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Abstract: The thermo-mechanical behavior of nanosized Al2O3 particles reinforcing aluminum was
analyzed in the present paper. The material was prepared by spark plasma sintering and friction
stir welding. The thermal stresses affecting the composite behavior during welding were modeled
through COMSOL MultiPhysics, and the results were validated by the analyses of the composites’
mechanical properties. The spark-plasma-sintered materials presented limited porosity, which was
taken into account during the modeling phase. Both model and experiments revealed that higher
heat input is related to better material mixing during welding and sound mechanical properties.
Thermal stresses lead to residual stresses close to 300 MPa in the thermo-mechanically affected zone
for processing conditions of 1900 RPM and 37 mm/min. This leads to an increase in hardness up to
72 HV.

Keywords: spark plasma sintering; nanocomposites; friction stir welding; COMSOL; mechanical
properties

1. Introduction

Spark plasma sintering (SPS) allows for the manufacturing of dense metal matrix
composites starting from elemental metallic and ceramic powders [1,2]. The technique is
capable of obtaining materials with very fine microstructures through reduced sintering
times and relatively low temperatures [2–4]. Processing parameter tuning allows for a
reduction in porosity and for an increase in the mechanical properties of the sintered
materials [5,6]. In SPSed materials, porosity is believed to represent the major factor
governing the composites’ mechanical properties [7]. The precise tuning of SPS processing
parameters also allows for the activation of various strengthening mechanisms in the
sintered materials, especially in the presence of ceramic reinforcing phases [8,9]. For SPSed
materials, friction stir welding (FSW) and friction stir processing (FSP) are demonstrated
to improve the materials’ mechanical properties due to the better ceramic particle mixing
and distribution, as well as further grain refinement [10]. This aspect can be further
optimized by employing controlled percentages of nanosized reinforcements inside the
metallic phase [11,12]. Here, the control of processing parameters such as welding tool
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rotation and welding speed is the fundamental aspect for the optimal grain refinement,
leading to improved mechanical properties [13,14]. Grain refinement is improved again
in the presence of nanosized ceramic particles [15]. In this general view, it is fundamental
to model the friction stir welding process in order to define the effects of processing
parameters on the thermo-mechanical behavior of the welded materials, which is directly
related to the final mechanical properties. Thermal simulation along with residual stress
prediction in the FSW process has been investigated in several papers [16–20]. However, the
simulation of this process for porous parts, such as parts made by the SPS method, has not
been studied. In the simulation of porous parts, the effect of porosity and immobile fluid
should be considered in the equations to make the simulation results more realistic [21].
In this research, considering the heat transfer equations in porous media and simulating
heat transfer and residual stresses in the structure in the form of multiphysics, the FSW
process was modeled for aluminum-based materials produced by the SPS method. The
aim of the present paper is to define the effect of processing parameters on the thermo-
mechanical behavior of friction-stir-welded aluminum matrix composites produced via
spark plasma sintering.

2. Experimental and Numerical Procedure
2.1. Model Description

In this study, the Finite Element Modeling (FEM) method was used to simulate the
temperature distribution and residual thermal stresses. For this purpose, the Fourier heat
transfer equation was used, considering porous media for three-dimensional geometry.
This equation was applied by considering 3% porosity in the structure of the work piece,
according to Equation (1) [21]. The effective material properties are presented according to
Equations (2) and (3). (

ρCp
)

e f f
∂T
∂t

+ ke f f∇2T = Q (1)(
ρCp

)
e f f = ∅

(
ρCp

)
S + (1−∅)

