Ab Initio Molecular Dynamics Investigation of Prenucleation at Liquid–Metal/Oxide Interfaces: An Overview
Abstract
:1. Introduction
2. Background
2.1. Prenucleation and Early Stage Solidification
2.2. Formation of Oxide Particles in Liquid Light Alloys
2.3. Crystal Chemistry of the Oxides
2.4. Factors Affecting Prenucleation from Atomic Simulations
Factors | Definition | Effects on Prenucleation |
---|---|---|
Temperature [10] | T | Prenucleation increases with decreasing T. |
Lattice misfit [9,11] | f = (dm − ds)/dm × 100% | f hinders in-plane ordering but hardly on layering. |
Substrate chemistry [10] | ∆Hmix | Affinitive substrates promote prenucleation, whereas repulsive substrates do oppositely. |
Atomic roughness [14,62] | R = [∑(|∆z(i)|/d0)]/Nz | R deteriorates both in-plane-ordering and layering. |
3. AIMD Investigations of Prenucleation at the M(l)/Oxide Interfaces
3.1. Supercells and Details of AIMD Simulations
3.2. Prenucleation at the Al(l)/Al2O3 Interfaces
- (i).
- The Al and O atoms/ions in the substrates form layers of atomic ordering;
- (ii).
- The substrates are terminated by a layer of Al atoms. The terminating Al atoms form a single peak at the Al(l)/γ-Al2O3{1 1 1}Al_2 interface, whereas they form multiple peaks (three sublayers) at the Al(l)/γ-Al2O3{1 1 1}Al_1 interface;
- (iii).
- The Al-O interatomic distances between the terminating Al atoms and the outmost O ions are close to those in the bulk substrate. This indicates that the terminating Al atoms are chemically bonded to the substrates, becoming an integrated part of the substrates;
- (iv).
- Both layering and in-plane ordering at the Al(l)/γ-Al2O3{1 1 1}Al_2 interface are more pronounced than that at Al(l)/γ-Al2O3{1 1 1}Al_1 and Al(l)/α-Al2O3{0 0 0 1}.
- (v).
- There are atomic vacancies in the terminating Al layers.
3.3. Prenucleation at the M(l)/MgO{1 1 1} (M = Mg, Al) Interfaces
3.4. General Features of the M(l)/Oxide Interfaces
- Crystallographically, there is a range of lattice misfit, from moderate (1.4%) to high (7.9%);
- Geometrically, although the terminating M layer may have a single peak in the atomic density profiles, it contains atomic vacancies and/or vertical atomic displacements and, therefore, is atomically rough.
- Chemically, atoms in the terminating M layer are positively charged and are bonded to the substrates, becoming an integral part of the substrates;
- The terminating metal atoms exhibit structural coupling with the metal atoms at the substrate subsurface layer, which influences the prenucleation at the interfaces.
