Evaluation of Mechanical Properties and Microstructure of X70 Pipeline Steel with Strain-Based Design
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanical Properties
3.2. Microstructure
4. Discussion
4.1. Thermodynamic Analysis of TiN and NbC Formation
4.2. Influence of TiN and NbC on Microstructure of HAZ
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tu, X.Y.; Shi, X.B.; Yan, W.; Li, C.S.; Shi, Q.Q.; Shan, Y.Y.; Yang, K. Tensile deformation behavior of ferrite-bainite dual-phase pipeline steel. Mater. Sci. Eng. A 2022, 831, 142230. [Google Scholar] [CrossRef]
- Wan, X.L.; Wu, K.M.; Xia, Z.H. The effect of microstructure on properties of high deformation pipeline steel X70. Adv. Mater. Res. 2013, 2384, 182–185. [Google Scholar] [CrossRef]
- Li, R.T.; Zuo, X.R.; Hu, Y.Y.; Wang, Z.W.; Hu, D.X. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure. Mater. Charact. 2011, 62, 801–806. [Google Scholar] [CrossRef]
- Zheng, X.F.; Kang, Y.L.; Meng, D.L.; AN, S.Y.; Xia, D.X. Effect of cooling start temperature on microstructure and mechanical properties of X80 high deformability pipeline steel. J. Iron Steel Res. Int. 2011, 18, 42–46, 71. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gao, H.L.; Zhang, X.Q.; Yang, Y. Effect of volume fraction of bainite on microstructure and mechanical properties of X80 pipeline steel with excellent deformability. Mater. Sci. Eng. A 2012, 531, 84–90. [Google Scholar] [CrossRef]
- Machado, F.R.D.S.; Ferreira, J.C.; Rodrigues, M.V.G.; Lima, M.N.D.S.; Loureiro, R.D.C.P.; Siciliano, F.; Silva, E.S.; Reis, G.S.; Sousa, R.C.D.; Aranas, C., Jr.; et al. Dynamic ferrite formation and evolution above the Ae3 temperature during plate rolling simulation of an API X80 steel. Metals 2022, 12, 1239. [Google Scholar] [CrossRef]
- Suwanpinij, P.; Togobytska, N.; Prahl, U.; Weiss, W.; Hömberg, D.; Bleck, W. Numerical cooling strategy design for hot rolled dual phase steel. Steel Res. Int. 2010, 81, 1001–1009. [Google Scholar] [CrossRef]
- Tu, X.Y.; Shi, X.B.; Shan, Y.Y.; Yan, W.; Shi, Q.Q.; Li, C.S.; Yang, K. Tensile deformation damage behavior of a high deformability pipeline steel with a ferrite and bainite microstructure. Mater. Sci. Eng. A 2020, 793, 139889. [Google Scholar] [CrossRef]
- Zuo, X.R.; Li, R.T. Research of strain aging in pipeline steel with a ferrite/martensite dual phase microstructure. Steel Res. Int. 2015, 86, 163–168. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Zuo, X.R.; Li, R.T.; Wang, Z.W. Comparison of two different rolling processes on microstructure and properties of ferrite-bainite dual-phase pipeline steels. Adv. Mater. Res. 2011, 197–198, 724–729. [Google Scholar] [CrossRef]
- Qi, X.N.; Huan, P.C.; Wang, X.N.; Liu, Z.G.; Shen, X.J.; Gao, Y.; Di, H.S. Effect of root welding heat input on microstructure evolution and fracture mechanism in intercritically reheat-coarse grained heat-affected zone of X80 pipeline steel. Mater. Today Commun. 2022, 31, 103413. [Google Scholar] [CrossRef]
- Lan, L.Y.; Qiu, C.L.; Zhao, D.W.; Gao, X.H.; Du, L.X. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel. Mater. Sci. Eng. A 2021, 529, 192–200. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Kuzmikova, L.; Li, H.J.; Barbaro, F. Effect of inter-critically reheating temperature on microstructure and properties of simulated inter-critically reheated coarse grained heat affected zone in X70 steel. Mater. Sci. Eng. A 2014, 605, 8–13. [Google Scholar] [CrossRef]
- Ringinen, D.A.; Chastukhin, A.V.; Khadeev, G.E.; Efron, L.I.; Il’inskii, V.I. Evolution of austenite grain structure and microalloying element precipitation during heating of steel of strength class K65 (X80) for rolling. Metallurgist 2014, 57, 996–1004. [Google Scholar] [CrossRef]
- Wei, R.; Shang, C.J.; Wu, K.M. Grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels. Int. J. Miner. Metall. Mater. 2010, 17, 737–741. [Google Scholar] [CrossRef]
- Fan, L.F.; Yan, J.X.; Gao, Y.; Yun, J.B. Research on deformation characteristics of JCOE forming in large diameter welding pipe. Adv. Manuf. 2016, 4, 268–277. [Google Scholar] [CrossRef]
- Batalov, G.S.; Lunev, A.A.; Radionova, L.V.; Lezin, V.D. Development of new methods for the production of large-diameter double-seam pipes. Solid State Phenom. 2021, 316, 538–548. [Google Scholar] [CrossRef]
- Chatzopoulou, G.; Antoniou, K.; Karamanos, S.A. Numerical simulation of JCO pipe forming process and its effect on the external pressure capacity of the pipe. In Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June 2017; Volume 5B, p. 8. [Google Scholar] [CrossRef]
- API SPECIFICATION 5 L; Specification for line pipe forty-fourth edition; API Publishing Services: Washington, DC, USA, 2013; pp. 74–180.
