
Citation: Jeong, J.-Y.; Hong, D.-G.;

Yim, C.-H. Deep Learning to Predict

Deterioration Region of Hot Ductility

in High-Mn Steel by Using the

Relationship between RA Behavior

and Time-Temperature-Precipitation.

Metals 2022, 12, 1689. https://

doi.org/10.3390/met12101689

Academic Editor: Barrie Mintz

Received: 4 September 2022

Accepted: 7 October 2022

Published: 10 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Deep Learning to Predict Deterioration Region of Hot Ductility
in High-Mn Steel by Using the Relationship between RA
Behavior and Time-Temperature-Precipitation
Ji-Yeon Jeong 1,2 , Dae-Geun Hong 2,* and Chang-Hee Yim 2,*

1 Institute for Materials Research, Tohoku University, Sendai 980-8577, Miyagi, Japan
2 Graduate Institute of Ferrous & Energy Materials Technology, Pohang University of Science and Technology,

Pohang 37673, Korea
* Correspondence: dghong@postech.ac.kr (D.-G.H.); chyim@postech.ac.kr (C.-H.Y.)

Abstract: Reduction of area (RA) measurement in a hot ductility test is widely used to define the
susceptibility of surface crack of cast steel, but the test is complex because it entails processes such
as specimen fabrication, heat treatment, tensile testing, and analysis. As an alternative, this study
proposes a model that can predict RA. The model exploits the relationship between precipitation and
RA behavior, which has a major effect on hot ductility degradation in high-Mn steels. Hot ductility
tests were performed using four grades of high-Mn steels that had different V-Mo compositions, and
the RA behavior was compared with the precipitation behavior obtained from a time-temperature-
precipitation (TTP) graph. The ductility deterioration of high-Mn steels shows a tendency to start
at the nose temperature TN at which precipitation is most severe. Using this relationship, we
developed a model to predict the hot ductility degradation temperature of high-Mn steels. TN was
calculated using J-matpro software (version 12) for 1500 compositions of high-Mn steels containing
the precipitating elements V, Mo, Nb, and Ti, and by applying this to a deep neural network (DNN),
then using the result to develop a model that can predict TN for various compositions of high-Mn
steel. The model was tested by comparing its predicted RA degradation temperature with RAs
extracted from reference data for five high-Mn steels. In all five steels, the temperature at which the
RA decreases coincided with the value predicted by the DNN model. Use of this model can eliminate
the cost and time required for hot ductility testing to measure RA.

Keywords: reduction in area; deep neural network; machine learning; time-temperature-precipitation
(TTP) graph; crack; continuous casting

1. Introduction

During the conventional continuous casting process, the slab goes through bending
and unbending zones. In the unbending zone, the stress accumulated on the slab can cause
defects such as surface cracks. To quantify the susceptibility of surface crack of slab, the
steel’s hot ductility is measured using tensile tests at high temperatures. The tensile test
that applies the thermal condition of continuous casting yields the reduction of area (RA),
which is the rate of change in cross-sectional area at each temperature. RA can represent
the hot ductility behavior.

Hot ductility can decrease (i.e., RA can decrease) in certain temperature ranges as a
consequence of phase transformation that can form ferrite film, and of segregation that can
deposit precipitates along austenite grain boundaries [1–4]. RA measurements to evaluate
hot ductility require a complex experimental process that entails specimen fabrication,
solution treatment, tensile test, measuring RA, and analyzing the data. However, the
process is too slow and costly to be applied to all steel grades, so an alternative method to
predict RA would be desirable. Methods to provide this ability have included simple linear
regression [5], multiple linear regression [6], back-propagation neural network (NN) [7–10],
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deep neural network (DNN) with Gaussian curve [11,12], and Random Forest with N-
shaped fitting [13]. Previous studies have mainly focused on alloy steels [5–12] in which the
shape of RA trough is generally U or V, but have also been conducted on alloy steels [13]
that show RA troughs shaped like N or W. RA prediction models have evolved from simple
regression to machine learning and deep learning, so their prediction accuracy is high, and
they have excellent adaptability to variation in components and thermal history. In contrast,
databases used to predict RA are limited to general carbon steels, so the RA prediction
accuracy is low in steels that have high carbon or manganese content.