3.5. Potency of the Oxide Substrates and Its Role in Heterogeneous Nucleation
4. Modification of the Terminating Metal Layers at the M(l)/Oxide Interfaces
5. Summary and Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wyckoff, R.W.G. The Structure of Crystals, 2nd ed.; Reinhold Publishing Corporation: New York, NY, USA, 1935; pp. 9–11. [Google Scholar]
- Arblaster, J.W. Selected Values of the Crystallographic Properties of the Elements; ASM International: Materials Park, OH, USA, 2018; pp. 118–228. [Google Scholar]
- Handbook Committee. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. In Metal Handbook; ASM International: Materials Park, OH, USA, 1990; Volume 2. [Google Scholar]
- Joost, W.J. Magnesium Technology; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Fan, Z.; Gao, G.; Jiang, B.; Que, Z.P. Impeding nucleation for more significant grain refinement. Sci. Rep. 2020, 10, 9448. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z. Heterogeneous nucleation, grain initiation and grain refinement of Mg-alloys. In Proceedings of the 11th International Conference on Magnesium Alloys and Their Applications, Beaumont Estate, Old Windsor, UK, 24–27 July 2018; Fan, Z., Mendis, C., Eds.; Brunel University: London, UK, 2018. [Google Scholar]
- Kelton, K.F.; Greer, A.L. Nucleation in Condensed Matter: Applications in Materials and Biology; Pergamon Materials Series; Elsevier Ltd.: Oxford, UK; Amsterdam, The Netherlands, 2010. [Google Scholar]
- Turnbull, D. Kinetics of heterogeneous nucleation. J. Chem. Phys. 1950, 18, 198–203. [Google Scholar] [CrossRef]
- Men, M.; Fan, Z. Prenucleation induced by crystalline substrates. Metall. Mater. Trans. A 2018, 49, 2766–2777. [Google Scholar] [CrossRef]
- Fang, C.M.; Men, H.; Fan, Z. Effect of substrate chemistry on prenucleation. Metall. Mater. Trans. A 2018, 49, 6231–6242. [Google Scholar] [CrossRef]
- Men, H.; Fang, C.M.; Fan, Z. Prenucleation at the liquid/substrate interface: An overview. Metals 2022. [Google Scholar]
- Fan, Z.; Men, H.; Wang, Y.; Que, Z.P. A new atomistic mechanism for heterogeneous nucleation in the systems with negative lattice misfit: Creating a 2D template for crystal growth. Metals 2021, 11, 478. [Google Scholar] [CrossRef]
- Fan, Z.; Men, H. A molecular dynamics study of heterogeneous nucleation in generic liquid/substrate systems with positive lattice misfit. Mater. Res. Express 2020, 7, 126501. [Google Scholar] [CrossRef]
- Jiang, B.; Men, H.; Fan, Z. Atomic ordering in the liquid adjacent to an atomically rough solid surface. Comp. Mater. Sci. 2018, 153, 73–81. [Google Scholar] [CrossRef]
- Fan, Z.; Men, Z. An overview on atomistic mechanisms of heterogeneous nucleation. Metals 2022, 12, 1547. [Google Scholar] [CrossRef]
- Fan, Z.; Gao, F. Grain initiation and grain refinement: An overview. Metals 2022, 12, 1512. [Google Scholar] [CrossRef]
- Greer, A.L.; Bunn, A.M.; Tronche, A.; Evans, P.V.; Bristow, D.J. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B. Acta Mater. 2000, 48, 2823–2835. [Google Scholar] [CrossRef]
