Solid-State Additive Deposition of AA7075 on AZ31B Substrate: Heat Treatment to Improve the Corrosion Fatigue Resistance
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Microstructure Evolution and Residual Stress
3.2. Nanomechanical Properties
3.3. Corrosion Fatigue
4. Conclusions
- TEM and EBSD microstructural analysis identified elongated grains with a high dislocation density observed in the AA7075 coating.
- The quantitative EBSD analysis shows above 90% highly deformed grains. In contrast, fully recrystallized grains were identified in the sample heat-treated at 400 °C temperature, while ~50% recrystallized and deformed grains were noticed in the sample heat-treated at 300 °C temperature.
- A maximum compressive residual stress of −52 MPa and −120 MPa was measured at the surface and subsurface in as-deposited conditions. In contrast, a tensile residual stress of 5 MPa was measured on the surface of the sample heat-treated at 400 °C temperature.
- During heat treatment, a decreasing trend in hardness and an increasing trend in elastic modulus was noticed in the CS AA7075 coating.
- A significant improvement in corrosion fatigue life of the CS AA7075 followed by heat treatment at 300 °C temperature was achieved. This can be recognized due to recrystallization and recovery of the grain structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, U.; Yi, L.; Fei, L.F.; Yasir, M.; Li, C.-J.; Li, C.-X. Enhancement of Corrosion Resistance and Tribological Properties of LA43M Mg Alloy by Cold-Sprayed Aluminum Coatings Reinforced with Alumina and Carbon Nanotubes. J. Therm. Spray Technol. 2021, 30, 668–679. [Google Scholar] [CrossRef]
- Wan, S.; Cui, X.; Jin, Q.; Ma, J.; Wen, X.; Su, W.; Zhang, X.; Jin, G.; Tian, H. Microstructure and properties of cold sprayed aluminum bronze coating on MBLS10A-200 magnesium-lithium alloy. Mater. Chem. Phys. 2022, 281, 125832. [Google Scholar] [CrossRef]
- Chakradhar, R.P.S.; Mouli, G.C.; Barshilia, H.; Srivastava, M. Improved Corrosion Protection of Magnesium Alloys AZ31B and AZ91 by Cold-Sprayed Aluminum Coatings. J. Therm. Spray Technol. 2021, 30, 371–384. [Google Scholar] [CrossRef]
- Akisin, C.J.; Venturi, F.; Bai, M.; Bennett, C.J.; Hussain, T. Microstructure, mechanical and wear resistance properties of low-pressure cold-sprayed Al-7 Mg/Al2O3 and Al-10 Mg/Al2O3 composite coatings. Emergent Mater. 2021, 4, 1569–1581. [Google Scholar] [CrossRef]
- Sabard, A.; McNutt, P.; Begg, H.; Hussain, T. Cold spray deposition of solution heat treated, artificially aged and naturally aged Al 7075 powder. Surf. Coat. Technol. 2020, 385, 125367. [Google Scholar] [CrossRef]
- Tsaknopoulos, K.; Sousa, B.; Massar, C.; Grubbs, J.; Siopis, M.; Cote, D. A Through-Process Experimental Approach to Enable Optimization of Cold Sprayed Al 7075 Consolidation Performance. JOM 2022, 74, 249–259. [Google Scholar] [CrossRef]
- Zhu, L.; Song, G. Improved corrosion resistance of AZ91D magnesium alloy by an aluminium-alloyed coating. Surf. Coat. Technol. 2006, 200, 2834–2840. [Google Scholar] [CrossRef]
- Zhang, M.-X.; Kelly, P.M. Surface alloying of AZ91D alloy by diffusion coating. J. Mater. Res. 2002, 17, 2477–2479. [Google Scholar] [CrossRef]
- Zhang, M.-X.; Shi, Y.-N.; Sun, H.; Kelly, P.M. Surface alloying of Mg alloys after surface nanocrystallization. J. Nanosci. Nanotechnol. 2008, 8, 2724–2728. [Google Scholar] [CrossRef]
- Sun, H.; Shi, Y.; Zhang, M.-X.; Lu, K. Surface alloying of an Mg alloy subjected to surface mechanical attrition treatment. Surf. Coat. Technol. 2008, 202, 3947–3953. [Google Scholar] [CrossRef]