(
ρCp

)
IMF (2)

ke f f = ∅ kS + (1−∅) kIMF (3)

where ρ is the density, Cp is the heat capacity, k is the heat transfer coefficient and Q is the
produced heat. Eff index means effective, S means solid phase and IMF means immobile
fluid. ∅ is the solid volume fraction equal to 0.97. ρ, Cp and k for the solid phase, which is
aluminum, are 2700 [kg/m3], 24 [J/mol·K] and 210 [W/m·K], respectively. Moreover, for
the immobile fluid phase, air, ρ, Cp and k, are 1.27 [kg/m3], 29 [J/mol·K] and 0.025 [W/m·K],
respectively. In order to consider the porosity in the model, the mixture law according
to the first law of thermodynamics was used. According to Bejan’s book [22], in order
to model the energy equation for a homogeneous porous structure, the energy equation
should be considered separately for each solid and immobile fluid phase. Then, the average
of these equations should be considered for the whole system. In fact, in the software,
the entire structure is considered as a bulk, and the material properties and volumetric
averaging in the energy equations transform the structure into a porous medium.

The generated heat during the FSW process equation, which is the heat between the
part and the tool, depends on the rotational speed, shoulder radius, coefficient of friction,
coefficient of adhesion and slip. This equation was used according to Equation (4) [17].

Q = (γ· f ·F(ωr− uψSinθ) (4)

where γ is a constant [17] and is equal to 1, ω is the tool rotational speed, r is the distance of
each point under the tool from the tool center point, u is the welding velocity, ψ is a constant
describing the effect of the affected side and retreated side and is equal to 20 [17,23], f is
the ratio of the heat input to the work piece to the total heat, which is obtained according
to Equation (5). ρ, Cp and k for the tool are 15E3 [kg/m3], 38 [J/mol·K] and 110 [W/m·K],
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respectively. F is the parameter of generated heat due to friction and plastic deformation
and is presented according to Equation (6).

f =

√
(kρCp)ω√

(kρCp)ω +
√
(kρCp)T

(5)

F = (1− S)τη + S(δτη + (1− δ)µPT) (6)

where S is the slip parameter and also δ is the parameter related to adhesion. In fact, in
the equation related to F, a distinction is made between friction heat due to pressure and
the coefficient of friction, and heat due to plastic deformation, which depends on the shear
yield stress of the material. In this equation, µ is the coefficient of friction equal to 0.4, PT is
the pressure due to the vertical force, τ is the maximum shear yield stress, and S is equal
to 0.7. It is worth mentioning that the equations related to the calculation of S and µ have
been mentioned in previous research [17,24,25].

The following equations show the different boundary conditions in this model. In
these equations, the initial temperature of the work piece is equal to 300 K; the convection
boundary condition with convection coefficient h = 10 (W/m2·K) for the upper surface ac-
cording to Equation (7) and the sides of the part, and also hb = 50 (W/m2·K), are considered
for the lower surface of the part. Moreover, the boundary condition of heat transfer through
radiation, according to Equation (8), was considered for the upper and side surfaces of
the part, which includes the emissivity coefficient equal to 0.03 and Stephen Boltzmann
coefficient equal to 5.67 × 10−8 [26,27].

k
∂T
∂n

= h(T − Ta) (7)

k
∂T
∂n

= εB
(

T4 − T0
4
)

(8)

A thermo-mechanical model was used to predict the residual thermal stresses in the
structure. Since no other strain is assumed in this model except thermal strain, the second
part of the Equation (9) is applied. The thermal strain of this process was obtained from
Equation (10) [20].

ε = εM + εT (9)

εT = α∆T (10)

In the above equation, εM is the strain caused by mechanical work, εT is the thermal
stress and α is the coefficient of thermal expansion of aluminum equal to 23 × 10−6 (1/◦C).
All the boundary conditions are schematically shown in Figure 1.