- Jiang, M.; Wang, X.H.; Hu, Z.Y.; Wang, K.P.; Yang, C.W.; Li, S.R. Microstructure refinement and mechanical properties improvement by developing IAF on inclusions in Ti-Al complex deoxidized HSLA steel. Mater. Charact. 2015, 108, 58–67. [Google Scholar] [CrossRef]
- Zhang, J.; Xin, W.B.; Luo, G.P.; Wang, R.F.; Meng, Q.Y. Significant Influence of Welding Heat Input on the Microstructural Characteristics and Mechanical Properties of the Simulated CGHAZ in High Nitrogen V-Alloyed Steel. High Temp. Mater. Proc. 2020, 39, 33–44. [Google Scholar] [CrossRef]
- Wu, B.B.; Wang, Z.Q.; Shang, C.J.; Yu, Y.S.; Yang, Z.G.; Zhang, C. A route to produce toughened acicular ferrite with equivalent hardness as martensite: The combined effect of elements segregation and pre-transformed allotriomorphic ferrite. Mater. Charact. 2021, 182, 111528. [Google Scholar] [CrossRef]
- Li, C.W.; Wang, Y.; Han, T.; Han, B.; Li, L.Y. Microstructure and toughness of coarse grain heat-affected zone of domestic X70 pipeline steel during in-service welding. J. Mater. Sci. 2011, 46, 727–733. [Google Scholar] [CrossRef]
- Dong, Y.F.; Liu, D.H.; Hong, L.; Liu, J.J.; Zuo, X.R. Correlation between microstructure and mechanical properties of welded joint of X70 submarine pipeline steel with heavy wall thickness. Metals 2022, 12, 716. [Google Scholar] [CrossRef]
- Yi, J.J.; Kim, I.S.; Choi, H.S. Austenitization during intercritical annealing of an Fe-C-Si-Mn dual-phase steel. Metall. Trans. A 1985, 16, 1237–1245. [Google Scholar] [CrossRef]
- Kabanov, A.; Korpala, G.; Kawalla, R.; Prahl, U. Effect of hot rolling and cooling conditions on the microstructure, MA constituent formation, and pipeline steels mechanical properties. Steel Res. Int. 2018, 90, 1800336. [Google Scholar] [CrossRef]
- Regier, R.W.; Reguly, A.; Matlock, D.K.; Choi, J.K.; Speer, J.G. Effects of austenite conditioning and transformation temperature on the bainitic microstructure in linepipe steels. Mater. Sci. For. 2014, 783–786, 85–90. [Google Scholar] [CrossRef]
- Chen, X.W.; Liao, B.; Qiao, G.Y.; Gu, Y.; Wang, X.; Xiao, F.R. Effect of Nb on mechanical properties of HAZ for high-Nb X80 pipeline steels. J. Iron Steel Res. Int. 2013, 20, 53–60. [Google Scholar] [CrossRef]
- Wu, H.B.; Yang, S.W.; Guo, A.M.; Yuan, S.Q.; Shang, C.J.; He, X.L. Thermo-stability of ultra-fine non-equilibrium microstructures. J. Univ. Sci. Technol. B 2004, 11, 338–342. [Google Scholar] [CrossRef]
- Wu, X.; Zuo, X.R.; Zhao, W.W.; Wang, Z.Y. Mechanism of TiN fracture during the tensile process of NM500 wear-resistant steel. Acta Metall. Sin. 2020, 56, 129–136. [Google Scholar] [CrossRef]
- Wang, L.; Xue, Z.-L.; Zhu, H.; Lei, J.-L. Thermodynamic analysis of precipitation behavior of Ti-bearing inclusions in SWRH 92A tire cord steel. Results Phys. 2019, 14, 102428. [Google Scholar] [CrossRef]
- Li, N.; Wang, L.; Xue, Z.L.; Li, C.Z.; Huang, A.; Wang, F.F. Study of precipitation and growth processes of Ti-bearing inclusions in tire cord steel. Results Phys. 2020, 16, 102929. [Google Scholar] [CrossRef]