- Li, H.-T.; Wang, Y.; Fan, Z. Mechanisms of enhanced heterogeneous nucleation during solidification in binary Al-Mg alloys. Acta Mater. 2012, 60, 1528–1537. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Xia, M.; Arumuganathar, S. Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing. Acta Mater. 2009, 57, 4891–4901. [Google Scholar] [CrossRef]
- Kim, K. Formation of endogenous MgO and MgAl2O4 particles and their possibility of acting as substrate for heterogeneous nucleation of aluminum grains. Surf. Interface Anal. 2015, 47, 429–438. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, Y.; Ramasse, Q.; Fan, Z. The nature of native MgO in Mg and its alloys. Metall. Mater. Trans. A 2020, 51, 2957–2974. [Google Scholar] [CrossRef]
- Griffiths, W.D.; Lai, N.-W. Double oxide film defects in cast magnesium alloy. Metall. Mater. Trans. A 2007, 38, 190–196. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.-T.; Fan, Z. Oxidation of aluminium alloy melts and inoculation by oxide particles. Trans. Indian Inst. Met. 2012, 65, 653–661. [Google Scholar] [CrossRef]
- Wang, L.; Lu, W.Q.; Hu, Q.D.; Xia, M.X.; Wang, Y.; Li, J.Q. Interfacial tuning for the nucleation of liquid AlCu alloy. Acta Mater. 2017, 139, 75–85. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, S.H.; Lordan, E.; Wang, Y.; Fan, Z. Improve mechanical properties of high pressure die cast Al9SiCu alloy via dislocation enhanced precipitation. J. Alloys Compd. 2019, 785, 1015–1022. [Google Scholar] [CrossRef]
- Liu, X.; Chen, G.; Zhang, Z.Y.; Zhao, Y.T.; Yan, Q.; Mou, S.Y.; Zhang, H. Preparation and mechanical properties of in situ submicron MgAl2O4/6061Al composites from Al-Mg-SiO2 system. Mater. Res. Exp. 2019, 6, 096521. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Yang, M. The influencing factor of MgAl2O4 on heterogeneous nucleation and grain refinement in Al alloy melts. Materials 2020, 13, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, H.B.; Zhan, M.Y.; Li, C.B.; Ma, Z.Q.; Du, J. Grain refinement of Mg-Al alloys inoculated by MgAl2O4 powder. J. Magnes. Alloy. 2021, 21, 1211–1219. [Google Scholar] [CrossRef]
- Fiji, H.; Nakae, H. Equilibrium contact angle the magnesium oxide/aluminium system. Acta Mater. 1996, 44, 3567–3573. [Google Scholar] [CrossRef]
- Aguilarsantillan, J. The influence of surface anisotropy crystalline structure on wetting of sapphire by molten aluminum. Metall. Mater. Trans. A 2013, 44, 2299–2306. [Google Scholar] [CrossRef]
- Gibbs, J.W. On the equilibrium of heterogeneous substances. Am. J. Sci. Arts 1978, 14, 441–459. [Google Scholar] [CrossRef]
- Volmer, M.; Weber, A. Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 1926, 119, 277–301. [Google Scholar] [CrossRef]
- Kaplan, W.D.; Chatain, D.; Wynblatt, P.; Cater, W.C. A review of wetting versus adsorption, complexions, and related phenomena: The rosetta stone of wetting. J. Mater. Sci. 2013, 48, 5681–5717. [Google Scholar] [CrossRef]
- Kaplan, W.D.; Kauffmann, Y. Structural order in liquids induced by interfaces with crystals. Ann. Rev. Mater. Res. 2006, 36, 1–48. [Google Scholar] [CrossRef]
- Oh, S.H.; Kauffmann, Y.; Scheu, C.; Kaplan, W.D.; Rühle, N. Ordered liquid aluminium at the sapphire. Science 2005, 310, 661–663. [Google Scholar] [CrossRef]
