Effects of Flow Velocity and Sand Concentration on Hydro-Abrasive Erosion Behavior of HVOF-Sprayed WC-Cr3C2-Ni Coating in 3.5 wt.% NaCl Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Influences of Microstructure, and Mechanical and Corrosion Properties on HAE
4.2. Influences of FV and SC on HAE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
HAE | hydro-abrasive erosion |
FV | flow velocity |
SC | sand concentration |
VLR | volume loss rate |
HVOF | high-velocity oxygen fuel |
H | hardness |
E | elastic modulus |
XRD | X-ray diffractometer |
FE-SEM | field-emission scanning electron microscopy |
EDS | energy-dispersive spectroscopy |
JCPDS | Joint committee powder diffraction standards |
References
- Wang, Y.; Zheng, Y.G.; Ke, W.; Sun, W.H.; Hou, W.L.; Chang, X.C.; Wang, J.Q. Slurry erosion-corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings for marine pump in sand-containing NaCl solutions. Corr. Sci. 2011, 53, 3177–3185. [Google Scholar] [CrossRef]
- Liu, M.M.; Wang, Z.B.; Hu, H.X.; Zhang, L.M.; Zheng, Y.G. Effect of sealing treatments on erosion-corrosion of a Fe-based amorphous metallic coating in 3.5 wt.% NaCl solution with 2 wt.% sand. Metals 2022, 12, 680. [Google Scholar] [CrossRef]
- E, M.; Hu, H.X.; Guo, X.M.; Zheng, Y.G. Comparison of the cavitation erosion and slurry erosion behavior of cobalt-based and nickel-based coatings. Wear 2019, 428–429, 246–257. [Google Scholar] [CrossRef]
- Wang, J.K.; Chen, Y.S.; Zhang, Y.H.; Dai, W.Y.; Xu, Q.; Li, W.Z.; Liu, Y. Corrosion and slurry erosion wear performances of coaxial direct laser deposited CoCrFeNiCu1-xMox high-entropy coatings by modulating the second-phase precipitation. Mater. Des. 2020, 212, 110277. [Google Scholar] [CrossRef]
- Babu, A.; Perumal, G.; Arora, H.S.; Grewal, H.S. Enhanced slurry and cavitation erosion resistance of deep cryogenically treated thermal spray coatings for hydroturbine applications. Renew. Energy 2021, 180, 1044–1055. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, S.S.; Wang, S.Y.; Wang, H.; Ramachandran, C.S. Wear, erosion and corrosion resistance of HVOF-sprayed WC and Cr3C2 based coatings for electrolytic hard chrome replacement. Int. J. Refract. Met. Hard Mater. 2019, 81, 242–252. [Google Scholar] [CrossRef]
- Santacruz, G.; Takimi, A.S.; de Camargo, F.V.; Bergmann, C.P.; Fragassa, C. Comparative study of jet slurry erosion of martensitic stainless steel with tungsten carbide HVOF coating. Metals 2019, 9, 600. [Google Scholar] [CrossRef]
- Hong, S.; Wu, Y.P.; Wu, J.H.; Zhang, Y.Q.; Zheng, Y.; Li, J.H.; Lin, J.R. Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines. Renew. Energy 2021, 164, 1089–1099. [Google Scholar]
- Ribu, D.C.; Rajesh, R.; Thirumalaikumarasamy, D.; Kaladgi, A.R.; Saleel, C.A.; Nisar, K.S.; Shaik, S.; Afzal, A. Experimental investigation of erosion corrosion performance and slurry erosion mechanism of HVOF sprayed WC-10Co coatings using design of experiment approach. J. Mater. Res. Technol. 2022, 18, 293–314. [Google Scholar] [CrossRef]
- Lin, J.R.; Hong, S.; Zheng, Y.; Sun, W.; Kang, M.; Fu, X.Q. Cavitation erosion resistance in NaCl medium of HVOF sprayed WC-based cermet coatings at various flow velocities: A comparative study on the effect of Ni and CoCr binder phases. Int. J. Refract. Met. Hard Mater. 2021, 94, 105407. [Google Scholar] [CrossRef]
- Souza, V.A.D.; Neville, A. Aspects of microstructure on the synergy and overall material loss of thermal spray coatings in erosion-corrosion environments. Wear 2007, 263, 339–346. [Google Scholar] [CrossRef]