Research on steels with increased types and amounts of alloying elements is being
expanded with the goal of obtaining high-strength steels and has led to increased complex-
ity of high-temperature properties. In particular, high-Mn steels have excellent properties
of high strength, high toughness, and formability, but research to derive conditions for
defect control during continuous casting is essential due to their complex high-temperature
properties. High-Mn steel remains in the austenite phase even at room temperature; the
austenite-ferrite phase transformation does not occur, so it is not related to the decrease
in RA. The hot ductility behavior in high-Mn steel is most affected by temperature; the
resulting dynamic recrystallization and precipitation behavior are important factors in
RA degradation [14]. Especially, addition of elements such as Nb, Ti, V, or Mo to im-
prove strength causes carbide or nitride precipitation, which degrades the hot ductility
and the surface quality of the steel [3,4,15]. Precipitates form easily along austenite grain
boundaries, and micro-voids form around the precipitates when stress is applied at the
boundaries. As the applied stress increases, the size of micro-voids also increases, so
intergranular sliding and cracks occur easily. Therefore, the ductility is rapidly reduced in
the temperature range that favors formation of precipitates.

The behavior of precipitation can be expressed using a time-temperature-precipitation
(TTP) diagram. It is a graph that expresses changes in the fraction of precipitates during
isothermal transformation as a function of time and temperature and provides kinetic
information on the precipitation process. It can be used to identify the ‘nose’ temperature
TN at which precipitation is the most severe. The behavior of precipitation has been used to
explain the hot ductility of steel, but not many cases have directly connected the RA and TTP
diagrams [16–18]. These cases indicate that the RA degradation region can be predicted by
using the relationship between the TTP diagram and RA for steels in which the precipitation
effect is critical to high-temperature properties. However, those studies cited here showed
only steels that had very low carbon content, in which the precipitation behavior due to
nitride precipitation such as AlN or Cr2N is a main factor. Conversely, high-Mn steel is
generally derived from an alloy that has a high carbon base, so carbide precipitates are
expected to have a major influence on RA behavior. Therefore, the relationship between
the TTP diagram and RA behavior should be identified for high-Mn steels, especially those
that contain Nb, Ti, V, and Mo, which are strong carbide-forming elements.

The goal of this study is to predict the RA deterioration region of high-Mn steels
that have complex high temperature from the relationship between RA behavior and TTP
diagram. To investigate the TTP diagram and RA behavior of high-Mn steel, the hot
ductility test was performed on the steel containing the precipitating elements V and Mo.
The result of the hot ductility test was compared with the TTP diagram calculated using
J-matpro software (version 12, Sente Software Ltd., Guildford, UK). In addition, TN was
collected from the TTP diagram of high-Mn steel that contained V, Mo, Nb, and Ti, and
a model to predict the TN from the composition of the added precipitation elements was
presented. The presented TN model was compared with the RA behavior of high-Mn steels
that had various compositions.

2. Materials and Methods
2.1. Hot Ductility Test

The hot ductility test was performed on four high-Mn steels that had different contents
of V and Mo (Table 1). A vacuum melting furnace was used to produce 30 kg ingots, then
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from each, a cylindrical tensile specimen with a length of 90 mm and a diameter of 10 mm
was fabricated along the casting direction in the area outside the shrinkage cavity.

Table 1. Chemical composition (wt.%) of high-Mn steels for hot ductility test.

Code
Element

C Si Mn P S Al V Mo N Fe

Steel ref. 0.9 0.019 13.8 0.013 0.001 0.03 - - 0.007 bal.
Steel A 0.9 0.017 14.0 0.014 0.002 0.01 0.3 0.3 0.006 bal.
Steel B 0.9 0.019 14.0 0.014 0.001 0.02 0.5 - 0.006 bal.
Steel C 0.8 0.010 23.0 0.015 0.003 0.01 0.5 0.1 0.005 bal.

