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Abstract: The elastic modulus is a key factor influencing the applications of implant materials because
of the weakening effect of stress shielding. Ti and its alloys are good potential implant materials
thanks to their low elastic modulus and fine biocompatibility. The addition of alloying elements into
pure Ti and Ti alloys is the basic way to further decrease the elastic modulus whilst simultaneously
enhancing strength, wearability, and corrosion resistance, for example. Finding the relationship
between the composition and elastic modulus can greatly promote the development of Ti alloys with
a low modulus for implant applications. In the current work, we investigated the elastic modulus of
TiZrTa alloys with scores of compositions by using the high-throughput diffusion couple method,
nanoindentation, and an electron probe micro-analysis. The relationship between the elastic modulus
and the composition of the TiZrTa alloys was obtained. The average valence electron theory was
employed to make clear the variation between the elastic modulus and the composition. Finally,
the composition range formulae of TiZrTa alloys likely to have a low modulus were established by
combining our data and previous results. These findings are helpful in developing new Ti alloys with
a low modulus and also help to further understand the alloying theory.

Keywords: Ti alloys; elastic modulus; composition; implant materials

1. Introduction

Titanium alloys are widely used in fields such as aerospace, medical, shipping, and
chemical because of their low density, high strength, fatigue resistance, and good biocom-
patibility. Recently, Ti alloys as medical materials have attracted more and more attention
thanks to their low elastic modulus, non-cytotoxicity, high strength, and corrosion resis-
tance, for example [1–3]. The group of Niinomi committed to the mechanical properties of
medical titanium alloys and supplied a few new beta Ti alloys with a low elastic modulus
for preventing stress shielding between implant devices and bones [4–7]. Steinemann [8]
and Kawahara [9] showed that the elements of Ti, Zr, Nb, Ta, and Pt exhibit excellent
biocompatibility and biological activities with no cytotoxicity. Thus, many publications
around low elastic Ti alloys with those elements have been reported such as the Ti-Nb
series [10–13], the Ti-Zr series [14–16], and the Ti-Ta series [17–19] of alloys. Popov et al. [20]
investigated the effect of heat treatments and plastic deformation on the structure and
elastic modulus of an IMP-BAZALM (Zr-31Ti-18Nb (at.%)) biocompatible alloy. The micro-
indentation showed that an elastic modulus lower than 60 GPa was obtained after a suitable
treatment. The discussion proved that the appearance of the α” andω phases in the struc-
ture of the alloy led to an increase in the modulus of elasticity. The greatest increase in
the modulus was observed under the conditions corresponding with the formation of the
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ω phase. Liang et al. [21] summarized low modulus Ti alloys without cytotoxic alloying
elements. The lowest elastic modulus of the developed Ti alloys, especially foam Ti alloys,
was very close and even lower than biological bone (10~30 GPa). However, most of those
results were obtained using trial-and-error methods or semi-empirical methods. Those
methods can only select a few special composition points to have an attempt and are likely
to omit potential compositions with better or ideal performances. Diffusion multiples is an
efficient high-throughput method for alloy composition screening. Chen [22] investigated
the diffusion coefficient and elastic modulus of Ti-X (Nb, Mo, Ta, and Zr) binary alloys
through the diffusion multiples method and reported on the diffusion data and composi-
tion dependence of the elastic modulus of those binary Ti alloys. However, most previous
reports have been used for binary Ti alloys. Recently, the diffusion multiples method was
attempted to be used for the composition screening of ternary alloys and other component
alloys. Ling et al. [23] investigated the variation in the modulus with the composition
by using a Ti-Nb-Mo/Ti-Nb-Zr/Ta diffusion couple and obtained a possible composition
range with a low modulus.