- Mishra, T.K.; Kumar, A.; Sinha, S.K. Experimental investigation and study of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr coating on its sliding wear behaviour. Int. J. Refract. Met. Hard Mater. 2021, 94, 105404. [Google Scholar] [CrossRef]
- Hawthorne, H.M.; Arsenault, B.; Immarigeon, J.P.; Legoux, J.G.; Parameswaran, V.R. Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings. Wear 1999, 225–229, 825–834. [Google Scholar] [CrossRef]
- Hong, S.; Mei, D.C.; Wu, J.H.; Lin, J.R.; Wu, Y.P.; Li, J.H.; Zheng, Y. Hydro-abrasive erosion and cavitation-silt erosion characteristics of HVOF sprayed WC-Ni cermet coatings under different flow velocities and sand concentrations. Ceram. Int. 2022; in press. [Google Scholar] [CrossRef]
- Bhosale, D.G.; Rathod, W.S. Tribological behaviour of atmospheric plasma and high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings at elevated temperatures. Ceram. Int. 2020, 46, 12373–12385. [Google Scholar] [CrossRef]
- Hou, G.L.; Zhou, H.D.; An, Y.L.; Liu, G.; Chen, J.M.; Chen, J. Microstructure and high-temperature friction and wear behavior of WC-(W,Cr)2C-Ni coating prepared by high velocity oxy-fuel spraying. Surf. Coat. Technol. 2011, 206, 82–94. [Google Scholar] [CrossRef]
- Berger, L.-M.; Saaro, S.; Naumann, T.; Wiener, M.; Weihnacht, V.; Thiele, S.; Suchánek, J. Microstructure and properties of HVOF-sprayed chromium alloyed WC-Co and WC-Ni coatings. Surf. Coat. Technol. 2008, 202, 4417–4421. [Google Scholar] [CrossRef]
- Zhang, S.H.; Cho, T.Y.; Yoon, J.H.; Li, M.X.; Shum, P.W.; Kwon, S.C. Investigation on microstructure, surface properties and anti-wear performance of HVOF sprayed WC-CrC-Ni coatings modified by laser heat treatment. Mater. Sci. Eng. B 2009, 162, 127–134. [Google Scholar] [CrossRef]
- Thiruvikraman, C.; Balasubramanian, V.; Sridhar, K. Optimizing HVOF spray parameters to maximize bonding strength of WC-CrC-Ni coatings on AISI 304L stainless steel. J. Therm. Spray Technol. 2014, 23, 860–875. [Google Scholar] [CrossRef]
- Qiao, L.; Wu, Y.P.; Hong, S.; Long, W.Y.; Cheng, J. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceram. Int. 2021, 47, 1829–1836. [Google Scholar] [CrossRef]
- Berger, L.-M.; Saaro, S.; Naumann, T.; Kašparova, M.; Zahálka, F. Influence of feedstock powder characteristics and spray processes on microstructure and properties of WC-(W,Cr)2C-Ni hardmetal coatings. Surf. Coat. Technol. 2010, 205, 1080–1087. [Google Scholar] [CrossRef]
- Hou, G.L.; Zhao, X.Q.; Zhou, H.D.; Lu, J.J.; An, Y.L.; Chen, J.M.; Yang, J. Cavitation erosion of several oxy-fuel sprayed coatings tested in deionized water and artificial seawater. Wear 2014, 311, 81–92. [Google Scholar] [CrossRef]
- Hong, S.; Wu, Y.P.; Wu, J.H.; Zheng, Y.; Zhang, Y.Q.; Cheng, J.B.; Li, J.H.; Lin, J.R. Effect of flow velocity on cavitation erosion behavior of HVOF sprayed WC-10Ni and WC-20Cr3C2-7Ni coatings. Int. J. Refract. Met. Hard Mater. 2020, 92, 105330. [Google Scholar] [CrossRef]
- Hong, S.; Lin, J.R.; Wu, Y.P.; Wu, J.H.; Zheng, Y.; Zhang, Y.Q.; Cheng, J.B.; Sun, W. Cavitation erosion characteristics at various flow velocities in NaCl medium of carbide-based cermet coatings prepared by HVOF spraying. Ceram. Int. 2021, 47, 1929–1939. [Google Scholar] [CrossRef]
- Szala, M.; Łatka, L.; Walczak, M.; Winnicki, M. Comparative study on the cavitation erosion and sliding wear of cold-sprayed Al/Al2O3 and Cu/Al2O3 coatings, and stainless steel, aluminium alloy, copper and brass. Metals 2020, 10, 856. [Google Scholar] [CrossRef]