Tensile tests were performed using a Caster & Thermo-mechanical simulator (40334,
Fuji electronic industrial, Saitama, Japan). The specimen was heated to 1250 ◦C at 10 ◦C·s−1,
held for 300 s for solution treatment, then cooled to the target temperature (TT = 600, 700,
800, 900, or 1000 ◦C) at 10 ◦C·s−1. The specimen was held for 60 s at TT to stabilize the
temperature, then the tensile test was conducted using strain rate of 5 × 10−4 s−1 (Figure 1),
which is a conventional continuous casting speed (5 × 10−3 to 5 × 10−4 s−1). All tensile
tests were performed three times at each TT. Hot ductility was evaluated by RA measured
from field emission scanning electron microscope (FE-SEM; JSM-7100F, JEOL Ltd., Tokyo,
Japan) images of each fractured specimen after the tensile test. The FE-SEM images were
also used to confirm the structure of the fracture surface. The microstructure of a vertical
section of the fractured specimen prepared by using cutting machine was observed by
electron backscatter diffraction (EBSD; Oxford, UK).
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Figure 1. Schematic illustration of thermal history for hot ductility test.

2.2. Calculation of Time-Temperature-Precipitation Diagram

The TTP and the equilibrium precipitation fraction diagram were calculated using
J-MatPro software (version 12, Sente Software Ltd., Guildford, UK). The variables used in
the calculation were same with the conditions used in the hot ductility test, and the other
conditions were set to represent the conditions used in the process of continuous casting.
The quenching temperature was set to 1250 ◦C, which is the solution-treatment temperature
in the experiment, and the grain size was set to 1000 µm, which is the size observed in
general high-Mn steel. To consider the deformation-induced precipitation behavior, the
deformation conditions were used in the calculation. The deformation temperature was
set to 850 ◦C, which is the midrange temperature of conventional bending-unbending
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region (temperature range: 700 to 1000 ◦C), and the strain was set to 0.05 considering
the maximum total strain during continuous casting process (total strain range: 0.02 to
0.05). The strain rate was set to 5 × 10−4 s−1, as in the experiment. If variables related
to deformation are changed, the time taken for completion of precipitation changes, but
it does not significantly affect the TN, so changes to the values of these variable for TN
extraction are not constrained. TN that corresponds to matrix M(C, N) precipitation was
extracted from the calculated TTP diagram to consider the dynamic precipitates [19].

3. Results
3.1. Hot Ductility Behavior of V-Mo Added High-Mn Steel

To investigate the high-temperature ductility behavior according to the addition of V
and Mo, the RA graphs (Figure 2) were obtained for the four steel grades. All had a low
RA < 50% over the entire TT range, but the addition of V or V-Mo significantly affected
the RA behavior. The hot ductility was lower in Steels A, B, and C, including precipitating
elements, than in the reference steel (Steel ref) at all TT; this difference is related to the
precipitation hardening and the retardation of dynamic recrystallization behavior due to
the precipitation and solute effect [20–22].
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Figure 2. Hot ductility curve with various V and Mo composition.

The EBSD results (Figure 3) of Steel ref show increase in the fraction of dynamic recrys-
tallized grains as TT increased from 800 to 900 ◦C. In contrast to Steel ref, no recrystallized
grains were observed in Steels A and B at TT = 800 ◦C. When the TT increases to 900 ◦C,
a few recrystallized grains were found in the vicinity of fracture surface in steel A (black
arrow in Figure 3e-1), but still no recrystallization clearly in steel B. This indicates that
recrystallization was suppressed due to the addition of V or V-Mo. This trend can also
be seen in the fracture surface (Figure 4). Steel ref has dimples distributed throughout
the fracture surface, whereas Steel A and B exhibit brittle intergranular fracture behavior
at TT = 800 ◦C. At TT = 900 ◦C, the amount of dimple increased in Steel ref compared to
TT = 800 ◦C, and some of dimples were found in Steel A. In the case of Steel B, it shows a
brittle fracture surface through complete intergranular fracture as at TT = 800 ◦C. This re-
crystallization behavior is consistent with the hot ductility result of Figure 2, and therefore,
steels A and B have lower hot ductility than Steel ref at temperatures < TT = 900 ◦C.