As mentioned above, cytotoxicity is a key factor before an application for biomaterials.
For the development of low modulus Ti alloys, Zr, Nb, and Ta are the most used and
widely confirmed alloying elements without cytotoxicity. Relatively speaking, the addition
of Zr and Ta still has a great potential to develop Ti alloys with a low elastic modulus.
It is well-known that Zr is a neutral element for the phase transition of Ti and its alloys.
Thus, the addition of Zr alone into metal Ti should have no or very weak effects on its
phase constitution, as Wang showed [24]. However, the addition of Zr together with other
beta phase stabilizers of Ti alloys can enhance the stabilizing effect [25]. Furthermore,
the addition of Zr can strengthen the mechanical properties. Thus, many investigators
controlled the phase constitution and microstructure of Ti alloys through the addition of
Zr together with other beta phase stabilizers such as Ti-Nb-Zr, Ti-Zr-Mo, and Ti-Zr-Al-V
series alloys. However, an excessive Zr addition would entirely retain the beta phase whilst
a few beta phase stabilizers are added together, making it difficult to control the phase
constitution and microstructure. Previous works have proven that metastable beta Ti alloys
should have a low elastic modulus [21]. Thus, it is valuable to investigate the relationship
between the chemical composition and modulus of the TiZrTa series alloy and screen the
chemical composition of TiZrTa alloys as potential implant materials.

In this work, the diffusion multiples method was applied to the TiZrTa ternary alloys.
The relationship between the composition and elastic modulus of that series of alloys
was investigated. Our other aim was to find low elastic modulus TiZrTa ternary alloys
as potential biomaterials for hard tissue implants. The findings may help to promote the
application of Ti alloys with a low elastic modulus. The results can also supply references
for the development of Ti alloys with a low elastic modulus.

2. Materials and Methods

Pure metal nuggets of Ti, Zr, and Ta with a purity of 99.99 at.% were used as the
raw materials. Those high-pure metal nuggets were bought from the China New Metal
Materials Technology Co., Ltd. The chemical compositions of the pure metal nuggets are
listed in Table 1. The metals of Ti and Zr were weighed with a ratio of 61.16:38.84; namely,
the atomic ratio of 75:25. The weighed Ti and Zr were melted by using a non-consumable
arc melting furnace under an argon atmosphere. Before melting, the furnace was vacuumed
to 5 × 10−5 Pa and then filled with argon; this was repeated three times. Considering the
uniformity of the composition, the ingots were turned over and remelted four times. Disc
specimens with a diameter of 5 mm and a thickness of 3 mm were cut from those uniform
ingots, as shown in Figure 1a. The specimens of Ta with the same size as the Ti75Zr25
alloy were directly cut from the commercial pure Ta. Those disc specimens, including
Ti75Zr25 and Ta, underwent grinding, polishing, cleaning, and drying surface cleaning
processes to prepare the diffusion specimens, as shown in Figure 1b. After surface cleaning,
those specimens were immediately transferred into the argon atmosphere. The diffusion
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specimens were assembled into a pure Mo fixture, as shown in Figure 1c. Before assembling,
a force of 7 kN was loaded onto the specimens to maintain a slight plastic deformation of
Ta, of which the yield strength was 320 MPa [26], to ensure a tight contact between those
two diffusion specimens. Cubic boron nitride powders were dispersed onto the surface of
each connecting part to facilitate the demolding. The whole assembly was processed in a
vacuum glove box with a press, which was also under the argon atmosphere, as shown
in Figure 1d. After assembling, the specimens were annealed at 1000 ◦C for 100 h in a
vacuum furnace under the argon atmosphere. Before annealing, the furnace was vacuumed
to 5 × 10−5 Pa and then filled with argon; this was repeated three times. The annealed
specimens were cut in half and underwent a preparation process of the metallographic
specimen for the next modulus and composition measurements.

Table 1. The chemical composition of the pure raw metals used.

Impurity Elements
(ppm)

