Microstructure and Mechanical Properties of Laser-Welded Joint of Tantalum and Stainless Steel
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
3.1. Joint Forming and Microstructure
3.2. Mechanical Properties of Joint
3.3. First-Principles Calculations
4. Conclusions
- (1)
- The connection between Ta and 304L stainless steel can be realized by laser welding. After welding, the surface of the weld is well-formed and the cross-section is cup-shaped, with high feet and narrow feet.
- (2)
- Fe is the main element in the weld zone, and the Fe-based solid solution precipitates into grains. TaFe2 and TaCr2 intermetallic compounds form intergranular and eutectic structures, together with some Fe-based solid solutions. TaFe2 cellular grains and a brittle Fe–Ta reaction layer appear at the fusion line of the Ta side weld zone. The structure of the reaction layer consists of Ta, TaFe, TaFe2, and TaCr2.
- (3)
- The brittle and hard phases of TaFe and TaFe2 in the weld reduces the joint performance. The microhardness of the weld zone is significantly higher than that of 304L and Ta base metal, reaching 650HV with an average hardness of 530HV. The tensile shear force of the joint at room temperature is 154.77 N/mm, and the fracture occurs in the weld zone on the steel side, presenting brittle fracture characteristics.
- (4)
- When calculating the mechanical properties, the bulk modulus B, shear modulus G, and Young’s modulus E of TaFe2 are the largest, 239.86 GPa, 137.95 GPa, and 347.27 GPa, respectively, which indicates that TaFe2 has the strongest resistance to compression and shear, as well as high hardness and stiffness. TaFe2 is a brittle intermetallic compound with a hardness of 16.05 GPa, while TaCr2 is a ductile compound with a hardness of only 6.96 GPa, as calculated by Pugh’s criteria.
- (5)
- When settling the electronic structure properties, both TaFe2 and TaCr2 have nonzero values of density of states at the Fermi energy level, and both have metallic properties and conductivity. The total density of states of TaFe2 and TaCr2 and the sources at the Fermi energy level are mainly d-orbital electrons, and both TaFe2 and TaCr2 structures have both covalent and metallic bonding properties, with metallic bonding dominating.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardonne, S.M.; Kumar, P.; Michaluk, C.A.; Schwartz, H.D. Tantalum and its alloys. Int. J. Refract. Met. Hard Mater. 1995, 13, 187–194. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Y. Application of tantalum metal in orthopedics. J. Biomed. Eng. 2011, 28, 419–422. [Google Scholar]
- Mineta, K.; Okabe, T.H. Development of a recycling process for tantalum from capacitor scraps. J. Phys. Chem. Solids 2005, 66, 318–321. [Google Scholar] [CrossRef]
- Wurster, S.; Gludovatz, B.; Hoffmann, A.; Pippan, R. Fracture behaviour of tungsten–vanadium and tungsten–tantalum alloys and composites. J. Nucl. Mater. 2011, 413, 166–176. [Google Scholar] [CrossRef]
- Moser, K.D. The manufacture and fabrication of tantalum. JOM 1999, 51, 29–31. [Google Scholar] [CrossRef]
- Arivazhagan, N.; Singh, S.; Prakash, S.; Reddy, G.M. Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding. Mater. Des. 2011, 32, 3036–3050. [Google Scholar] [CrossRef]
- Kumar, R.R.; Babu, J.M. Investigation and Joint effect Analysis of Ti-6AL-4V & SS-304L in Aerospace Applications. INCAS Bull. 2020, 12, 195–201. [Google Scholar]
- Paul, E.; Swartzendruber, L.J. The Fe−Nb (Iron-Niobium) system. Bull. Alloy. Phase Diagr. 1986, 7, 248–254. [Google Scholar] [CrossRef]
- Hosking, F.M. Sodium compatibility of refractory metal alloy-type 304L stainless steel joints. Weld. J. 1985, 64, 181s–190s. [Google Scholar]
