Author Contributions
Conceptualization, M.L. and K.X. (Kun Xie); methodology, M.L. and K.X. (Kun Xie); software, K.X. (Kun Xie) and K.X. (Kui Xue); validation, Z.Z., K.X. (Kun Xie) and K.X. (Kui Xue); formal analysis, Z.Z.; investigation, K.X. (Kui Xue); resources, K.X. (Kun Xie) and K.X. (Kui Xue); data curation, K.X. (Kun Xie) and M.L.; writing—original draft preparation, K.X. (Kun Xie) and M.L.; writing—review and editing, K.X. (Kun Xie) and M.L.; visualization, Z.Z.; supervision, Z.Z. and M.L.; project administration, Z.Z. and M.L.; funding acquisition, Z.Z. and M.L. All authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by Joint Fund Project of Shaanxi (Grant No. 2021JLM-32) and Scientific Research Plan Project of Shaanxi Education Department (Grant No. 22JC044).
Data Availability Statement
Data sharing not applicable.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Wu, L.; Han, F.; Liu, G. Comprehensive Utilization of Magnesium Slag by Pidgeon Process; Open Access; Springer: Singapore, 2021; pp. 68–120. [Google Scholar]
- Cui, Z.; Li, S.; Zhang, C.; Chen, D. Drying shrinkage characteristics of magnesium slag composite admixture concrete. J. Sichuang Univ. 2016, 48, 207–212. [Google Scholar]
- Peng, X.; Wang, K.; Li, J.; Yu, Z.; Wang, S. Hydraulic potential stimulation and bricks preparation of magnesium slag. J. Chongqing Univ. 2013, 36, 48–52+58. [Google Scholar]
- Tang, Y.; Li, L.; Wang, C.; Mao, W.; Feng, L. New progress in reutilization of magnesium slag. Mod. Chem. Ind. 2020, 40, 63–67. [Google Scholar]
- Li, H.; Huang, Y.; Yang, X.; Jiang, Z.; Yang, Z. Approach to the management of magnesium slag via the production of portland cement clinker. J. Mater. Cycles Waste Manag. 2018, 20, 1701–1709. [Google Scholar] [CrossRef]
- Ji, G.; Peng, X.; Wang, S.; Hu, C.; Ran, P.; Sun, K.; Zeng, L. Influence of magnesium slag as a mineral admixture on the performance of concrete. Constr. Build. Mater. 2021, 295, 123619. [Google Scholar] [CrossRef]
- Feng, L.; Han, F.; Qiao, X.; Zhen, X.; Jin, Y.; Fan, B. Experimental study on wet desulfurization performance of magnesium slag. Environ. Pollut. Control 2018, 40, 1112–1115+1121. [Google Scholar]
- Xu, X.; Chen, Y.; Yu, J. Industrial test of desulfurization of hot metal by magnesium slag. Light Met. 2017, 1, 42–44. [Google Scholar]
- Fan, B.; Jia, L.; Han, F.; Huo, R.; Yao, Y.; Qiao, X.; Zhao, C.; Jin, Y. Study on magnesium slag desulfurizer modified by additives in quenching hydration. J. Mater. Cycles Waste Manag. 2019, 21, 1211–1233. [Google Scholar] [CrossRef]
- Xia, D.; Ren, L.; Chen, L. Study of Ca-Mg-S-Si fertilizer produced by magnesium slag. Adv. Mater. Res. 2011, 347–353, 3166–3170. [Google Scholar] [CrossRef]
- Fan, Y.; Qin, W.; Chen, Z.; Cheng, F. A silicon–potash fertilizer prepared from magnesium slag and how it can improve soil fertility and agronomic performance. Soil Sci. Plant Nutr. 2019, 65, 274–280. [Google Scholar] [CrossRef]
- Liu, L.; Ruan, S.; Fang, Z.; Hou, D.; Zhang, B.; Sun, W. Modification of magnesium slag and its application in the field of mine filling. J. China Coal Soc. 2021, 46, 1–15. [Google Scholar]
- Liu, L.; Ruan, S.; Qi, C.; Zhang, B.; Tu, B.; Yang, Q.; Song, K.I.-I.L. Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill. J. Clean. Prod. 2021, 279, 123684. [Google Scholar] [CrossRef]