In this model, two sheets were considered side by side. The dimensions of each sheet
were considered to be 150× 60× 3 mm3 and tetrahedral elements were applied for meshing;
these elements were employed because of the most affordable results obtained in previous
training simulations. It should be noted that the tool geometry was assumed according
to Figure 2. All stages of model construction, meshing and solving were accomplished by
COMSOL Multiphysics version 5.3 software (COMSOL AB, Stockholm, Sweden).
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2.2. Material Preparation and Characterization

Disks of pure aluminum reinforced with 10% of Al2O3 particles were produced via
spark plasma sintering. The ceramic phase percentages were 8% in volume of Al2O3
nanoparticles with mean dimensions of 40 nm (Evonik Industries, Essen, Germany) and
2% in volume of Al2O3 microparticles with mean dimensions of 15 µm (Sigma Aldrich,
St. Luis, MI, USA). The spark plasma sintering procedure is detailed in [1]. Cylindrical
samples with 40 mm in diameter and 5 mm in thickness were produced. Then, they were
cut and friction-stir-welded. The employed tool geometry was described in [1,28]; it had a
conical-shaped tool. The employed tilt angle was 3◦. The welds were produced on a milling
machine (Ferrari, Modena, Italy). The employed welding/processing parameters were
1900 RPM and 37 mm/min and 1600 RPM and 32 mm/min in order to fix the revolutionary
pitch close to 50. These processing parameters were chosen because of previous results
regarding the soundness of the welds [1]. The material’s microstructure was characterized
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through optical and scanning electron microscopy (SEM, Zeiss EVO 40, Zeiss, Oberkochen.
Germany). In addition, the fracture surfaces of the tested materials were observed through
SEM. The mechanical properties of the friction-stir-welded materials were characterized
through microhardness measurements. Microhardness was measured at the center of the
cross-section of the joints through a Vickers microhardness tester (Future-Tech FM-800,
Tokyo, Japan) with the load of 2 N and the dwell of 10 s for each indent. Tensile tests were
performed on specimens cut through electro discharge machining with the center of the
cross-section corresponding to the center of the weld line. The gauge length of the tensile
test specimens was 25 mm; the square cross-section was 5 × 5 mm2. The tensile tests were
performed with a Zwick/Roell standard testing machine (Zwick/Roell, Genova, Italy) with
a constant strain rate of 1 × 10−4 s−1.

3. Results and Discussion

The microstructure of the composite at different magnifications after spark plasma
sintering is shown in Figure 3. When the SPS process is conducted, the developed electric
potential of the aluminum particles due to the presence of non-conductive ceramic particles
can crack the oxide layer. It develops the direct contact between metal particles with very
low porosity, close to 3% [14], which is less than the porosity value reported in [29]. Such
low porosity confirms the better bonding both in Al-Al bonding and Al-nano-sized Al2O3
at the grain boundaries of Al grains. It can be due to the fact that the atomic diffusivity
of the nanoparticles is higher than that of the micron-sized particles. In addition, the
essence of the SPS technique as pressure-assisted sintering, as well as the rendering of clean
grain boundaries as a consequence of the formation of plasma between existing spaces
between aluminum grains during the SPS process, is another fact that can explain the
formation of a strongly bonded microstructure in the Al-Al2O3 composite. In contrast,
the micron-sized Al2O3 particles, with lower atomic diffusivity compared to nano-sized
ones, create extra space to become accommodated into the aluminum matrix. Indeed, the
nano-sized Al2O3 particle size is much smaller than the matrix particle size, and hence the
inter-particle voids created by the consolidation of aluminum particles have been occupied
by the Al2O3 nanoparticles, leading to such a low-porosity sintered composite. Some
dark and angled Al2O3 particles, mostly with micron size, are observed along the grain
boundaries and triple points of aluminum grains, which explains the uniform dispersion of
the reinforcement in the aluminum matrix. In addition, the appearance of aluminum grains
in the microstructure shown in Figure 3a leads to a relatively heavily deformed structure,
which is in line with the results reported in [30].
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The incipient fusion phenomenon occurred to a vast extent between aluminum grains,
even in the presence of Al2O3 dispersoids. It is probably due to the formation of plasma at
inter-particle contacts at the time of sintering. However, the poor bonding of aluminum
and Al2O3 nanoparticles has been reported in the literature in conventional sintering [31].
The Al2O3 particles in the range of nano to micron size are depicted with a more highly
magnified SEM image of the sintered specimen in Figure 4. The agglomerates of Al2O3
with large content of nanoparticles are visible as the lighter area in the SEM image. Its
presence is visible in the metal grain boundaries. The microscopic Al2O3 particles appear
uniformly distributed. Otherwise, the nanometric particles are distributed along the grain
boundaries and inside the grains. It seems that the agglomeration of Al2O3 particles is
dependent on the size of Al2O3 particles, as most of the Al2O3 agglomerates are composed
of nano-sized Al2O3 particles. In addition, higher agglomeration leads to higher poros-
ity [14,32,33]. There is no significant grain growth after the SPS process. This is attributed
to the SPS technique, which typically provides higher density under low-temperature
conditions [2,3,34]. However, wherever the micron-sized Al2O3 particles settled, a few
aluminum grains depicted some grain growth, which probably could be attributed to the
inability of the micron-sized Al2O3 particles to pin down the grain growth at a larger scale.
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Figure 4. SEM microstructure of the composite after SPS (a) showing the distribution of microscopic
and agglomerated nanoscopic Al2O3 particles, (b) clustering of nanoparticles at particle necks and
inside the different grains (marked by yellow dashed line) and (c) larger alumina particles.