- Masumoto, H.; Asada, A.; Hasuyama, H.; Nishio, K.; Kato, M.; Mukae, S. Diffusion bonding of tantalum and stainless steel. Weld. Int. 1997, 11, 110–120. [Google Scholar] [CrossRef]
- Lison, R.; Stelzer, J.F. Diffusion welding of reactive and refractory metals to stainless steel. Weld. J. 1979, 58, 306–314. [Google Scholar]
- Yang, M.; Ma, H.; Shen, Z.; Huang, Z.; Tian, Q.; Tian, J. Dissimilar material welding of tantalum foil and Q235 steel plate using improved explosive welding technique. Mater. Des. 2020, 186, 108348. [Google Scholar] [CrossRef]
- Paul, H.; Miszczyk, M.M.; Chulist, R.; Prażmowski, M.; Morgiel, J.; Gałka, A.; Faryna, M.; Brisset, M. Microstructure and phase constitution in the bonding zone of explosively welded tantalum and stainless steel sheets. Mater. Des. 2018, 153, 177–189. [Google Scholar] [CrossRef]
- Paul, H.; Chulist, R.; Lityńska-Dobrzyńska, L.; Prażmowski, M.; Faryna, M.; Mania, I.; Szulc, Z.; Miszczyk, M.M.; Kurek, A. Interfacial reactions and microstructure related properties of explosively welded tantalum and steel sheets with copper interlayer. Mater. Des. 2021, 208, 109873. [Google Scholar] [CrossRef]
- Kosec, B.; Kosec, L.; Petrović, S.; Gontarev, V.; Kosec, G.; Gojić, M.; Škraba, P. Analysis of low-carbon steel/tantalum interface after explosive welding. Metalurgija 2003, 42, 147–151. [Google Scholar]
- Xia, C.; Jin, Z. Examination of the diffusion path in a niobium-steel explosion weld interface during heat treatment. Mater. Sci. Eng. A. 1996, 221, 173–178. [Google Scholar] [CrossRef]
- Xia, C.; Jin, Z. Interfacial reaction in the tantalum-steel explosion weld composite at 1053 K. J. Cent. South Univ. Technol. 1997, 4, 5–8. [Google Scholar] [CrossRef]
- Xia, C.; Jin, Z. Interfacial reactions in an explosively-welded tantalum clad steel plate. Surf. Coat. Technol. 2000, 130, 29–32. [Google Scholar] [CrossRef]
- Guoqing, C.; Binggang, Z.; Yuan, Z.; Binghui, D.; Jicai, F. Microstructure and properties of electron beam welded tantalum-to-stainless steel joints. Rare Met. Mater. Eng. 2013, 42, 914–918. [Google Scholar] [CrossRef]
- Sang, S.; Li, D.; Wang, C.; Ding, L.; Tang, Y.; Xiong, Q. Microstructure and mechanical properties of electron beam welded joints of tantalum and GH3128. Mater. Sci. Eng. A. 2019, 768, 138431. [Google Scholar] [CrossRef]
- Katayama, S. Introduction: Fundamentals of laser welding. In Handbook of Laser Welding Technologies; Woodhead Publishing: Sawston, UK, 2013. [Google Scholar] [CrossRef]
- Yunlian, Q.; Ju, D.; Quan, H.; Liying, Z. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Mater. Sci. Eng. A 2000, 280, 177–181. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, Y.; Hao, K.; Chen, Y. Cracking in dissimilar laser welding of tantalum to molybdenum. Opt. Laser Technol. 2018, 102, 54–59. [Google Scholar] [CrossRef]
- Penilla, E.H.; Devia-Cruz, L.F.; Wieg, A.T.; Martinez-Torres, P.; Cuando-Espitia, N.; Sellappan, P.; Kodera, Y.; Aguilar, G.; Garay, G.E. Ultrafast laser welding of ceramics. Science 2019, 365, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Pankaj, P.; Tiwari, A.; Bhadra, R.; Biswas, P. Experimental investigation on CO2 laser butt welding of AISI 304 stainless steel and mild steel thin sheets. Opt. Laser Technol. 2019, 119, 105633. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, Y.; Chen, Y.; Peng, P. Laser joining of Mo and Ta sheets with Ti6Al4V or Ni filler. Opt. Laser Technol. 2018, 106, 487–494. [Google Scholar] [CrossRef]
- Head, J.D.; Zerner, M.C. A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270. [Google Scholar] [CrossRef]
- Lewis, A.S.; Overton, M.L. Nonsmooth optimization via quasi-Newton methods. Math. Program. 2013, 141, 135–163. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Tan, L.; Ke, Y. Advances in medical applications of tantalum metals. Mater. Guide. 2012, 26, 79–82. [Google Scholar]
