Effect of Varying Ce Content on the Mechanical Properties and Corrosion Resistance of Low-Elastic-Modulus Mg-Zn-Ce Amorphous Alloys
Abstract
:1. Introduction
2. Experiments
2.1. Material Preparation and Characterization
2.2. Mechanical Property Testing
2.3. Electrochemical Property Testing
2.4. X-ray Photoelectron Spectroscopy (XPS) Characterization
3. Results and Discussion
3.1. Microstructure and Thermal Properties
3.2. Mechanical Properties
3.3. Microscopic Mechanism of Ductility
3.4. Electrochemical Properties
3.4.1. Open Circuit Potential and Polarization Curve Analysis
3.4.2. Electrochemical Impedance Analysis
3.5. Analysis of the XPS Results
3.6. Corrosion Behavior of Mg-Zn-Ce Amorphous Alloy
4. Conclusions
- (1)
- XRD and DSC results verified the amorphous structures of the Mg70−xZn30Cex (x = 2, 4, 6, and 8) alloys.
- (2)
- The elastic modulus of the Mg70−xZn30Cex (x = 2, 4, 6, and 8) amorphous alloy was similar to that of human bone, and it could effectively avoid the resulting stress shielding effect if the material was used as a bone implant.
- (3)
- In the simulated body fluid, the Mg64Zn30Ce6 sample had the best corrosion resistance, followed by Mg66Zn30Ce4.
- (4)
- Ce in the sample would preferentially react with the dissolved oxygen in the solution, forming Ce oxides (CeO2 and Ce2O3). Insoluble oxides reduced the corrosion rate of the alloy, producing a dense Ca3(PO4)2∙4H2O film in the subsequent reaction, which further delayed corrosion of the alloy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, P.-C.; Tsai, P.-H.; Li, T.-H.; Cheng, C.-K.; Jang, J.; Huang, J. Degradation behavior and mechanical strength of Mg-Zn-Ca bulk metallic glass composites with Ti particles as biodegradable materials. J. Alloys Compd. 2017, 699, 914–920. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Wu, S.; Yeung, K.; Zheng, Y.; Chu, P.K. Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomater. 2016, 45, 2–30. [Google Scholar] [CrossRef] [PubMed]
- Saini, M.; Singh, Y.; Arora, P.; Arora, V.; Jain, K. Implant biomaterials: A comprehensive review. J. World J. Clin. Cases 2015, 31, 52–57. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, D.C.; Zhang, X.T.; Su, Y.C.; Shi, Z.M.; Wang, K.; Lin, J.G.; Li, Y.C.; Lin, J.X.; Wen, C. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials. J. Acta Biomater. 2018, 82, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Jana, A.; Das, M.; Balla, V.K. Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy. J. Alloys Compd. 2019, 821, 153462. [Google Scholar] [CrossRef]
- Zhao, D.; Witte, F.; Lu, F.; Wang, J.; Li, J.; Qin, L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 2017, 112, 287–302. [Google Scholar] [CrossRef]
- Gu, X.; Xie, X.; Li, N.; Zheng, Y.; Qin, L. In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater. 2012, 8, 2360–2374. [Google Scholar] [CrossRef]
- Lee, J.I.; Ryu, W.H.; Yoon, K.N.; Park, E.S. In-situ synthesis of Mg-based bulk metallic glass matrix composites with primary α-Mg phases. J. Alloys Compd. 2021, 879, 160417. [Google Scholar] [CrossRef]
- Roche, V.; Koga, G.; Matias, T.; Kiminami, C.; Bolfarini, C.; Botta, W.; Nogueira, R.; Junior, A.J. Degradation of biodegradable implants: The influence of microstructure and composition of Mg-Zn-Ca alloys. J. Alloys Compd. 2018, 774, 168–181. [Google Scholar] [CrossRef]
- Samiri, A.; Khmich, A.; Hassani, A.; Hasnaoui, A. Elastic and structural properties of Mg25Al75 binary metallic glass under different cooling conditions. J. Alloys Compd. 2021, 891, 161979. [Google Scholar] [CrossRef]
- Wu, R.; Yan, Y.; Wang, G.; Murr, L.; Han, W.; Zhang, Z.; Zhang, M. Recent progress in magnesium–lithium alloys. Int. Mater. Rev. 2014, 60, 65–100. [Google Scholar] [CrossRef]
- Ding, W.J. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials. J. Regen. Biomater. 2016, 32, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Ma, X.; Zhou, Z. Composition and size dependent brittle-to-malleable transitions of Mg-based bulk metallic glasses. Mater. Sci. Eng. A 2014, 605, 286–293. [Google Scholar] [CrossRef]
