2015, 97, 435–444. [Google Scholar] [CrossRef]
Type | Opening | Side Force | Strain Measurement | Correction | Source |
---|---|---|---|---|---|
Comb | Shoulder | Hydraulic actuator | Strain gauge | None | [18,19,20] |
Shoulder | Hydraulic actuator | Laser extensometer | Friction | [9,21] | |
None | Bolt | Ex-situ cross-section measurement | Friction | [22] | |
Plate | Shoulder | Coil-spring | Clip-on extensometer | None | [1] |
Grip | Hydraulic actuator | Laser extensometer | Friction and biaxial stress effect | [23,24] | |
Grip | Coil-spring | Digital image correlation | Friction and biaxial stress effect | [25] | |
None | Bolt | Laser extensometer | None | [26] | |
Grip | Bolt | Clip-on extensometer | None | [27] | |
Grip | Coil-spring | Digital image correlation | None | [28] | |
Grip | Hydraulic | Digital image correlation | Friction | [29] | |
Groove | Gauge region | None | Digital image correlation | None | [30] |
Material | Low-Carbon Steel | 3G AHSS | |
---|---|---|---|
Temperature | RT | RT | 175 °C |
Yield Strength [MPa] | 390.4 | 1026 | 1109 |
Tensile Strength [MPa] | 495.0 | 1546 | 1622 |
Elongation [%] | 34.06 | 11.13 | 11.84 |
Equivalent plastic strain limit for tabular input | 0.24 | 0.06 | 0.07 |
[MPa] | 545.4 | 1611 | 1632 |
Q [MPa] | 156,185 | 223.8 | 414.5 |
b | 0.0021 | 4.473 | 5.696 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Jung, J.; Park, T.; Kim, D.; Moon, Y.H.; Pourboghrat, F.; Kim, J.H. Characterisation of Compressive Behaviour of Low-Carbon and Third Generation Advanced High Strength Steel Sheets with Freely Movable Anti-buckling Bars. Metals 2022, 12, 161. https://doi.org/10.3390/met12010161
Kim J, Jung J, Park T, Kim D, Moon YH, Pourboghrat F, Kim JH. Characterisation of Compressive Behaviour of Low-Carbon and Third Generation Advanced High Strength Steel Sheets with Freely Movable Anti-buckling Bars. Metals. 2022; 12(1):161. https://doi.org/10.3390/met12010161
Chicago/Turabian StyleKim, Jaehoon, Jaebong Jung, Taejoon Park, Daeyong Kim, Young Hoon Moon, Farhang Pourboghrat, and Ji Hoon Kim. 2022. "Characterisation of Compressive Behaviour of Low-Carbon and Third Generation Advanced High Strength Steel Sheets with Freely Movable Anti-buckling Bars" Metals 12, no. 1: 161. https://doi.org/10.3390/met12010161
APA StyleKim, J., Jung, J., Park, T., Kim, D., Moon, Y. H., Pourboghrat, F., & Kim, J. H. (2022). Characterisation of Compressive Behaviour of Low-Carbon and Third Generation Advanced High Strength Steel Sheets with Freely Movable Anti-buckling Bars. Metals, 12(1), 161. https://doi.org/10.3390/met12010161