- Rokni, M.; Widener, C.; Champagne, V.; Crawford, G. Microstructure and mechanical properties of cold sprayed 7075 deposition during non-isothermal annealing. Surf. Coat. Technol. 2015, 276, 305–315. [Google Scholar] [CrossRef]
- Rokni, M.; Widener, C.; Crawford, G.; West, M. An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition. Mater. Sci. Eng. A 2015, 625, 19–27. [Google Scholar] [CrossRef]
- Agar, O.; Alex, A.; Kubacki, G.; Zhu, N.; Brewer, L. Corrosion Behavior of Cold Sprayed Aluminum Alloys 2024 and 7075 in an Immersed Seawater Environment. Corrosion 2021, 77, 1354–1364. [Google Scholar] [CrossRef]
- Bi, J.K.; Loke, Z.C.K.; Lim, C.K.R.; Teng, K.H.T.; Koh, P.K. Mechanical Properties of Cold Sprayed Aluminium 2024 and 7075 Coatings for Repairs. Aerospace 2022, 9, 65. [Google Scholar] [CrossRef]
- Flanagan, T.J.; Bedard, B.A.; Dongare, A.M.; Brody, H.D.; Nardi, A.; Champagne, V.K.; Aindow, M.; Lee, S.-W. Mechanical properties of supersonic-impacted Al6061 powder particles. Scr. Mater. 2019, 171, 52–56. [Google Scholar] [CrossRef]
- Spencer, K.; Fabijanic, D.M.; Zhang, M.-X. The use of Al–Al2O3 cold spray coatings to improve the surface properties of magnesium alloys. Surf. Coat. Technol. 2009, 204, 336–344. [Google Scholar] [CrossRef]
- Omar, N.I.; Yamada, M.; Yasui, T.; Fukumoto, M. Bonding mechanism of cold-sprayed TiO2 coatings on copper and aluminum substrates. Coatings 2021, 11, 1349. [Google Scholar] [CrossRef]
- Dayani, S.; Shaha, K.S.; Ghelichi, R.; Wang, J.; Jahed, H. The impact of AA7075 cold spray coating on the fatigue life of AZ31B cast alloy. Surf. Coat. Technol. 2018, 337, 150–158. [Google Scholar] [CrossRef]
- Shaha, K.S.; Dayani, S.; Jahed, H. Fatigue life enhancement of cast Mg alloy by surface modification in cold spray process. MATEC Web Conf. 2018, 165, 03014. [Google Scholar] [CrossRef]
- Shaha, S.K.; Dayani, S.B.; Xue, Y.; Pang, X.; Jahed, H. Improving corrosion and corrosion-fatigue resistance of AZ31B cast Mg alloy using combined cold spray and top coatings. Coatings 2018, 8, 443. [Google Scholar] [CrossRef] [Green Version]
- Boruah, D.; Zhang, X. Effect of post-deposition solution treatment and ageing on improving interfacial adhesion strength of cold sprayed Ti6Al4V coatings. Metals 2021, 11, 2038. [Google Scholar] [CrossRef]
- Koivuluoto, H.; Larjo, J.; Marini, D.; Pulci, G.; Marra, F. Cold-sprayed Al6061 coatings: Online spray monitoring and influence of process parameters on coating properties. Coatings 2020, 10, 348. [Google Scholar] [CrossRef]
- Rao, Y.; Wang, Q.; Oka, D.; Ramachandran, C.S. On the PEO treatment of cold sprayed 7075 aluminum alloy and its effects on mechanical, corrosion and dry sliding wear performances thereof. Surf. Coat. Technol. 2020, 383, 125271. [Google Scholar] [CrossRef]
- Wei, Y.-K.; Luo, X.-T.; Li, C.-X.; Li, C.-J. Optimization of In-Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating. J. Therm. Spray Technol. 2017, 26, 173–183. [Google Scholar] [CrossRef]
- Pebere, N.; Riera, C.; Dabosi, F. Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy. Electrochim. Acta 1990, 35, 555–561. [Google Scholar] [CrossRef]
- Mangalarapu, T.B.; Kumar, S.; Manthripragada, R.; Gandham, P.; Koppoju, S. Precipitation Behavior of Cold Sprayed Al6061 Coatings. Materialia 2022, 24, 101510. [Google Scholar] [CrossRef]
- Spencer, K.; Zhang, M.-X. Heat treatment of cold spray coatings to form protective intermetallic layers. Scr. Mater. 2009, 61, 44–47. [Google Scholar] [CrossRef]
- Spencer, K.; Luzin, V.; Zhang, M.-X. Structure and properties of cold spray coatings. Mater. Sci. Forum. 2010, 654–656, 1880–1883. [Google Scholar] [CrossRef]