- Liu, D.H.; Wang, Z.Y.; Liu, J.J.; Wang, Z.L.; Zuo, X.R. Study of the fracture behavior of TiN and TiC inclusions in NM550 wear-resistant steel during the tensile process. Metals 2022, 12, 363. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, Y.M.; Huang, C.W.; Liang, Y.L. The effect of TiN inclusions on the fracture mechanism of 20CrMnTi steel with lath martensite. Mater. Res. Express. 2020, 7, 036509. [Google Scholar] [CrossRef]
Position | C | Mn | Si | Ni | Mo | Nb | Ti | P | S | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
BM | 0.050 | 1.54 | 0.20 | 0.19 | 0.17 | 0.059 | 0.014 | 0.0198 | 0.0010 | 0.0031 | Bal. |
WM | 0.056 | 1.59 | 0.33 | 0.15 | 0.23 | 0.028 | 0.026 | 0.0170 | 0.0026 | - | Bal. |
Specimen | Parameter | Single Value | Average Values | Standard Deviation | Requirements of API Specification | ||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | |||||
BM (L) | Yield strength (MPa) | 488 | 485 | 485 | 486 | 1.4 | 450–550 |
Tensile strength (MPa) | 640 | 640 | 645 | 642 | 2.4 | 570–715 | |
Yield ratio | 0.76 | 0.76 | 0.75 | 0.76 | 0.005 | <0.85 | |
Elongation (%) | 45 | 45 | 44 | 45 | 0.5 | ||
Uniform elongation (%) | 9.3 | 9.4 | 9.4 | 9.4 | 0.047 | ||
BM (T) | Yield strength (MPa) | 530 | 515 | 500 | 515 | 12.2 | 485–635 |
Tensile strength (MPa) | 630 | 630 | 630 | 630 | 0.0 | 570–760 | |
Yield ratio | 0.84 | 0.82 | 0.79 | 0.82 | 0.021 | ||
Elongation (%) | 44 | 46 | 43 | 44 | 1.2 | ||
WM (T) | Tensile strength (MPa) | 645 | 645 | 645 | 645 | 0.0 | >570 |
Position of fracture | fractured in the BM | Yes | - |
Specimen | CVN Absorbed Energy (−10 °C) (J) | Shear Fracture Area (−10 °C) (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | Average Values | Standard Deviation | 1 | 2 | 3 | Average Values | |
BM | 320 | 285 | 320 | 308/286 * | 20.2/52.1 * | 100 | 100 | 100 | 100 |
HAZ | 315 | 405 | 315 | 345/239 * | 52.0/36.7 * | 100 | 100 | 100 | 100 |
WM | 240 | 210 | 205 | 218/206 * | 18.9/11.1 * | 100 | 97 | 98 | 98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Dong, Y.; Li, R.; Jiang, J.; Li, X.; Wang, Z.; Zuo, X. Evaluation of Mechanical Properties and Microstructure of X70 Pipeline Steel with Strain-Based Design. Metals 2022, 12, 1616. https://doi.org/10.3390/met12101616
Liu D, Dong Y, Li R, Jiang J, Li X, Wang Z, Zuo X. Evaluation of Mechanical Properties and Microstructure of X70 Pipeline Steel with Strain-Based Design. Metals. 2022; 12(10):1616. https://doi.org/10.3390/met12101616
Chicago/Turabian StyleLiu, Denghui, Yifan Dong, Rutao Li, Jinxing Jiang, Xiaoyuan Li, Zhenlong Wang, and Xiurong Zuo. 2022. "Evaluation of Mechanical Properties and Microstructure of X70 Pipeline Steel with Strain-Based Design" Metals 12, no. 10: 1616. https://doi.org/10.3390/met12101616
APA StyleLiu, D., Dong, Y., Li, R., Jiang, J., Li, X., Wang, Z., & Zuo, X. (2022). Evaluation of Mechanical Properties and Microstructure of X70 Pipeline Steel with Strain-Based Design. Metals, 12(10), 1616. https://doi.org/10.3390/met12101616