Steels B and C with the same V content had similar RA behavior despite presence of
Mo content in steel C, and both had the lowest RA. This result implies that V has a greater
degrading effect than Mo on high-temperature ductility. When high-Al and TWIP steels
include >0.3 wt.% V, fine precipitates of about 4 to 5 nm form and degrade the hot ductility.
Furthermore, if the V content is increased to ≥0.5 wt.%, the hot ductility is further reduced
due to precipitation-free zones, because precipitates form along grain boundaries [15]. The
behavior of RA in this study has a similar trend to the degradation of hot ductility due to
the increase in V content. The average compositions of V at the segregation area in Steel A
and B were about 0.57 and 0.93 wt.%, respectively (Figure 5). The density of precipitates
and the segregation of V were significantly higher in Steel B than in Steel A. The high
level of V content in the segregation region of Steel B not only promotes the formation of
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precipitates, but also inhibits recrystallization due to the solute effect, leading to lower hot
ductility [21,22].
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Figure 3. EBSD inverse pole figure (IPF) image of image of the specimen after hot ductility test;
(a,d) Steel ref, (b,e) Steel A, and (c,f) Steel B at (a–c) TT = 800 ◦C and (d–f) TT = 900 ◦C. (d-1) and
(e-1) are high magnification images of (d) and (e), respectively.
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TT = 800 ◦C and (d–f) TT = 900 ◦C.

3.2. Precipitation Behavior in V-Mo and V Steels

The difference in RA between Steel A and Steel B at TT = 900 ◦C can be explained by
the variation in precipitation behavior according to the V content, and the calculated TTP
diagram and equilibrium fraction diagram were used for this purpose. When the content of
V was increased from 0.3 to 0.5 wt.%, the TN of the TTP curve increased from 800 to 850 ◦C,
and the time to the onset of precipitation decreased (Figure 6a). However, the addition
of Mo did not affect the change in TN; the precipitate fraction diagram (Figure 6b) has a
similar trend. In addition, the precipitation-initiation temperature TPI also increased from
~1050 ◦C to ~1110 ◦C by increasing content of V. The addition of Mo only serves to increase
the volume fraction of precipitates; it does not affect TPI.
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Figure 6. (a) Time-temperature-precipitation (TTP) and (b) precipitate fraction diagram of different V
and Mo composition, as calculated using J-MatPro software.

The tendencies of change in the TTP TN and TPI corresponded in the TT range, in
which RA rapidly decreases. In Steel A, RA decreased rapidly to <10% from TT = 900 to
800 ◦C, and the calculated TN was 800 ◦C. In Steel B, the RA decrease started at a higher
temperature than in Steel A, and the TN was 850 ◦C, which is higher than in Steel B. Increase
in TPI and TN due to the increase in the V content is correlated with an increase in the
temperature at which the decrease in RA begins.

This phenomenon can also be explained by the strain-stress curve at TT = 900 ◦C, at
which the difference in RA is largest (Figure 7). Steel A with a low TN has similar yield
stress (YS) and ultimate tensile stress (UTS) to Steel ref that lacks precipitation-fostering
elements, but Steel B with a relatively high TN has higher YS and UTS than Steel A due
to the precipitation strengthening at TT = 900 ◦C. Therefore, the RA decrease starts in the
region in which the formation of precipitates is concentrated, and this correlation means
that the precipitation phenomenon of high-Mn steel and the change in its RA behavior are
closely related.