- Diao, J.; Gu, W.; Liu, L.; Tan, W.; Li, H.; Xie, B. Slag formation path in converter smelting process of semi-steel containing chromium. Ironmak. Steelmak. 2020, 47, 1078–1083. [Google Scholar] [CrossRef]
- Yang, W.; Wu, W.; Wang, M.; Shi, H.; Wang, T. Study on steel making with hot metal containing low silicon in large converter. Iron Steel 2005, 8, 22–25. [Google Scholar]
- Yang, W.; Wu, W.; Wang, M.; Wang, Y.; Chen, Y.; Yu, Z. High Efficient Blow of low-silicon hot metal in large converter. J. Iron Steel Res. 2006, 12, 10–14+26. [Google Scholar]
- Chen, J.; Zeng, J.; Chen, L.; Ge, W.; Yang, S. Development and application of thermal compensation process of Pangang. J. Iron Steel Res. 2020, 32, 618–625. [Google Scholar]
- Antsiferov, A.A.; Khaidukov, V.P.; Rogotovskii, A.N.; Borisov, A.V.; Bocharov, A.V. Processing of low-silicon hot metal with slag formation by ferruginous lime. Steel Transl. 2015, 45, 507–510. [Google Scholar] [CrossRef]
- Li, Y.; Ge, T.; Cheng, F. Effect of different treatment methods on the physico-chemical properties of magnesium slag (MS). Inorg. Chem. Ind. 2016, 48, 52–55. [Google Scholar] [CrossRef]
- Li, W.; Sun, Q.; Wang, C.; Yu, S. Control practice on MgO in slag of BOF. Iron Steel 2011, 46, 40–44. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, M.; Li, J.; Qiu, S.; Wang, S.; Ning, S. Thermodynamics of dephosphorization capacity of containing TiO2 and Al2O3 of CaO-based semi-steel slag. Iron Steel 2018, 53, 27–37. [Google Scholar]
- Deo, B.; Halder, J.; Snoeijer, B.; Overbosch, A.; Boom, R. Effect of MgO and Al2O3 variations in oxygen steelmaking (BOF) slag on slag morphology and phosphorus distribution. Ironmak. Steelmak. 2005, 32, 54–60. [Google Scholar] [CrossRef]
Figure 1.
Phase analysis of magnesium slag: (a) magnesium slag A, (b) magnesium slag B.
Figure 2.
Phase change of magnesium slag.
Figure 3.
Visco-temperature curve of magnesium slag.
Figure 4.
Pseudo-pentad phase diagram of CaO–SiO2–Fe2O3–2.5%MgO–1%Al2O3.
Figure 5.
Ternary phase diagram of CaO–SiO2–Fe2O3.
Figure 6.
Effect of ω(MgO) on the liquid-phase region of CaO–SiO2–Fe2O3 slag system at 1450 °C.
Figure 7.
Effect of ω(Al2O3) on the liquid-phase region of CaO–SiO2–Fe2O3 slag system at 1450 °C.
Figure 8.
Effect of ω(Al2O3) on the liquid-phase region of CaO–SiO2–Fe2O3–Al2O3–6%MgO slag system at 1450 °C.
Figure 9.
Normal Distribution Plot of Residuals.
Figure 10.
Comparison of actual and predicted values.
Figure 11.
Contour plot and 3D response surface plot of each two-factor interaction. (a) contour plot of basicity and ω(Fe2O3); (b) 3D response surface plot of basicity and ω(Fe2O3); (c) contour plot of basicity and ω(Al2O3); (d) 3D response surface plot of basicity and ω(Al 2O3); (e) contour plot of ω(Fe2O3) and ω(Al2O3); (f) 3D response surface plot of ω(Fe2O3) and ω(Al2O3). It can be intuitively seen from the response surface diagram: the distortion of the response surface (b) was the most obvious, that was, the interaction between basicity and ω(Fe2O3) had the most significant effect on the dephosphorization rate. With the increase in basicity and Fe2O3 content, the rate of phosphorus removal was rapidly increased to reach the peak after a decreasing trend. A further increase in basicity led to slagging difficulties, which was not conducive to phosphorus removal.