- Tong, L.; Minshan, L. Theoretical analysis of the relationship between elastic constants and temperature of metallic materials. Mech. Eng. Mater. 2014, 38, 85–89, 95. [Google Scholar]
Fe | Si | Ni | Nb | O | C | H | N | Ta |
---|---|---|---|---|---|---|---|---|
0.005 | 0.005 | 0.002. | 0.04 | 0.02 | 0.01 | 0.002 | 0.005 | Balance |
C | Si | Mn | P | S | Cr | Ni | Cu | Mo | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
≤0.03 | 0.509 | 1.508 | 0.032 | 0.003 | 18.30 | 8.02 | 0.106 | 0.08 | 0.036 | Balance |
Material | Melting Point (°C) | Density (g/cm3) | Linear Expansion Coefficient (10−6/℃) | Specific Heat Capacity (J/kg·k) | Thermal Conductivity (W/m·k) | Yield Strength (MPa) |
---|---|---|---|---|---|---|
Ta | 2996 | 16.6 | 6.6 | 157 | 50.0 | 403 |
304L | 1454 | 7.93 | 16 | 502 | 14.6 | 230 |
Laser Power (W) | Welding Speed (m/min) | Defocus (mm) | Welding Speed (L/min) |
---|---|---|---|
600 | 0.02 | +0.5 | 25 |
Species | Crystal System | Group (No.) | Lattice Constant | Atom Site |
---|---|---|---|---|
Fe | Cubic system | Im3m (229) | a = b = c = 2.861 α = β = γ = 90° | Fe (I): (0,0,0) |
Ta | Cubic system | Im3m (229) | a = b = c = 3.280 α = β = γ = 90° | Ta (I): (0,0,0) |
Cr | Cubic system | Im3m (229) | a = b = c = 2.874 α = β = γ = 90° | Cr (I): (0,0,0) |
TaFe2 | Hexagonal system | P63/mmc (194) | a = b = 4.816 c = 7.868 α = β = 90° γ = 120° | Fe (I): (0,0,0) Fe (II): (0.167, 0.334, 0.25) Ta (I): (0.3333, 0.6667, 0.067) |
TaCr2 | Hexagonal system | P63/mmc (194) | a = b = 4.925 c = 8.062 α = β = 90° γ = 120° | Cr (I): (0,0,0) Cr (II): (0.833, 0.666, 0.25) Ta (I): (0.3333, 0.6667, 0.063) |
Chemical Element | Cr | Fe | Ni | Ta |
---|---|---|---|---|
A | 20.41 | 71.52 | 8.07 | — |
B | 18.85 | 65.00 | 7.79 | 8.36 |
C | 19.10 | 66.45 | 6.96 | 7.49 |
Chemical Element | Cr | Fe | Ni | Ta |
---|---|---|---|---|
A | 13.56 | 56.18 | 4.27 | 25.99 |
B | 6.88 | 37.54 | 5.58 | 50.00 |
Species | C11 | C12 | C13 | C22 | C23 | C33 | C44 | C55 | C66 |
---|---|---|---|---|---|---|---|---|---|
Fe | 262.94 | 160.78 | 160.78 | 262.94 | 160.78 | 262.94 | 99 | 99 | 99 |
Ta | 246.86 | 158.00 | 158.00 | 246.86 | 158.00 | 246.86 | 92.59 | 92.59 | 92.59 |
Cr | 455.30 | 116.21 | 116.21 | 455.30 | 116.21 | 455.30 | 113.73 | 113.73 | 113.73 |
TaFe2 | 436.64 | 162.70 | 130.95 | 436.64 | 130.95 | 437.28 | 129.67 | 129.67 | 136.97 |
TaCr2 | 344.70 | 168.01 | 157.86 | 344.70 | 157.86 | 405.99 | 70.52 | 70.52 | 88.34 |
Species | BH | GH | E | ν | GH/BH | HV |
---|---|---|---|---|---|---|
Fe | 194.83 | 77.21 | 204.60 | 0.32 | 0.40 | 6.97 |
Ta | 187.61 | 68.96 | 184.30 | 0.34 | 0.37 | 5.90 |
Cr | 229.24 | 113.52 | 335.43 | 0.26 | 0.50 | 11.20 |
TaFe2 | 239.86 | 137.95 | 347.27 | 0.26 | 0.58 | 16.05 |
TaCr2 | 228.79 | 85.21 | 227.41 | 0.33 | 0.37 | 6.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Zhou, Y.; Zhu, Z.; Chen, Y.; Zhu, Y. Microstructure and Mechanical Properties of Laser-Welded Joint of Tantalum and Stainless Steel. Metals 2022, 12, 1638. https://doi.org/10.3390/met12101638
Feng S, Zhou Y, Zhu Z, Chen Y, Zhu Y. Microstructure and Mechanical Properties of Laser-Welded Joint of Tantalum and Stainless Steel. Metals. 2022; 12(10):1638. https://doi.org/10.3390/met12101638
Chicago/Turabian StyleFeng, Shanshan, Yongqiang Zhou, Zhengqiang Zhu, Yanfei Chen, and Yunming Zhu. 2022. "Microstructure and Mechanical Properties of Laser-Welded Joint of Tantalum and Stainless Steel" Metals 12, no. 10: 1638. https://doi.org/10.3390/met12101638
APA StyleFeng, S., Zhou, Y., Zhu, Z., Chen, Y., & Zhu, Y. (2022). Microstructure and Mechanical Properties of Laser-Welded Joint of Tantalum and Stainless Steel. Metals, 12(10), 1638. https://doi.org/10.3390/met12101638