- Volkov-Husović, T.; Ivanić, I.; Kožuh, S.; Stevanović, S.; Vlahović, M.; Martinović, S.; Stopic, S.; Gojić, M. Microstructural and cavitation erosion behavior of the CuAlNi shape memory alloy. Metals 2021, 11, 997. [Google Scholar] [CrossRef]
- Hong, S.; Wu, Y.P.; Zhang, J.F.; Zheng, Y.G.; Qin, Y.J.; Gao, W.W.; Li, G.Y. Cavitation erosion behavior and mechanism of HVOF sprayed WC-CoCr coating in 3.5 wt.% NaCl solution. Trans. Indian Inst. Met. 2015, 68, 151–159. [Google Scholar] [CrossRef]
- Lu, X.X.; Shi, Y.B.; Wang, M. Prediction about seabed erosion/siltation near the water intake of third-phase project for Qinshan nuclear power plant. J. Sediments Res. 2000, 6, 10–15. (In Chinese) [Google Scholar] [CrossRef]
- Celik, E.; Culha, O.; Uyulgan, B.; Ak Azem, N.F.; Ozdemir, I.; Turk, A. Assessment of microstructural and mechanical properties of HVOF sprayed WC-based cermet coatings for a roller cylinder. Surf. Coat. Technol. 2006, 200, 4320–4328. [Google Scholar] [CrossRef]
- Berger, L.-M.; Saaro, S.; Naumann, T.; Kašparova, M.; Zahálka, F. Microstructure and properties of HVOF-sprayed WC-(W,Cr)2C-Ni coatings. J. Therm. Spray Technol. 2008, 17, 395–403. [Google Scholar] [CrossRef]
- Bhosale, D.G.; Prabhu, T.R.; Rathod, W.S. Sliding and erosion wear behaviour of thermal sprayed WC-Cr3C2-Ni coatings. Surf. Coat. Technol. 2020, 400, 126192. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, L.; He, D.Y.; Wang, F.C.; Liu, Y.B. Microstructure and electrochemical behavior of Fe-based amorphous metallic coatings fabricated by atmospheric plasma spraying. J. Therm. Spray Technol. 2011, 20, 344–350. [Google Scholar] [CrossRef]
- Babu, P.S.; Basu, B.; Sundararajan, G. Processing-structure-property correlation and decarburization phenomenon in detonation sprayed WC-12Co coatings. Acta Mater. 2008, 56, 5012–5026. [Google Scholar] [CrossRef]
- Fu, W.; Chen, Q.Y.; Yang, C.; Yi, D.L.; Yao, H.L.; Wang, H.T.; Ji, G.C.; Wang, F. Microstructure and properties of high velocity oxygen fuel sprayed (WC-Co)-Ni coatings. Ceram. Int. 2020, 46, 14940–14948. [Google Scholar] [CrossRef]
- Bansal, A.; Singh, J.; Singh, H. Slurry erosion behavior of HVOF-sprayed WC-10Co-4Cr coated SS 316 steel with and without PTFE modification. J. Therm. Spray Technol. 2019, 28, 1448–1465. [Google Scholar] [CrossRef]
- Maekai, I.A.; Harmain, G.A.; Zehab-ud-Din; Masoodi, J.H. Resistance to slurry erosion by WC-10Co-4Cr and Cr3C2-25(Ni20Cr) coatings deposited by HVOF stainless steel F6NM. Int. J. Refract. Met. Hard Mater. 2022, 105, 105830. [Google Scholar] [CrossRef]
- Dular, M.; Stoffel, B.; Sirok, B. Development of a cavitation erosion model. Wear 2006, 261, 642–655. [Google Scholar] [CrossRef]
- Aguirre, J.; Walczak, M.; Rohwerder, M. The mechanism of erosion-corrosion of API X65 steel under turbulent slurry flow: Effect of nominal flow velocity and oxygen content. Wear 2019, 438–439, 203053. [Google Scholar] [CrossRef]
- Su, K.P.; Wu, J.H.; Xia, D.K. Classification of regimes determining ultrasonic cavitation erosion in solid particle suspensions. Ultrason. Sonochem. 2020, 68, 105214. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.B.; Kang, J.J.; Yue, W.; Fu, Z.Q.; Zhu, L.N.; She, D.S.; Liang, J.; Wang, C.B. Performance evaluation of HVOF sprayed WC-10Co4Cr coatings under slurry erosion. Surf. Eng. 2019, 35, 816–825. [Google Scholar] [CrossRef]
- Wheeler, D.W.; Wood, R.J.K. Erosion damage in diamond coatings by high velocity sand impacts. Philos. Mag. 2007, 87, 5719–5740. [Google Scholar] [CrossRef]