The distribution is revealed by the X-ray maps shown in Figure 5. The Al2O3 nanopar-
ticles are present in the interspaces of aluminum particles (Figure 5a). The occurrence
of nanoparticles greatly increases the work hardening rate of the Al matrix. Indeed, as
Figure 5c1–4 show, individual nano-sized Al2O3 particles (mostly in the aluminum grain
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interior) and individual micron-sized Al2O3 particles (mostly at the aluminum grain bound-
aries) effectively act to hinder the recovery and recrystallization processes of the Al matrix
via the Zener drag effect [35,36] and keep the dislocations produced in heavily deformed
aluminum grains in the microstructure, thus increasing the strain hardening capacity.
In addition, the presence of hard and non-deformable tiny particles in a ductile matrix
enhances the grain refining process. In addition, it is confirmed that nano-sized Al2O3
particles have a more effective role in grain refinement compared to micro-sized Al2O3
particles [14,32,37,38]. In this regard, the nano-sized Al2O3 particles hinder grain boundary
migration, which restricts the grain growth. The smaller the grain size, the larger the grain
boundary area, enhancing the effective obstacles as well as increasing the probability of
Al2O3–dislocation interaction in the sintered microstructure. Obstruction of the dislocation
motion hinders the onset of plasticity, which eventually results in improved tensile strength.
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Figure 5. EDS analysis of SPSed Al/Al2O3 composite: (a) EDS map, (b) EDS spectrum of the analyses
of the SEM images shown in Figure 2a, (c1) SEM, (c2) EDS map and (c3,c4) the corresponding analyses
of the aluminum and oxygen elements, respectively.

From the X-ray map, it is evident that the presence of aluminum and aluminum oxide
is detected in the sample. Aluminum carbide is absent in the sample, which is shown in
Figure 5b. The X-ray map shows the larger Al peak with smaller Al2O3. Our previous
results showed that with increasing Al2O3 nanoparticle content, the peak broadening
increases while the crystallite size of Al decreases [1,32,39]. In addition, it also reported that
the rise of nanoparticles leads to the hard agglomerates’ development. Further, it hinders
the local plastic deformation of Al particles. This leads to the formation of stains of Al2O3
nanoparticles in the Al matrix.

The simulation results of temperature distribution according to Figures 6 and 7 were
obtained for welding parameters 1600 and 1900 rpm, respectively.
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Figure 7. Three-dimensional plot of simulated temperature distribution in FSW of spark-plasma-
sintered aluminum with 1900 RPM rotational speed.