Pure Metals

Ti Zr Ta

Al - <5 -
C <5 <5 <1

Cd - <1 -
Co <1 <5 -
Cr <1 <5 <1
Cu <1 <5 <1
Fe <1 <10 <1
H - <5 <5

Mg <1 <5 -
Mn <1 <5 <1
Mo <1 - <1
N <5 <5 <5

Nb <1 - <10
Ni <1 - <1
O <5 <5 <5
Pb <1 <1 -
S <5 <5 <5
Si <1 <1 <1
Sn <1 - -
Ta <1 <1 Matrix
Ti Matrix <1 <1
V <1 <5 -
W <1 <5 <5
Zr <5 Matrix <1
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The elastic modulus of the specimens was obtained via a nanoindentation test [27,28],
which is usually used to determine the elastic modulus of metals and alloys [29–31] An
MTS Nanoindenter XP with a Berkovich indenter was used in this work. A constant loading
rate/load of 0.05 s−1 was assigned to a depth of 1500 nm; the load was maintained for 30 s.
After that, the indenter was unloaded at the same rate as the loading. The average modulus
value within the indentation depths of 1000–1500 nm in the load-displacement curve was
seen as Young’s modulus. A nanoindentation test was performed from one side to the other
side through the diffusion boundary with a distance step of 25 µm to avoid the overlapping
effects between the indents and to improve the accuracy. A DSX 500-type Olympus 3D
opto-digital microscope was employed to observe the morphology near the boundary of
the diffusion couple. A JXA-8230-type electron probe micro-analysis (EPMA) was used
to measure the composition profile. The conditions during the EPMA measurement were
a 20 keV accelerating voltage, a 10 nA beam current, and a 5 µm beam spot. In order to
agree with the hardness measurement points, the chemical composition was tested after
the nanoindentation. The indents were found before the composition test and the chemical
compositions on the parallel line of the indent test line were measured, as shown in Figure 2.
The position corresponding with the first indent was tested as the first composition point.
The same test step—namely, 25 µm for the nanoindentation test—was used to ensure that
the composition measurements agreed with the hardness measurement points. In order to
improve the accuracy, three chemical composition parallel lines were tested. The displayed
chemical composition data were the average values of those three measurements.
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Figure 2. Optical microscopy image of annealed diffusion couple. Triangles are the nanoindents, the
arrow is the test direction, the dashed line indicates the EPMA test location.