- Zberg, B.; Uggowitzer, P.J.; Löffler, J.F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 2009, 8, 887–891. [Google Scholar] [CrossRef] [PubMed]
- González, S.; Figueroa, I.; Todd, I. Influence of minor alloying additions on the glass-forming ability of Mg–Ni–La bulk metallic glasses. J. Alloys Compd. 2009, 484, 612–618. [Google Scholar] [CrossRef]
- Chen, J.; Dong, J.; Fu, H.; Zhang, H.; Tan, L.; Zhao, D.; Yang, K. In vitro and in vivo studies on the biodegradable behavior and bone response of Mg69Zn27Ca4 metal glass for treatment of bone defect. J. Mater. Sci. Technol. 2019, 35, 2254–2262. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Lei, X.; Wei, Y.; Wei, B.; Wang, W.-H. Spiral fracture in metallic glasses and its correlation with failure criterion. Acta Mater. 2015, 99, 206–212. [Google Scholar] [CrossRef]
- Li, H.F.; Zheng, Y.F. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 2016, 36, 1–20. [Google Scholar] [CrossRef]
- Li, K.; Liang, L.; Du, P.; Cai, Z.; Xiang, T.; Kanetaka, H.; Wu, H.; Xie, G. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application. J. Mater. Sci. Technol. 2021, 103, 73–83. [Google Scholar] [CrossRef]
- Liu, D.; Yang, D.; Li, X.; Hu, S. Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review. J. Mater. Res. Technol. 2018, 8, 1538–1549. [Google Scholar] [CrossRef]
- Ruan, Y.; Li, C.; Ren, Y.; Wu, X.; Schmid-Fetzer, R.; Guo, C.; Du, Z. Phases equilibrated with long-period stacking ordered phases in the Mg-rich corner of the Mg-Y-Zn system. J. Mater. Sci. Technol. 2020, 68, 147–159. [Google Scholar] [CrossRef]
- Pan, D.G.; Liu, W.Y.; Zhang, H.F.; Wang, A.M.; Hu, Z.Q. Mg–Cu–Ag–Gd–Ni bulk metallic glass with high mechanical strength. J. Alloys Compd. 2007, 438, 142–144. [Google Scholar] [CrossRef]
- Willbold, E.; Gu, X.N.; Albert, D.; Kalla, K.; Bobe, K.; Brauneis, M.; Janning, C.; Nellesen, J.; Czayka, W.; Tillmann, W.; et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. J. Acta Biomater. 2015, 11, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.Q.; Luo, P.; Hu, Y.C.; Bai, H.Y.; Sun, Y.H.; Sun, B.A.; Liu, Y.H.; Wang, W.H. Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, T.C.; Ott, R.; Almer, J. Structural aspects of elastic deformation of a metallic glass. Phys. Rev. B 2006, 73, 064204. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wang, G.; Wang, R.J.; Zhao, D.Q.; Pan, M.X.; Wang, W.H. Super Plastic Bulk Metallic Glasses at Room Temperature. Science 2007, 315, 1385–1388. [Google Scholar] [CrossRef]
- Guo, W.; Kato, H.; Lü, S.; Wu, S. Porous NiTi Particle Dispersed Mg-Zn-Ca Bulk Metallic Glass Matrix Composites. Materials 2018, 11, 1959. [Google Scholar] [CrossRef]
- Suh, J.-Y.; Conner, R.D.; Kim, C.P.; Demetriou, M.D.; Johnson, W.L. Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses. J. Mater. Res. 2010, 25, 982–990. [Google Scholar] [CrossRef]
- Qu, R.; Wang, S.; Li, G.; Wang, R.; Wang, X.; Wu, S.; Zhang, Z. Shear band fracture in metallic glass: Hot or cold? Scr. Mater. 2018, 162, 136–140. [Google Scholar] [CrossRef]
- Liu, G.B.; Gao, P.; Xue, Z.; Yang, S.Q.; Zhang, M.L. Study on the formation of new Mg-Cu-Ti-Y quaternary bulk metallic glasses with high mechanical strength. J. Non-Cryst. Solids 2012, 35823, 3084–3088. [Google Scholar] [CrossRef]
- Greer, A.L. Metallic glasses… on the threshold. J. Mater. Today 2009, 12, 14–22. [Google Scholar] [CrossRef]
- Zeng, F.; Jiang, M.Q.; Dai, L.H. Dilatancy induced ductile-brittle transition of shear band in metallic glasses. J. Proc. R. Soc. A-Math. Phys. Eng. Sci. 2018, A474, 20170836. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liaw, P.K.; Jin, X.; Yokoyama, Y.; Huang, E.-W.; Jiang, F.; Keer, L.M.; Inoue, A. Fatigue initiation and propagation behavior in bulk-metallic glasses under a bending load. J. Appl. Phys. 2010, 108, 113512. [Google Scholar] [CrossRef]