Considering the general pattern of the three-dimensional contour of the temperature
distribution in the plates, it is observed that this pattern is in proper agreement with the
experimental results obtained from previous studies [40]. Therefore, FEM is an appropriate
tool to simulate this process.

It is observed that increasing the rotational speed increases the maximum temperature
in the parts during welding. In fact, increasing the rotational speed from 1600 rpm to
1900 rpm resulted in a 9% increase in the maximum temperature in the parts. Moreover, by
increasing the rotational speed, we increase the heat generated due to the application of
more friction cycles per unit time to the work piece. In addition, increasing the rotational
speed increases the strain rate, which results in more shear strains per unit time [23,41].
Therefore, due to the increase in the F parameter (according to Equation (6)), there is an
increase in the generated heat during FSW in the piece. Comparing the results of the
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thermal simulation of the present study on the structure with a porosity of 3% with the
results of previous research, it is observed that the simulated temperature value in the
weld line in a plate with 3% porosity has a higher value than the average temperature of
simulations on bulk aluminum [18,20,42].

Figures 8 and 9 show the results of the distribution of residual thermal stresses in
the components during the FSW process. The temperature distribution is used as the
primary input to calculate the residual stress distribution. In fact, the pattern and history
of temperature distribution has a significant effect on the distribution of residual stress in
the parts.
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Figure 9. Three-dimensional plot of simulated residual thermal stress distribution in FSW of spark-
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The general diagram of the residual stress distribution is in good agreement with the
results of previous studies [18,19]. After generating the heat input with the tool during
the FSW process, the temperature rises in the welding center line and decreases after the
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tool passes through. This causes residual thermal stresses in the structure. As can be seen,
the residual thermal stresses are a combination of tensile and compressive stresses. The
residual thermal stress in the FSW process is due to the expansion and contraction of the
material during heating and cooling, when the sheets are fixed. It is observed that the
1900 rpm sample has a higher longitudinal stress. This is due to the higher maximum
temperature in the components during this process, which results in more residual thermal
stress in the structure. Figure 10 shows a diagram of the longitudinal stress changes in the
cross-section of the parts. Comparing the results of temperature and stress distribution
during the FSW process [20], it was observed that increasing the temperature increases the
residual stress in the structure. This is also consistent with the results of the present study.
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Figure 10. Longitudinal stress profiles for different welding parameters.

It is observed that from the center line to the side walls of the parts, the stress changes
are accompanied by a steep slope, and then these changes have a gentle slope and the
compressive stress on the sides can be observed. This is due to the steep temperature
gradient from the center to the sides during the process. Moreover, as can be seen in the
welding center, the residual stresses are weaker than those at the edges of the weld zone,
due to the lower temperature in the center weld line compared to the edges of the weld
zone. In fact, the heat generated depends on the radius of the tool shoulder. Therefore, the
temperature is higher in areas that are as far away from the center line as the tool shoulder
radius, resulting in higher thermal stress. The presence of porosity in the aluminum reduces
the thermal diffusivity coefficient in the part [29]. Therefore, the temperature is distributed
at a lower rate than in the bulk state structure. As a result, the temperature in the center
line of the parts is higher than in the bulk state, and, therefore, after cooling, the residual
thermal stress in the center line of the section will be higher. In fact, increasing the porosity
causes greater temperature concentration in the center line of the part, which leads to
an increase in residual thermal stress in the middle of the part due to greater thermal
expansion. Observing the results of Poolperm et al.’s [43,44] research, it is confirmed that
the presence of porosity increases the residual stress in the structure during the welding
process. This has been validated in their research by measuring the residual stresses by the
X-ray diffraction (XRD) method and also using FEM simulation and is in good agreement
with the present study.
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The samples were friction-stir-welded to pure aluminum sheets and the aspect for
selected conditions is shown in Figure 11. Top views of all the welded/processed surfaces
appear without the presence of defects, large voids and cracks, as previously reported
by [1,2]. However, at lower ratios of rotating speed to travel speed (lower heat input), some
surface inhomogeneities appeared (their images are not given), while, with a higher input
of heat caused by the higher ratio of the rotating speed to the travel speed, the appearance
of the welded zone is much better, without any type of defect. The investigation of the
forces acting on the tool is crucial to understanding the nature of the material at the
processing time.
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In general, the heat generation is determined by the coefficient of friction, speed of
rotation and movement and moving direction. In particular, the rotation and moving speed
raise the heat input [28,45,46].