3. Results and Discussion

Figure 2 shows the optical microscopy image near the boundary of the diffusion couple
after annealing at 1000 ◦C for 100 h. In that image, the boundary of the diffusion couple
was blurry. That was because of the interdiffusion of the elements. The small triangles in
Figure 2 were the indents of the nanoindentation tests. The arrow in Figure 2 shows the
direction of the nanoindentation test. The first indent position was defined as the onset;
namely, the distance was 0. A variation in the elastic modulus with the distance is shown
in Figure 3a. The points with an elastic modulus over 100 GPa on the Ta-rich side are
not shown. From Figure 3a, the elastic modulus was maintained around 103 GPa when
the distance was below 200 µm. After that point, the modulus slowly decreased with an
increase in the distance. When the distance was higher than 400 µm, the modulus sharply
decreased. The lowest modulus value of 61.3 GPa appeared at a distance of 525 µm. As
the test continued, the modulus tardily increased at first and then closed to 100 GPa. The
EMPA scan location is also shown as a dashed line in Figure 2. As the elastic modulus of
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the Ta-rich side was relatively high, the nanoindentation test stopped at a distance near
800 µm, which was still in the diffusion area. Thus, the EPMA test distance was longer
than the nanoindentation. Compositions from 0 to 1000 µm were tested; the compositions
at various distances are shown in Figure 3b. The alloying composition remained stable
at distances below 200 µm and over 800 µm. A rapid variation in the composition was
observed at distances between 625 µm and 650 µm. According to the diffusion theory, the
composition should have sharply changed near the diffusion boundary. Thus, it could
be inferred that the diffusion boundary of this couple should have been at a distance of
650 µm. Based on this deduction, and combined with the composition files in Figure 3b,
the diffusion distances of Ti and Zr to Ta were approximately 450 µm, from 200 to 650 µm.
That of Ta to Ti75Zr25 was approximately 150 µm, from 650 to 800 µm. This obvious
difference in the diffusion distance mainly resulted from various diffusion coefficients.
Liu et al. [32] reported the mobility of Ti in Ta and Ta in Ti through theoretical calculations
and experimental verifications. The results showed that the mobility of Ta in Ti was fast.
Thus, there would be a long tail on the Ti-rich side. Ansel et al. [33] also measured the
diffusion composition files of a Ti/Ta couple annealing at 1500 ◦C for 3 h and showed
similar results to this work.
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Figure 4 shows that the elastic modulus of the TiZrTa alloys varied with the contents
of Zr and Ta. According to the diffusion composition profile, the contents of Ta and Zr had
an opposite trend. From Figure 4, the elastic modulus first decreased with the increase
in Ta and decrease in Zr. With the further increase in Ta and decrease in Zr, the elastic
modulus rose. The alloy with a composition of 20.51 at.% Zr and 8.96 at.% Ta had the lowest
modulus value of 61.3 GPa. In addition to the lowest point, the alloys with composition
1 (20.85 at.% Zr and 10.55 at.% Ta) and composition 2 (19.72 at.% Zr and 13.61 Ta) also
had an elastic modulus lower than 65 GPa (63.7 and 64.8 GPa, respectively). Yan et al. [18]
prepared Ti-15Ta-xZr (x = 1.5, 5.5, 10.5, and 15.5 wt.%) alloys with a good biocompatibility
by using selective laser melting. Similar to this work, the modulus of the Ti-15Ta-xZr alloy
first decreased and then increased with an increase in the Zr content. It is well-known
that the elastic modulus of alloys depends on the composition and crystal structure. The
elastic modulus of Ti, Zr, and Ta is 102, 68, and 185 GPa, respectively [34]. Based on the rule
of the mixture and neglecting the interactions between the elements, the elastic modulus
should have decreased with an increase in the content of Zr, but increased with the content
of Ta. Correa et al. [35] showed that the elastic modulus of cp-Ti indeed decreased from
105 to 90 GPa by adding 5 wt.% Zr. However, the modulus increased whilst the additional
content was over 10 wt.%.
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Apart from the effect of the composition itself, the addition of Zr and Ta into Ti
also changes its crystal structure, which is a more important factor influencing the elastic
modulus. Hume-Rothery et al. [36] proved that the crystal structure of alloys depends on
the average valence electron per atom, which can also be understood as the free electron-to-
atom ratio (e/a). Several researchers have also indicated the e/a ratio value dependence of
the crystal structure of Ti alloys. Laheurte et al. [37] supplied the expected structures of Ti
alloys after a water quench concerning the electron-to-atom ratio scale, as shown in Figure 5.
Moshokoa et al. [38] investigated the effects of the Mo content on the microstructural and
mechanical properties of as-cast Ti-Mo alloys and showed that the structure of Ti-Mo
binary alloys varies with the e/a ratio value. Xu et al. [39] also indicated that the e/a ratio
value influences the phase constitution and, further, the elastic modulus of Ti alloys; they
developed a low-cost metastable beta Ti-5Mo-Fe-3Sn Ti alloy with a low elastic modulus
and high strength for an orthopedic application. The e/a ratio value of all compositions in
this work was calculated. The modulus of the TiZrTa alloys vs. the corresponding e/a ratio
values is shown in Figure 6. From 4.0 to 4.50 of the e/a ratio value, the modulus had a small
change. This was because the expected structure of the Ti alloys with that e/a range was
in the α’ phase with an HCP structure, as Figure 5 shows. When the e/a ratio value was
over 4.05, the modulus rapidly decreased to 4.09 of the e/a ratio value. In the range from