3.3. Prediction Model for Time-Temperature-Precipitation Nose Temperature

The experimental results in Section 3.1 confirmed the correlation between hot ductility
and the TTP diagram in high-Mn steels. This relationship indicates that if the TN is known,
the RA decrease temperature can be predicted without complicated hot-ductility tests.
Therefore, a model that can predict the temperature at which RA decreases was produced
by utilizing a TTP diagram database for various high-Mn steel compositions.
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To obtain a database of TN, TTP diagrams of ~1500 high-Mn steel compositions were
calculated and the composition used in calculation included one or more of precipitating
elements V, Mo, Ti, and Nb. TN was extracted from the results. The compositions (de-
noted (·), wt.%) of the high-Mn steels used to collect the TN were: 0.1 ≤ (C) ≤ 1.0 by 0.2,
14 ≤ (Mn) ≤ 23 by 3, 0.01 ≤ (Nb) ≤ 0.1 by 0.02, 0.01 ≤ (Ti) ≤ 0.1 by 0.02, and in the case of V,
0.01 ≤ (V) ≤ 0.1 by 0.01 when Nb or Ti were included, and 0.1 ≤ (V) ≤ 1.0 by 0.1 otherwise.
Molybdenum content range was 0.1 ≤ (Mo) ≤ 1.0 by 0.2, but it did not significantly affect
the TN. Contents of elements that do not significantly affect TN in carbide formation were
fixed by referring to the composition of steels used in the experiment: Si = 0.02, P = 0.015,
S = 0.003, Al = 0.02, N = 0.005. When the TTP diagram could not be calculated because the
content of the elements required for precipitation was too low, that composition was excluded.
When the alloy included only Mo, which forms a precipitate by combining with other elements
(mainly V), the TTP diagram could not be calculated, so this composition was also excluded.
To consider the precipitation effect due to deformation, the deformation conditions mentioned
in Section 2.2 were used. These calculations yielded 610 ≤ TN ≤ 1030 ◦C.

Variables cannot be directly compared in the analyzed results when variables have
different ranges. To overcome this problem, each variable was normalized and standardized
using MinMaxScaler to scale all data into the range 0 to 1. To predict the TN corresponds
to supervised learning with both input and output values, and it uses the regression
approach because prediction of real numbers or vectors is required. In this study, a DNN
model [23,24] (Figure 8) was used to predict the TN for various compositions of high-Mn
steels. The input layer consisted of six compositional variables: C, Mn, Nb, Ti, V, and Mo.
The hidden layer consisted of four dense layers and transformed the nonlinear hidden
characteristics of the input data to linear characteristics. The output layer was composed of
one layer and was designed to predict TN.

The program in this experiment was implemented using the Keras library using
Python (version 3.5.2, Python Software Foundation, Wilmington, DE, USA) and TensorFlow
(version 2.0, Google Inc., Mountain View, CA, USA) as backends, and the experiment was
conducted in a Windows 10 64-bit environment with an Intel i7-6700K processor (Intel
Corporation, Santa Clara, CA, USA) and two GeForce GTX 1080 Ti graphics cards (NVIDA
Corporation, Wilmington, DE, USA). First, hyper-parameter values that represent optimal
prediction accuracy were found by applying various environments while training the
proposed model. Of the 1468 sets of data used in the experiment, 80% were used for
training and 20% for testing. The accuracy of the TN prediction was measured from
composition and temperature-related datasets of high-Mn steels with the DNN model.
Root mean square error (RMSE) was used to evaluate the accuracy of the prediction.
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Figure 8. Neural network architecture for predicting nose temperature.

In the proposed DNN model, RMSE and leaky ReLU were used as the cost function
and the activation function, respectively. The batch size of the most accurate DNN model
was 64, and Adam Optimizer [25] and a learning rate of 0.0001 were used for training. An
optimal model to avoid overfitting was obtained by using drop out and early stopping [26]
techniques with keep probability = 0.85. While the proposed model was being trained,
the input and output values were randomly shuffled every epoch. In machine learning,
one epoch refers to the period in which all data values included in the training dataset
enter the prediction model once, then the weight value is updated. Finally, the RMSE
of the proposed DNN model on the training and test data were 7.030 ◦C and 7.082 ◦C,
respectively. Prediction results were applied to the training and evaluation data generated
by the proposed model (Figure 9). The error of the predicted value compared to TN was
±7 ◦C, so the reliability of the predicted values is very high.
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The predicted TN values in the proposed model were compared with the RA data of
three high-Mn steels, as obtained in a hot ductility test (Figure 10). The values in the proposed
model were almost identical to the TN obtained from the software calculation, and this value
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corresponds to the temperature at which the RA value decreases. This result indicates that the
proposed model gives reasonable predictions of the RA degradation temperature.
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Figure 10. The comparison of prediction model results and reduction of area curves; (a) Steel A,
(b) Steel B, (c) Steel C; (dashed line: calculated TTP diagram from J-matpro, square point: reduction
of area and red dot: TTP nose from prediction model).