It is well known that microstructural evolution during FSW is due to the heat input
provided during processing. Heat input (HI) was calculated through Equation (11).

HI =
2π

3
·µ·P·W·V·R (11)

µ is the local coefficient of friction; W and V are the rotation and travelling speeds, respec-
tively; P is the axial force; R is the shoulder radius.

The force acting on the tool and the corresponding heat input in the welded sheets are
described in Figure 12.

With an increase in the traveling speed, the force in the z-direction (Fz) increases.
The tool–material friction and the severe plastic deformation during processing lead to a
temperature variation within the range of 0.6–0.9 in the material melting temperature in the
friction-stirred materials. In agreement with [1,28], the Fz is dependent on the processing
parameter, so, as the Fz increases, the heat input increases. It exerts not only an influence on
grain refinement, the grain size distribution between the nugget zone, thermo-mechanically
affected zone and heat-affected zone and the dislocation density, but also leads to variation
in the mechanical properties [1,28,45]. Indeed, there is no possibility to perform FSW on a
bimodal-sized Al2O3-reinforced aluminum matrix nanocomposite if the heat input value
is lower and higher than 28,000 and 57,000 J/mm, respectively [1,14]. The friction of the
tool against the material, in addition to the non-elastic deformation, raises the temperature
in the friction-stirred material. The temperature difference of 0.6–0.9 is developed by the
movement and rotating speed of the tool, which melts the material [47].
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Figure 12. Force acting on the tool’s main axis during friction stir welding performed at different
processing parameters (a); corresponding heat input provided to the welding material (b).

At the start of the experiment, the temperature of the material is low. Its yield strength
is high. Higher force values at the initial stage lead to tool penetration. The Fz is in-
duced by the softening material when the tool penetration is complete, before the travel
movement starts.
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The microstructure of the nugget zone of the welds for the different employed process-
ing parameters is shown in Figure 13. The particles are uniformly distributed, resembling
nuggets. The presence of cracks is negligible. The presence of porosity and voids is greatly
decreased in comparison with sintering.
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Intense plastic deformation during FSW, accompanied by the heat generated during
the process, noticeably homogenized the overall preferential orientation of the Al grain
structure and led to a new microstructure of Al grains compared to the SPSed microstruc-
tures. Indeed, the presence of nanosized particles, when agglomerated, and micron Al2O3
particles within weld zones during FSW processing can cause the stimulation of preferred
nucleation sites via the particle-stimulated nucleation mechanism for the formation of new
grains during dynamic recrystallization [28,48]. The average grain size of Al was 9 µm
at 1900 RPM-37 mm/min, while it was around 6 µm at 1600 RPM-32 mm/min. Higher
FSW processing parameters lead to higher heat input, which in turn diminishes the Zener
pinning effect of Al2O3 nanoparticles. A similar finding was noted for the FSW of bimodal-
reinforced Al-based composites [1,3,14]. In the heat-affected zone, the material experiences
only a thermal effect on the grain behavior (grain growth), while in the nugget zone, the
formation of cells and subgrain structures during dynamic recovery, and their conversion
to new grains through continuous recrystallization in the nugget zone, have a significant
role in the enhancement of the mechanical properties, especially hardness.