4.05 to 4.09, the α” phase started to form and its content became greater with the increase
in the e/a ratio value. The composition with the e/a ratio value of 4.09 had the lowest
modulus of 61.3 GPa. As the e/a ratio value exceeded 4.09, the modulus increased with the
e/a ratio value. Even so, the composition with the e/a ratio value below 4.15 still had a
relative low modulus (<70 GPa). A first principles study showed that the Ti alloys with
an e/a ratio in the range of 4.06–4.17 were expected to have a low Young’s modulus [40].
Hao et al. [41] investigated the elastic deformation behavior of Ti-Nb-Zr-Sn alloys and
showed that the alloy with the e/a ratio value of 4.15 had the lowest elastic modulus.
The relationship between the elastic modulus of Ti alloys and the e/a ratio value was
schematically illustrated, as Figure 7 shows [21]. Speculations about the phase composition
in Figure 7 were deduced from the results of the X-ray methods. However, Chen [22] also
showed similar phase composition results after measuring the phase composition of a few
diffusion couples by using the micro-area measurement method and a focused ion beam.
This suggested that the speculations of Figure 7 were also applicable to the micro-area
measurement and analysis methods. A comparison of Figure 6 with Figure 7 showed a
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similar tendency. However, Figure 6 did not have a second modulus trough with an e/a
ratio value near 4.20. That may be because the metastableω phase could be suppressed in
the TiZrTa alloy at the investigated composition range [41].
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To be a reference and guidance for the development of Ti alloys with a low elastic
modulus, our results combined the previously reported data [17–19,42–47] of TiZrTa alloys;
the results are shown in Figure 8. The compositions of the TiZrTa alloys in the blue and
light blue areas were expected to have a lower modulus. The blue and light blue areas
were between the two purple dashed lines. That is, the TiZrTa alloys with a Ta content
between 5 and 17.5 at.%, almost regardless of the Zr content (0 to 76 at.% in Figure 8), were
likely to have a low modulus. In order to more accurately represent the composition range
expected to have a low modulus, those two dashed lines were digitized. The equation of
the top dashed purple line—namely, the upper compositional limits of Zr and Ta—could
be expressed as Ta = 2.63 × 10−2 Zr + 15. Correspondingly, the lower limit obeyed the
equation of Ta = 8.42 × 10−2 Zr + 15. It is well-known that the element of Ta is a typical
isomorphous stabilizer of the beta phase for Ti alloys [48]. Thus, a small change in the
content of Ta would obviously affect the stability of the beta Ti phase and the formation
of the transitional phases of α” and ω as well. As mentioned above, the stability of the
beta phase is a major factor influencing the elastic modulus of Ti alloys. Thus, Ta should
be a narrow range for Ti alloys expecting a low elastic modulus. Zr is categorized as the
neutral element of Ti alloys [24,48]. Thus, the content of Zr in TiZrTa alloys has a weak
effect on the elastic modulus. However, a few publications [49–52] have indicated its beta
stabilizing effect when over 10% Zr was added to the Ti alloys. In addition, Liang et al. [25]
theoretically showed that the addition of Zr into Ti alloys with one or more beta stabilizers
could strengthen the effect of the beta stabilizers. Several experimental results [53–55] have
also indicated the same effect of a Zr addition into Ti alloys with beta stabilizers. Thus,
as the Zr content increases, the low elastic modulus of TiZrTa alloys needs to decrease
the Ta content. That was the reason for the narrower range of the Ta content as the Zr
content increased, as the distance between the two purple dashed lines in Figure 8 shows.
Marker et al. [56] proposed a variation of Young’s modulus with the composition of TiZrTa
ternary alloys by a pure theoretical calculation, as Figure 9 shows. The Young’s modulus
map in Figure 9 shows that the alloys in the Ti corner with Ta < 20 at.% and Zr < 10 at.% or
that in the Zr corner with Ta < 25 at.% and Ti < 20 at.% had a modulus below 70 GPa. The
range of the Ta content was similar to this work, but the Zr content as different. The reason
was that the moduli in Figure 9 were calculated for the pure beta phase. For a few areas,
such as near the TiZr binary areas, the beta phase was unstable and could not be retained
at room temperature. Thus, the calculated results in those areas was suspicious and further
discussion was required. The other key factor of the difference was that there were other
phases, such as the α’, α”, andω phases, in the actual TiZrTa alloys with a low Ta content,
not only the beta phase.
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Figure 9. Calculating Young’s moduli (a) and Ti corner partial image (b) of TiZrTa ternary alloys with
a pure beta phase [56].

4. Conclusions

The relationship between the composition and elastic modulus of TiZrTa alloys was
investigated by using the high-throughput diffusion couple method, nanoindentation, and
an electron probe micro-analysis. The main conclusions were as follows.

1. The TiZrTa alloys with a composition of 20.51 at.% Zr and 8.96 at.% Ta had the
lowest modulus value of 61.3 GPa. The alloy with the other two compositions, C1
(20.85 at.% Zr and 10.55 at.% Ta) and C2 (19.72 at.% Zr and 13.61 at.% Ta) also had a
modulus below 70 GPa.

2. The TiZrTa alloy with the average valence electron per atom value of 4.09 had the
lowest elastic modulus. The alloys with an e/a ratio range of 4.09 to 4.15 had a
low modulus.

3. The TiZrTa alloys expecting a low elastic modulus should have compositions as follows.
The upper content limits of Zr and Ta could be expressed as Ta = 2.63 × 10−2 Zr + 15.
Correspondingly, the lower limits obey the equation of Ta = 8.42 × 10−2 Zr + 15.
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