- Li, Z.; Song, G.-L.; Song, S. Effect of bicarbonate on biodegradation behaviour of pure magnesium in a simulated body fluid. Electrochim. Acta 2014, 115, 56–65. [Google Scholar] [CrossRef]
- Cao, F.Y.; Shi, Z.M.; Song, G.L.; Liu, M.; Atrens, A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)(2) of as-cast and solution heat-treated binary Mg-X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. J. Corros. Sci. 2013, 76, 60–97. [Google Scholar] [CrossRef]
- Kumar, V.; Gupta, A.; Lahiri, D.; Balani, K. Serrated yielding during nanoindentation of thermomechanically processed novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys. J. Phys. D-Appl. Phys. 2013, 46, 145304. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, Q.-X.; Chen, G.-Q.; Cao, X.; Zhang, S.; Pan, J.-L.; Zhang, G.; Shi, Q.-Y. Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing. Corros. Sci. 2018, 138, 284–296. [Google Scholar] [CrossRef]
- Pan, H.; Pang, K.; Cui, F.; Ge, F.; Man, C.; Wang, X.; Cui, Z. Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hanks’ solution. Corros. Sci. 2019, 157, 420–437. [Google Scholar] [CrossRef]
- Wang, B.; Xu, D.; Dong, J.; Ke, W. Effect of corrosion product films on the in vitro degradation behavior of Mg-3%Al-1%Zn (in wt%) alloy in Hank’s solution. J. Mater. Sci. Technol. 2018, 34, 1756–1764. [Google Scholar]
- Liu, Y.; Liu, X.; Zhang, Z.C.; Farrell, N.; Chen, D.F.; Zheng, Y.F. Comparative, real-time in situ monitoring of galvanic corrosion in Mg-Mg2Ca and Mg-MgZn2 couples in Hank’s solution. J. Corros. Sci. 2019, 161, 108185. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, M.J.; Pang, J.; Wang, Z.; Jarfors, A.W. In vitro corrosion behaviors of Mg67Zn28Ca5 alloy: From amorphous to crystalline. Mater. Chem. Phys. 2012, 134, 1079–1087. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, P.; Koberstein, J.; Khalid, S.; Chan, S.W. Cerium oxidation state in ceria nanoparticles studied with X-ray pho-toelectron spectroscopy and absorption near edge spectroscopy. J. Surf. Sci. 2004, 563, 74–82. [Google Scholar] [CrossRef]
Alloy Composition | Tg (°C) | Tx (°C) | ΔTx (°C) |
---|---|---|---|
Mg68Zn30Ce2 | 129.2 | 143 | 13.8 |
Mg66Zn30Ce4 | 144.2 | 160.7 | 16.5 |
Mg64Zn30Ce6 | 151 | 165 | 14 |
Mg62Zn30Ce8 | 162.6 | 175.5 | 12.9 |
Sample | Rct (Ω∙cm2) | Yf (Ω−1∙cm−2∙s−1) | nf | Rp (Ω∙cm2) | Zw (Ω∙cm2) |
---|---|---|---|---|---|
Mg68Zn30Ce2 | 2630 | 1.90 × 10−6 | 0.72 | 1.03 × 104 | 5.90 × 10−5 |
Mg66Zn30Ce4 | 3297 | 4.25 × 10−6 | 0.57 | 4.44 × 104 | - |
Mg64Zn30Ce6 | 5093 | 1.37 × 10−6 | 0.59 | 3.95 × 104 | - |
Mg62Zn30Ce8 | 2841 | 3.50 × 10−6 | 0.56 | 1.73 × 104 | - |
Sample | Rs (Ω∙cm2) | Cm (F∙cm−2) | Rf (Ω∙cm2) | Ydl (Ω−1∙cm−2∙s−1) | ndl |
---|---|---|---|---|---|
Mg68Zn30Ce2 | 155.30 | - | - | 3.14 × 10−7 | 0.60 |
Mg66Zn30Ce4 | 36.65 | 8.83 × 10−9 | 110.31 | 2.13 × 10−7 | 0.78 |
Mg64Zn30Ce6 | 123.90 | 8.12 × 10−21 | 0.02 | 3.91 × 10−7 | 0.80 |
Mg62Zn30Ce8 | 4.23 | 6.52 × 10−10 | 84.61 | 6.77 × 10−7 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Wang, M.; Zhang, K.; Wang, H.; Jiang, H.; Lu, Z. Effect of Varying Ce Content on the Mechanical Properties and Corrosion Resistance of Low-Elastic-Modulus Mg-Zn-Ce Amorphous Alloys. Metals 2022, 12, 1637. https://doi.org/10.3390/met12101637
He M, Wang M, Zhang K, Wang H, Jiang H, Lu Z. Effect of Varying Ce Content on the Mechanical Properties and Corrosion Resistance of Low-Elastic-Modulus Mg-Zn-Ce Amorphous Alloys. Metals. 2022; 12(10):1637. https://doi.org/10.3390/met12101637
Chicago/Turabian StyleHe, Meifeng, Mingming Wang, Ke Zhang, Haitao Wang, Hong Jiang, and Zhanjun Lu. 2022. "Effect of Varying Ce Content on the Mechanical Properties and Corrosion Resistance of Low-Elastic-Modulus Mg-Zn-Ce Amorphous Alloys" Metals 12, no. 10: 1637. https://doi.org/10.3390/met12101637
APA StyleHe, M., Wang, M., Zhang, K., Wang, H., Jiang, H., & Lu, Z. (2022). Effect of Varying Ce Content on the Mechanical Properties and Corrosion Resistance of Low-Elastic-Modulus Mg-Zn-Ce Amorphous Alloys. Metals, 12(10), 1637. https://doi.org/10.3390/met12101637