The microhardness profile for all the studied conditions is shown in Figure 14.
The microhardness profiles were described from measurements performed at the

center of the weld cross-section. FSW of bimodal-reinforced Al-Al2O3 composites was
accompanied by an increase in the hardness of the nugget zone, while softening was noticed
for the base metal. It was reported that the heat input significantly affected the mechanical
response of the welded materials [13,28]. Hardness increases upon increasing the heat
input, which in turn contributes to the strong grain refinement during FSW, specifically
in the nugget zone, due to the severe plastic deformation, and to the uniform distribution
of reinforcing particles during processing [13,28]. The hardness values of SPSed samples
were given in our previous papers, reaching approximately 60 HV [1]. Comparing the
hardness values, it is revealed that the hardness of the nugget zone of FSWed samples
in both conditions is higher than that of the SPEed sample with the same reinforcement
content. In addition, a significant ~28% and ~33% decrease in the hardness occurred at the
base metal/nugget zone interface at 1600 RPM-32 mm/min and at 1900 RPM-37 mm/min,
respectively. The decrease was rather steep, which points to the existence of a very narrow
heat- and thermo-mechanically affected zone between the base metal and nugget zones.
However, there are minor fluctuations in the hardness data both at 1600 RPM-32 mm/min
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and at 1900 RPM-37 mm/min in the base metal and the nugget zone. The highest values are
experienced by those welds presenting a more recrystallized microstructure. The obtained
hardness value for the nugget zone was similar to the value reported by [13,49].
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The tensile curves for selected conditions are shown in Figure 15. It is reported that
that heat input significantly affected the mechanical properties of the FSWed composites,
especially bimodal-sized composites [28,50]. The strength of welded composite joints
significantly varies with the rotational and traveling speeds, so the tensile strength increases
when increasing the heat input. Comparing the tensile properties of the FSW joints indicates
that the elongation of the welded joints in this study shows similar behavior to its tensile
strength. In fact, at the same revolutionary pitch (rotational speed to traveling speed),
the increase in the tool rotation leads to an increase in strength and ductility because
of the different recrystallization behaviors of the stirred materials. Increasing the heat
input (increasing ω and/or decreasing v) enhanced both the strength and elongation of
FSWed joints. However, it is reported that at very high heat input, namely very high
revolutionary pitch, a high temperature peak, accompanied by a slow cooling rate in the
nugget zone, leads to the formation of coarse grains in the welded zone [13,28]. In turn, the
presence of such a coarse grain region in the nugget zone results in a reduction in tensile
strength. In brief, the optimum heat input, uniform distribution of nano- and micron-sized
Al2O3 particles, high density and defect-free weld nugget region are the reasons for the
enhancement in joint strength at an optimum heat input between 28,000 and 57,000 J/mm.
Comparing the other aluminum-based composites with Al2O3 [13] and SiC [50], the tensile
properties achieved in the current work could be obtained in a wide range of heat input.
Indeed, the higher and wider range of heat input is attributed to the presence of the bimodal
reinforcement of Al2O3 in the nugget zone, which is influenced by (1) the higher hardness,
(2) the presence of closed or open pores and (3) the lower heat transfer coefficients of
different elements in the nugget zone.
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Figure 15. Tensile curves for selected friction stir welding conditions.

4. Conclusions

In the present paper, pure aluminum reinforced with nano-sized and micro-sized
Al2O3 particles was produced via spark plasma sintering and friction stir welding. The
material presents 3% porosity after sintering. All the material properties, including porosity,
were employed to model the friction stir welding process in COMSOL MultiPhysics. The
results show that upon increasing the tool rotating speed and the welding speed, the heat
input and thermo-mechanical stresses increase in the material. This allows for improved
material mixing (both matrix and reinforcement) and for a reduction in porosity. As
a consequence, higher mechanical properties are revealed in the welded material. A
sufficiently high heat input caused free flow, adequate plasticization and good consolidation
of stirred metal at the weld nugget region. In turn, this causes a defect-free, fine-grained,
uniform distribution of nano-sized and micro-sized Al2O3 particles, and a more hardened
weld nugget region. These are the main reasons for the better tensile properties of the joints
fabricated under this range of heat input.
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