Table 1.
Composition of magnesium slag (mass fraction %).
No. | CaO | SiO2 | MgO | Al2O3 | Fe2O3 |
---|
A | 58.7 | 33.5 | 2.5 | 1 | 4.3 |
B | 58.5 | 31.1 | 5.7 | 1 | 3.7 |
Table 2.
Composition range of magnesium-slag-based dephosphorization agent (mass fraction %).
CaO | SiO2 | Fe2O3 | Al2O3 | MgO |
---|
30~64 | 10~33 | 10~30 | 2~12 | 6 |
Table 3.
Box–Behnken analysis factors and levels.
Factor | Level |
---|
−1 | 0 | 1 |
---|
A (Basicity) | 1.5 | 2.5 | 3.5 |
B ω(Fe2O3) | 10 | 20 | 30 |
C ω(Al2O3) | 2 | 7 | 12 |
Table 4.
Composition of semi-steel (mass fraction%).
C | Si | Mn | P | S |
---|
3.966 | 0.004 | 0.011 | 0.123 | 0.062 |
Table 5.
Response surface experimental design and results.
No. | A. (Basicity) | B. ω(Fe2O3) | C. ω(Al2O3) | D. Dephosphorization Rate (%) |
---|
1 | 1.5 | 20 | 12 | 69.91 |
2 | 1.5 | 20 | 2 | 66.73 |
3 | 1.5 | 30 | 7 | 83.24 |
4 | 1.5 | 10 | 7 | 34.21 |
5 | 2.5 | 30 | 2 | 90.13 |
6 | 2.5 | 30 | 12 | 89.72 |
7 | 2.5 | 10 | 2 | 58.91 |
8 | 2.5 | 10 | 12 | 55.54 |
9 | 2.5 | 20 | 7 | 91.27 |
10 | 2.5 | 20 | 7 | 90.13 |
11 | 2.5 | 20 | 7 | 89.73 |
12 | 2.5 | 20 | 7 | 91.69 |
13 | 2.5 | 20 | 7 | 92.85 |
14 | 3.5 | 20 | 2 | 88.34 |
15 | 3.5 | 30 | 7 | 89.79 |
16 | 3.5 | 10 | 7 | 58.01 |
17 | 3.5 | 20 | 12 | 86.04 |
Table 6.
Box–Behnken test ANOVA results.
Source of Variance | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value | Significance |
---|
Model | 4698.37 | 9 | 522.04 | 57.48 | <0.0001 | ** |
A (Basicity) | 579.53 | 1 | 579.53 | 63.81 | <0.0001 | ** |
B ω(Fe2O3) | 2672.17 | 1 | 2672.17 | 294.20 | <0.0001 | ** |
C ω(Al2O3) | 1.05 | 1 | 1.05 | 0.1157 | 0.7437 | |
AB | 74.39 | 1 | 74.39 | 8.19 | 0.0243 | * |
AC | 7.51 | 1 | 7.51 | 0.8266 | 0.3935 | |
BC | 2.19 | 1 | 2.19 | 0.2412 | 0.6384 | |
A2 | 406.67 | 1 | 406.67 | 44.77 | 0.0003 | * |
B2 | 826.18 | 1 | 826.18 | 90.96 | <0.0001 | ** |
C2 | 27.71 | 1 | 27.71 | 3.05 | 0.1242 | |
Residual | 63.58 | 7 | 9.08 | | | |
Lack-of-fit | 39.22 | 3 | 13.07 | 2.15 | 0.2370 | |
Pure error term | 24.35 | 4 | 6.09 | | | |
Total dispersion | 4761.95 | 16 | | | | |
Table 7.
Optimization experimental results.
No. | A. (Basicity) | B. ω(Fe2O3) | C. ω(Al2O3) | D. Dephosphorization Rate (%) |
---|
1 | 2.8 | 25.94 | 6.73 | 94.1 |
2 | 2.8 | 25.94 | 6.73 | 93.5 |
3 | 2.8 | 25.94 | 6.73 | 94.7 |
| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).