3.4. Case Study for Prediction Model

To test the validity of the prediction model, data from 21 high-Mn steels that contained
at least one of Nb, Ti, V, and Mo were collected from the literature [14,27–35], and applied
to the prediction model. The TN in the TTP diagram calculated from J-matpro software
were compared with the result in the prediction model, and the values matched well
(Figure 11). To compare the RA behavior with the results from the prediction model, five
high-Mn steels representing the composition of each precipitating element contained were
selected from reference data [14,27–32]. Few references present data that show RA behavior
in experiments on high-Mn steel, so data were not available for all compositions. The
composition of the five selected high-Mn steels were low Nb, high Nb, V, Nb-Ti, and Nb-V
containing steels (Table 2).

The temperature at which RA decreases and the value predicted by the DNN model
matched well for all steels (Figure 12). The high-Mn steel that includes both Nb and V
(Figure 12e) has a TTP diagram that is divided into two sections, in contrast to other steels,
which all had one nose. The predicted value in the DNN model corresponds to the TN with
a sharper bend, but RA deteriorated in both sections.
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Table 2. Chemical composition (wt.%) of high-Mn steels from reference data.

Grade C Mn Nb V Ti Reference Number

Low-Nb 0.6 17.8 0.02 - - 14
High-Nb 0.5 20.9 0.083 - - 27

V 0.56 21.2 - 0.11 - 31
28

Nb-Ti 0.6 18.0 0.032 - 0.075 29
Nb-V 0.61 17.74 0.032 0.1 - 32
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4. Discussion
4.1. TTP Nose Temperature Prediction Model Using Linear Regression

Before the DNN model was applied, the relationship between TN and RA for 1500 high-
Mn steel compositions was expressed as a linear equation by using simple multiple re-
gression. The composition ranges (wt.%) used in the calculation of the TTP diagram were:
0.1 ≤ (C) ≤ 1.0, 14 ≤ (Mn) ≤ 23, 0.01 ≤ (Nb) ≤ 0.1, 0.01 ≤ (Ti) ≤ 0.1, 0.1 ≤ (V) ≤ 1.0,
0.1 ≤ (Mo) ≤ 1, and TN in the range of 610 to 1030 ◦C were extracted. The obtained model
to predict TN was:

TN(
◦C)

= 844 + 62.0(C)− 1.05(Mn)− 50.0(V)− 152(Mo) + 1150(Nb)− 503(Ti).
(1)

However, this regression equation had low reliability of R2 = 0.58, and it cannot obtain
an accurate TN for comparison with observed RA behavior. Therefore, a TN prediction
model that uses a nonlinear predictive analysis method is required; for this purpose, a
DNN model was developed.
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4.2. Limitations of Predictive Models
4.2.1. Relationship between TTP Nose and RA in General Carbon Steel

Results confirmed that in high-Mn steels, the TN and the RA-lowering temperature
coincide, so this study investigated whether this relationship can be applied to carbon
steels that had various compositions. The RA data for about 87 carbon steel compositions
were collected from literature data [2,5,23–26,33–57], and a TTP diagram drawn from J-
matpro software was calculated from the collected composition data. Then, TN information
was extracted from the calculated TTP diagram and compared with the RA data. The
deformation condition did not affect TN, therefore it was set to the same value as that of the
high-Mn steel. To determine the correlation between the calculated TTP diagram—TN and
the RA behavior, the RA behavior of five representative compositions among the collected
87 data were compared with the TTP diagram (Table 3, Figure 13) [24,35,36,41,42].

Table 3. Chemical composition (wt.%) of carbon steels from reference data.