- Kauffmann, Y.; Oh, S.H.; Koch, C.T.; Hashibon, A.; Scheu, C.; Rühle, M.; Kaplan, W.D. Quantitative analysis of layering and in-plane ordering structural ordering at an alumina-aluminum solid liquid interface. Acta Mater. 2011, 59, 4378–4386. [Google Scholar] [CrossRef]
- Ma, S.D.; Brown, A.J.; Yan, R.; Davidchack, R.L.; Howes, P.B.; Nicklin, C.; Zhai, Q.J.; Jing, T.; Dong, H.B. Atomistics of prenucleation layering of liquid metals at the interface with poor nucleants. Commun. Chem. 2019, 2, 1. [Google Scholar] [CrossRef]
- Yan, R.; Sun, W.Z.; Ma, S.D.; Davidchak, R.L.; Di Pasquale, N.; Zhai, Q.J.; Jin, T.; Dong, H.B. Structural and mechanical properties of homogeneous solid-liquid interface of Al modelled with COMB3 potential. Comput. Mater. Sci. 2018, 155, 136–143. [Google Scholar] [CrossRef]
- Ma, S.D.; Rui, Y.; Tao, J.; Dong, H.B. Substrate-induced liquid layering: A new insight into the heterogeneous nucleation of liquid metals. Metals 2018, 8, 521. [Google Scholar] [CrossRef]
- Kang, J.; Zhu, J.; Curtis, C.; Blake, D.; Glatzmaier, G.; Kim, Y.-H.; Wei, S.-H. Atomically abrupt liquid-oxide interface stabilized by self-regulated interfacial defects: The case of Al/Al2O3 interfaces. Phys. Rev. Lett. 2012, 108, 226105. [Google Scholar] [CrossRef]
- Yan, R.; Sun, W.Z.; Ma, S.D.; Jing, T.; Dong, H.B. The orientation dependence of liquid ordering at α-Al2O3/Al solid-liquid interfaces: A molecular dynamics study. Comput. Mater. Sci. 2020, 174, 109489. [Google Scholar] [CrossRef]
- Fiquet, G.; Richet, P.; Montagnac, G. High-temperature thermal expansion of lime, periclase, corundum and spinel. Phys. Chem. Miner. 1999, 27, 103–111. [Google Scholar] [CrossRef]
- Verwey, E.J.W. The crystal structure of γ-Fe2O3 and γ-Al2O3. Z. Kristallogr. 1935, 91, 65–69. [Google Scholar] [CrossRef]
- Sickafus, K.E.; Wills, J.W.; Grimes, N.W. Structure of spinel. J. Am. Ceram. Soc. 1999, 82, 3279–3292. [Google Scholar] [CrossRef]
- De Boer, P.K.; de Groot, R.A. The conduction bands of MgO, MgS and HfO2. J. Phys. Condens. Matter 1998, 10, 10241–11248. [Google Scholar] [CrossRef]
- Fang, C.M.; de Groot, R.A. The nature of electron states in AlN and α-Al2O3. J. Phys. Condens. Matter 2007, 19, 386223. [Google Scholar] [CrossRef]
- Tasker, P.W. The surface energies, surface tensions and surface structure of the alkali halide crystals. Philos. Mag. A 1979, 39, 119–136. [Google Scholar] [CrossRef]
- Fang, C.M.; Parker, S.C.; de With, G. Atomistic simulation of the surface energy of spinel MgAl2O4. J. Am. Ceram. Soc. 2000, 83, 2082–2084. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Prenucleation at the liquid-Al/α-Al2O3 and the liquid-Al/MgO interfaces. Comput. Mater. Sci. 2020, 171, 109258. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Prenucleation at the interface between MgO and liquid magnesium: An ab initio molecular dynamics study. Metall. Mater. Trans. A 2020, 51, 788–797. [Google Scholar] [CrossRef]
- Singh, G.; Yu, Y.; Ernst, F.; Raj, R. Shear strength and sliding at a metal-ceramic (aluminium-spinel) interface at ambient and elevated temperatures. Acta Mater. 2007, 55, 3049–3057. [Google Scholar] [CrossRef]