- Zhang, M.-X.; Huang, H.; Spencer, K.; Shi, Y.-N. Nanomechanics of Mg–Al intermetallic compounds. Surf. Coat. Technol. 2010, 204, 2118–2122. [Google Scholar] [CrossRef]
- Pokhmurska, H.; Wielage, B.; Lampke, T.; Grund, T.; Student, M.; Chervinska, N. Post-treatment of thermal spray coatings on magnesium. Surf. Coat. Technol. 2008, 202, 4515–4524. [Google Scholar] [CrossRef]
- Bu, H.; Yandouzi, M.; Lu, C.; MacDonald, D.; Jodoin, B. Cold spray blended Al+Mg17Al12 coating for corrosion protection of AZ91D magnesium alloy. Surf. Coat. Technol. 2012, 207, 155–162. [Google Scholar] [CrossRef]
- Hassani-Gangaraj, S.M.; Moridi, A.; Guagliano, M. Critical review of corrosion protection by cold spray coatings. Surf. Eng. 2015, 31, 803–815. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Bakhsheshi-Rad, H.R.; Saberi, A.; Razzaghi, M.; Kasar, A.K.; Ramakrishna, S.; Menezes, P.L.; Misra, M.; Ismail, A.F.; Sharif, S.; et al. Surface modification of magnesium alloys using thermal and solid-state cold spray processes: Challenges and latest progresses. J. Magnes. Alloy. 2022, 10, 2025–2061. [Google Scholar] [CrossRef]
- Shaha, K.S.; Jahed, H. An in-situ study of the interface microstructure of solid-state additive deposition of AA7075 on AZ31B substrate. Appl. Surf. Sci. 2020, 508, 144974. [Google Scholar] [CrossRef]
- Shuman, D.J.; Costa, A.L.; Andrade, M.S. Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater. Charact. 2007, 58, 380–389. [Google Scholar] [CrossRef]
- Shaha, S.K.; Jahed, H. Characterization of nanolayer intermetallics formed in cold sprayed al powder on mg substrate. Materials 2019, 12, 1317. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.; Robson, J.D.; Sanders, R.E.; Liu, Q. Microstructural evolution of cold-rolled AA7075 sheet during solution treatment. Materials 2020, 13, 2734. [Google Scholar] [CrossRef]
- Bobzin, K.; Wietheger, W.; Hebing, J.; Gerdt, L. Softening Behavior of Cold-Sprayed Aluminum-Based Coatings AA1200 and AA7075 During Annealing. J. Therm. Spray Technol. 2021, 30, 358–370. [Google Scholar] [CrossRef]
- Ghelichi, R.; MacDonald, D.; Bagherifard, S.; Jahed, H.; Guagliano, M.; Jodoin, B. Microstructure and fatigue behavior of cold spray coated Al5052. Acta Mater. 2012, 60, 6555–6561. [Google Scholar] [CrossRef]
- Mercelis, P.; Kruth, J. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006, 12, 254–265. [Google Scholar] [CrossRef]
- Villuendas, A.; Jorba, J.; Roca, A. The role of precipitates in the behavior of Young’s modulus in aluminum alloys. Met. Mater. Trans. A 2014, 45, 3857–3865. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaha, S.K.; Sarker, D.; Jahed, H. Solid-State Additive Deposition of AA7075 on AZ31B Substrate: Heat Treatment to Improve the Corrosion Fatigue Resistance. Metals 2022, 12, 1578. https://doi.org/10.3390/met12101578
Shaha SK, Sarker D, Jahed H. Solid-State Additive Deposition of AA7075 on AZ31B Substrate: Heat Treatment to Improve the Corrosion Fatigue Resistance. Metals. 2022; 12(10):1578. https://doi.org/10.3390/met12101578
Chicago/Turabian StyleShaha, Sugrib Kumar, Dyuti Sarker, and Hamid Jahed. 2022. "Solid-State Additive Deposition of AA7075 on AZ31B Substrate: Heat Treatment to Improve the Corrosion Fatigue Resistance" Metals 12, no. 10: 1578. https://doi.org/10.3390/met12101578
APA StyleShaha, S. K., Sarker, D., & Jahed, H. (2022). Solid-State Additive Deposition of AA7075 on AZ31B Substrate: Heat Treatment to Improve the Corrosion Fatigue Resistance. Metals, 12(10), 1578. https://doi.org/10.3390/met12101578