- Katsumata, T.; Matsubara, Y.; Yamamoto, K.; Iwai, Y. Evaluation of coating properties with a Micro Slurry-jet Erosion (MSE) test: Effects of the shape and size of erodent particles on erosion behaviors of TiN coating. Surf. Coat. Technol. 2021, 421, 127443. [Google Scholar] [CrossRef]
- Sapate, S.G.; Tangselwar, N.; Paul, S.N.; Rathod, R.C.; Mehar, S.; Gowtam, D.S.; Roy, M. Effect of coating thickness on the slurry erosion resistance of HVOF-sprayed WC-10Co-4Cr coatings. J. Therm. Spray Technol. 2021, 30, 1365–1379. [Google Scholar] [CrossRef]
- Li, Z.X.; Zhang, L.M.; Udoh, I.I.; Ma, A.L.; Zheng, Y.G. Deformation-induced martensite in 304 stainless steel during cavitation erosion: Effect on passive film stability and the interaction between cavitation erosion and corrosion. Tribol. Int. 2022, 167, 107422. [Google Scholar] [CrossRef]
- Zheng, Z.B.; Long, J.; Guo, Y.; Hui, L.; Zheng, K.H.; Qiao, Y.X. Corrosion and impact–abrasion–corrosion behaviors of quenching–tempering martensitic Fe–Cr alloy steels. J. Iron Steel Res. Int. 2022. [Google Scholar] [CrossRef]
- Sadeghi, E.; Markocsan, N.; Joshi, S. Advances in corrosion-resistant thermal spray coatings for renewable energy power plants. Part I: Effect of composition and microstructure. J. Therm. Spray Technol. 2019, 28, 1749–1788. [Google Scholar] [CrossRef]
- Sadeghimeresht, E.; Markocsan, N.; Nylén, P. Microstructural characteristics and corrosion behavior of HVAF- and HVOF-sprayed Fe-based coatings. Surf. Coat. Technol. 2017, 318, 365–373. [Google Scholar] [CrossRef]
- Yi, J.Z.; Hu, H.X.; Wang, Z.B.; Zheng, Y.G. Comparison of critical flow velocity for erosion-corrosion of six stainless steels in 3.5 wt% NaCl solution containing 2 wt% silica sand particles. Wear 2018, 416–417, 62–71. [Google Scholar] [CrossRef]
Operating Parameters | Flow Velocity (m·s−1) | |||
---|---|---|---|---|
23.4 | 33.5 | 41.9 | ||
Sand concentration (kg·m−3) | 10 | √ | ||
20 | √ | √ | √ | |
35 | √ |
Materials | WC-Cr3C2-Ni Coating | 1Cr18Ni9Ti Steel |
---|---|---|
Hardness (H), GPa | 11.9 ± 1.7 | 2.9 ± 0.4 |
Elastic modulus (E), GPa | 323 ± 29 | 117 ± 14 |
Corrosion potential (Ecorr), mV vs. SCE | −510 | −204 |
Current density (icorr), nA·cm−2 | 7480 | 39.5 |
Region | Element (at.%) | ||||
---|---|---|---|---|---|
O | Cr | C | W | Ni | |
A | 9.6 | 14.6 | 57.8 | 12.5 | 5.5 |
B | 16.7 | 6.9 | 60.2 | 10.7 | 5.4 |
C | 8.4 | 3.3 | 62.7 | 22.7 | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Hong, S.; Zheng, Y.; Sun, W.; Zhang, Z.; Kang, M.; Fu, X. Effects of Flow Velocity and Sand Concentration on Hydro-Abrasive Erosion Behavior of HVOF-Sprayed WC-Cr3C2-Ni Coating in 3.5 wt.% NaCl Aqueous Solution. Metals 2022, 12, 1576. https://doi.org/10.3390/met12101576
Lin J, Hong S, Zheng Y, Sun W, Zhang Z, Kang M, Fu X. Effects of Flow Velocity and Sand Concentration on Hydro-Abrasive Erosion Behavior of HVOF-Sprayed WC-Cr3C2-Ni Coating in 3.5 wt.% NaCl Aqueous Solution. Metals. 2022; 12(10):1576. https://doi.org/10.3390/met12101576
Chicago/Turabian StyleLin, Jinran, Sheng Hong, Yuan Zheng, Wei Sun, Zhengwei Zhang, Min Kang, and Xiuqing Fu. 2022. "Effects of Flow Velocity and Sand Concentration on Hydro-Abrasive Erosion Behavior of HVOF-Sprayed WC-Cr3C2-Ni Coating in 3.5 wt.% NaCl Aqueous Solution" Metals 12, no. 10: 1576. https://doi.org/10.3390/met12101576
APA StyleLin, J., Hong, S., Zheng, Y., Sun, W., Zhang, Z., Kang, M., & Fu, X. (2022). Effects of Flow Velocity and Sand Concentration on Hydro-Abrasive Erosion Behavior of HVOF-Sprayed WC-Cr3C2-Ni Coating in 3.5 wt.% NaCl Aqueous Solution. Metals, 12(10), 1576. https://doi.org/10.3390/met12101576