- Hashibon, A.; Adler, J.; Finnis, M.W.; Kaplan, W.D. Atomistic study of structural correlations at a liquid-solid interface. Comput. Mater. Sci. 2002, 24, 443–452. [Google Scholar] [CrossRef]
- Men, H.; Fan, Z. Atomic ordering in liquid aluminium induced by substrates with misfits. Comput. Mater. Sci. 2014, 85, 1–7. [Google Scholar] [CrossRef]
- Schumacher, P.; Greer, A.L. Enhanced heterogeneous nucleation of α-Al in amorphous aluminum-alloys. Mater. Sci. Eng. A 1994, 181, 1335–1339. [Google Scholar] [CrossRef]
- Bunn, A.M.; Evans, P.V.; Bristow, D.J.; Greer, A.L. Modelling of the effectiveness of Al-Ti-B refiners in commercial purity alimunium. In Essential Reading in Light Metals; Grandfield, J.F., Eskin, D.G., Eds.; Springer: Cham, Switzerland, 1998; pp. 378–393. [Google Scholar]
- Schumacher, P.; Greer, A.L.; Worth, J.; Evans, P.V.; Kearns, M.A.; Fisher, P.P.; Green, A.H. New studies of nucleation mechanisms in aluminum alloys: Implication for grain refinement practice. Mater. Sci. Technol. 1998, 14, 394–404. [Google Scholar] [CrossRef]
- Bunn, A.M.; Schumacher, P.; Kearns, M.A.; Boothroyd, C.B.; Greer, A.L. Grain refinement by Al-Ti-B alloys in aluminium melts: A study of the mechanisms of poisoning by zirconium. Mater. Sci. Technol. 1999, 15, 1115–1123. [Google Scholar] [CrossRef]
- Greer, A.L. Overview: Application of heterogeneous nucleation in grain-refining of metals. J. Chem. Phys. 2016, 145, 211704. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Wang, Y.; Zhang, Y.; Qin, T.; Zhou, X.R.; Thompson, G.E.; Pennycook, T.; Hashimoto, T. Grain refining mechanism in the Al/Al-Ti-B system. Acta Mater. 2015, 84, 292–304. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, C.M.; Zhou, L.; Hashimoto, T.; Zhou, X.R.; Ramasse, Q.M.; Fan, Z. Mechanism for Zr poisoning of Al-Ti-B based grain refiners. Acta Mater. 2019, 164, 428–439. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Fang, C.M.; Yasmin, S.; Fan, Z. Interfacial interaction and prenucleation at liquid-Al/γ-Al2O3{1 1 1} interfaces from ab initio molecular dynamics simulations. J. Phys. Commun. 2021, 5, 015007. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Atomic ordering at the interfaces between liquid Al and MgO: An ab initio molecular dynamics study. Philos. Mag. Lett. 2020, 100, 235–244. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Atomic ordering at the Liquid-Al/MgAl2O4{1 1 1} Interfaces: Ab initio molecular dynamics simulations. Metall. Mater. Trans. A 2020, 51, 6318–6326. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Hintzsche, L.E.; Fang, C.M.; Marsman, M.; Jordan, G.; Lamers, M.W.P.E.; Weeber, A.W.; Kresse, G. Formation of a positive fixed charge at c-Si(111)/a-Si3N3.5:H interfaces. Phys. Rev. Appl. 2015, 3, 064005. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17978. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Brostow, W.; Hagg Lodbland, H.E. Materials: Introduction and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Wang, J.S.; Horsfield, A.P.; Lee, P.D.; Brommer, P. Heterogeneous nucleation of solid Al from the melt by Al3Ti: Molecular dynamics simulations. Phys. Rev. B 2010, 82, 144203. [Google Scholar] [CrossRef]