Grade C Mn Nb V Ti Mo Reference Number

Nb 0.21 1.57 0.055 - - - 24
Nb-Ti 0.03 1.6 0.031 - 0.013 - 41
Nb-V 0.11 1.367 0.034 0.003 - - 36

Nb-V-Ti 0.126 1.49 0.038 0.028 0.038 - 42
Nb-Ti-Mo 0.12 1.38 0.037 - 0.018 0.13 35
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In contrast to high-Mn steels, which consist of a single austenite phase, carbon steel
undergoes austenite-ferrite phase transformation during cooling. Therefore, the TTP curve
is divided into two parts around the A3 temperature and has a discontinuous shape. In
particular, the formation of proeutectoid ferrite has a greater effect than precipitation on
the deterioration of hot ductility in carbon steel. The RA degradation temperature is closer
to A3 than to the TTP nose (Figure 13).
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4.2.2. Others

RA prediction is necessary to minimize cracks in the slab by avoiding the low-ductility
temperature in the bending and unbending step during continuous casting. Previous RA
prediction studies were performed on steels with RA behavior of U/V type [11,12] and
N/W type [13]. However, in this study, a method to predict the RA of high-Mn steels with
excellent high strength, high toughness, and formability was proposed. Studies to evaluate
high-temperature properties were insufficient to guide actual production of high-Mn steels.
Additional data collection and related studies must be conducted to generalize the RA
prediction model developed here.

Even with the same composition in the collected RA data, the RA behavior and
precipitation behavior are different depending on the experimental conditions such as
solution TT and cooling rate. For example, the cooling rate affects the size of precipitates,
and this size has a great influence on RA. However, these factors are not included in
the current prediction model, which was derived from the precipitation behavior during
isothermal holding, i.e., in the equilibrium state, so the model may not be applicable to
a case that considers all experimental variables. Therefore, the model might or can be
modified to include continuous cooling precipitation (CCT) in the non-equilibrium state.

The TTP diagram data used in this study are calculation-based, and it is necessary
to investigate the accuracy of the TTP data through experiments. The current study
applied the equilibrium state calculation, verification of the reliability is required by com-
paring the experimental result with the calculated data reflecting the conditions in the
non-equilibrium state.

Four precipitation elements (Nb, Ti, V, Mo) were considered in the current model.
However, in practice, the precipitate composition that affects RA in high-Mn steel is much
more varied than the conditions considered here. In particular, the current model mainly
considered the effect on carbide, with the nitrogen composition fixed, but nitrides such as
AlN and TiN also affect the hot ductility of high-Mn steel. Therefore, changes in nitrogen
composition should also be considered in future studies.

Finally, the current model can only extract the temperature at a point where the RA
decreases. However, to be useful for the actual continuous-casting process, the model
must use a range of temperatures to avoid during unbending, so data to predict the RA
degradation range must be collected.

5. Conclusions

In this study, a DNN was used to develop a model that can predict the RA deterioration
temperature by exploiting the relationship between the RA behavior and the TN at which
precipitation rate is highest. The model is intended for use as a substitute for complex
hot-ductility experiments.

The relationship between RA behavior and TN could be confirmed by comparing the
hot ductility test for high-Mn steel that includes the precipitating elements V and Mo to
the TTP diagram calculation results from J-matpro software (version 12). This relationship
was used to propose a model that can predict the TN for various compositions of high-Mn
steel using a DNN by extracting the TN for 1500 compositions of high-Mn steel in which
the precipitation elements were expanded to include V, Mo, Nb, and Ti. The proposed
DNN model had RMSE = 7.030 ◦C on the training data and 7.082 ◦C on the test data; i.e.,
error of the predicted value relative to the magnitude of TN (~850 ◦C) is ±7 ◦C, which
indicates that the reliability of the prediction is very high. To verify the validity of the
predictive model, measured RA of five high-Mn steels that represented each precipitation-
element composition was compared with the RA degradation temperature obtained from
the proposed prediction model. For all five steel grades, the temperature at which the RA
deteriorates was consistent with the values predicted by the model.

The DNN model proposed in this study is currently applicable only to high-Mn steels,
and the RA behavior should be predicted separately using other models for steel types with
phase transformation such as carbon steel. Moreover, the model was developed from data
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obtained in the equilibrium state, so it must be extended to consider the non-equilibrium
state. In addition, the model should be modified to consider additional precipitating
elements that affect RA behavior.

To verify the accuracy of the TTP data obtained from calculation, investigation through
experiments on high Mn steel is being designed, and related contents will be introduced in
the next study.
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