- Wang, J.S.; Horsfield, A.P.; Schwingenschlögl, U.; Lee, P.D. Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamics study. Phys. Rev. B 2010, 82, 184203. [Google Scholar] [CrossRef]
- Wearing, D.; Horsfield, A.P.; Xu, W.W.; Lee, P.D. Which wets TiB2 inoculant particles: Al or Al3Ti? J. Alloys Compd. 2016, 664, 460–468. [Google Scholar] [CrossRef]
- Fan, Z. An epitaxial model for heterogeneous nucleation on potent substrate. Metall. Mater. Trans. A 2013, 44, 1409–1418. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum-theory of molecular-structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Bader, R.F.W. A bonded path: A universal indicator of bonded interactions. J. Phys. Chem. A 1998, 102, 7314–7323. [Google Scholar] [CrossRef]
- Cibula, A. The grain refinement of aluminium alloy castings by addition of titanium and boron. J. Inst. Met. 1951, 80, 1–16. [Google Scholar]
- Wang, Y.; Que, Z.P.; Hashimoto, T.; Zhou, X.R.; Fan, Z. Mechanism for Si poisoning of Al-Ti-B grain refiners in Al alloys. Metall. Mater. Trans. A 2020, 51, 5734–5757. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, F.; Wang, Y.; Ramasse, Q.M.; Fan, Z. Segregation of Ca at the Mg/MgO interface and its effect on grain refinement of Mg alloys. IOP Conf. Ser. Mater. Sci. Eng. 2019, 529, 012048. [Google Scholar] [CrossRef]
- Ma, S.D.; Dong, Z.H.; Zong, N.F.; Jing, T.; Dong, H.B. Solute-adsorption enhanced heterogeneous nucleation: The effect of Cu adsorption on α-Al at the sapphire substrate. Phys. Chem. Chem. Phys. 2021, 23, 5270–5282. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.H.; Fang, C.M.; Que, Z.P.; Hashimoto, T.; Zhou, X.R.; Ramasse, Q.M.; Fan, Z. Manipulating nucleation potency of substrates by interfacial segregation: An overview. Metals 2022. in progres. [Google Scholar]
- Fang, C.M.; Fan, Z. Effects of segregation of Sc, Y and La atoms on prenucleation at the liquid-Al/γ-Al2O3{1 1 1} interfaces. Metals 2022, 12, 1550. [Google Scholar] [CrossRef]
- Bollada, P.C.; Men, H.; Fang, C.M.; Jimack, P.K.; Fan, Z.; Mullis, A.M. A novel route to the coupling of molecular dynamics and phase-field simulations of crystal growth. IOP Conf. Ser. Mater. Sci. Eng. 2019, 529, 012032. [Google Scholar] [CrossRef]
- Bollada, P.C.; Jimack, P.K.; Mullis, A.M. Multiple field modelling of alloy solidification. Comp. Mater. Sci. 2020, 171, 109085. [Google Scholar] [CrossRef]
Oxides | Lattice, Space Group | Latt. Para. (Å) | Characteristics |
---|---|---|---|
MgO | Cub., Fm-3m (Nr.225) | a = 4.211 [42] | O are in Mg octahedra |
α-Al2O3 | Hex., R3c (Nr. 167) | a = 4.758 [42] c = 12.996 | Each O has 4 Al neighbours Al are in octahedra of O |
γ-Al2O3 | Cub., Fd-3m (Nr. 227) | a = 7.9382 [43] * | Partial Al occupation Each O has 3~4 Al neighbours |
MgAl2O4 | Cub., Fd-3m (Nr. 227) | a = 8.080 [42,44] | Each O has 3 Al and 1 Mg neighbours |
Terminating Surfaces | ORs {hkl}[uvw]M //{h0k0l0}[u0v0w0]S | d[uvw]M (Å) | d[u0v0w0]S (Å) | f(%) |
---|---|---|---|---|
Mg{0 0 01}/MgO{1 1 1} | {0001}[1000]M//{111}[100]S | 3.213 [2] | 2.978 [42] | +7.9 |
Al{1 1 1}/MgO{1 1 1} | {111}[100]M//{111}[100]S | 2.914 [2] | 2.978 [42] | −2.2 |
Al{1 1 1}/α-Al2O3{0 0 0 1} | {111} [220]M //{0001}[1000]S | 5.052 * | 4.785 [42] | +5.6 |
Al{1 1 1}/MgAl2O4{1 1 1} | {111}[200]M//{111}[100]S | 5.828 (=2 × 2.914) | 5.746 [42] | +1.4 [20] |
Al{1 1 1}/γ-Al2O3{1 1 1} | {111}[200]M//{111}[100]S | 5.828 (=2 × 2.914) | 5.631 [43] | +3.3 [20] |
Systems | Possible Interfaces | Cells’ Paras. (Å) | Number of Atoms | |||
---|---|---|---|---|---|---|
a | c | Mg | Al | O | ||
Mg(l)/MgO{111} [50] |
| 14.90 | 64.62 | 425 | - | 100 |
14.90 | 64.62 | 425 | - | 100 | ||
Al(l)/MgO{111} [49,63] |
| 14.90 | 48.75 | 125 | 425 | 100 |
- | - | - | - | - | ||
14.90 | 48.50 | 75 | 450 | 100 | ||
Al(l)/α-Al2O3 {49} |
| 14.40 | 51.82 | - | 524 | 81 |
14.40 | 55.31 | - | 558 | 81 | ||
14.40 | 53.57 | - | 541 | 81 | ||
14.40 | 40.21 | - | 360 | 108 | ||
Al(l)/MgAl2O4{111} [64] |
| 17.24 | 31.51 | 18 | 387 | 144 |
17.24 | 31.72 | 36 | 369 | 144 | ||
17.24 | 42.62 | 36 | 549 | 144 | ||
17.24 | 32.13 | 36 | 387 | 144 | ||
- | - | - | - | - | ||
17.24 | 43.19 | 54 | 531 | 144 | ||
Al(l)/γ-Al2O3{111} [62] |
| 17.06 | 40.58 | - | 522 | 144 |
17.06 | 40.58 | - | 522 | 144 | ||
- | - | - | - | - | ||
- | - | - | - | - | ||
- | - | - | - | - | ||
- | - | - | - | - |
Interface | f(%) | M Oc.(%) | R(%) | q(e/M) | nLayers | SM(z) 1st LM | Prenucl. |
---|---|---|---|---|---|---|---|
Al(l)/Al{111}Al [10] | 0.0 | SP 100.0 | 0.0 | 0.0 | 6 | 0.50 | Strong |
Mg(l)/MgO{111}Mg [50] | +7.9 | SP, vac. 92.0 | 4.0 | +0.60 | 3–4 | 0.01 | Weak |
Al(l)/MgO{111}Mg [49,63] | −2.2 | SP 100 | 0.0 | +0.69 | 4 | 0.30 | Moderate-strong |
Al(l)/MgO{111}Al [49,63] | −2.2 | MP, vac. 73.3 | 8.2 | +0.94 | 3–4 | 0.01 | Weak |
Al(l)/α-Al2O3{0001}Al [49,63] | +5.6 | MP, vac. 55.9 | 30.8 | +0.95 | 3 | 0.01 | Weak |
Al(l)/MgAl2O4{111}Al_2 [64] | +1.4 | SP, vac. 70.4 | 5.3 | +1.07 | 3–4 | 0.18 | Moderate |
Al(l)/MgAl2O4{111}AlAlAl [64] | +1.4 | MP, vac. 71.8 | 18.7 | +0.40 to +1.42 | 3 | 0.01 | Weak |
Al(l)/MgAl2O4{111}MgAlAl [64] | +1.4 | MP, vac. 75.0 | 14.7 | +0.44 to +1.17 | 3 | 0.05 | Weak |
Al(l)/MgAl2O4{111}MgAlMg [64] | +1.4 | MP, vac. 75.0 | 11.2 | +0.21 to +1.11 | 3 | 0.02 | Weak |
Al(l)/γ-Al2O3{111}Al_2 [62] | +3.3 | SP, vac. 58.1 | 11.1 | +0.80 to +1.20 | 3–4 | 0.03 | Weak |
Al(l)/γ-Al2O3{111}Al_1 [62] | +3.3 | MP, vac. 54.0 | 31.1 | +0.40 to +1.50 | 3 | 0.01 | Weak |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, C.; Fan, Z. Ab Initio Molecular Dynamics Investigation of Prenucleation at Liquid–Metal/Oxide Interfaces: An Overview. Metals 2022, 12, 1618. https://doi.org/10.3390/met12101618
Fang C, Fan Z. Ab Initio Molecular Dynamics Investigation of Prenucleation at Liquid–Metal/Oxide Interfaces: An Overview. Metals. 2022; 12(10):1618. https://doi.org/10.3390/met12101618
Chicago/Turabian StyleFang, Changming, and Zhongyun Fan. 2022. "Ab Initio Molecular Dynamics Investigation of Prenucleation at Liquid–Metal/Oxide Interfaces: An Overview" Metals 12, no. 10: 1618. https://doi.org/10.3390/met12101618
APA StyleFang, C., & Fan, Z. (2022). Ab Initio Molecular Dynamics Investigation of Prenucleation at Liquid–Metal/Oxide Interfaces: An Overview. Metals, 12(10), 1618. https://doi.org/10.3390/met12101618