Phase Transformations and Tellurium Recovery from Technical Copper Telluride by Oxidative-Distillate Roasting at 0.67 kPa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Characterizations
2.3. Materials
3. Results and Discussion
3.1. Low-Temperature Roasting (500 and 700 °C)
3.2. High-Temperature Roasting (900 and 1000 °C)
- −
- Metatellurite is destroyed by the reaction at 540–630 and 700–725 °C: 3CuTeO4 → Cu3TeO6 + 2TeO2 + O2;
- −
- Then, at 840–880 °C, the interaction of copper orthotellurate and tellurium oxide occurs, resulting in the formation of copper tellurite with the emission of oxygen in the gas phase: Cu3TeO6 + 2TeO2 → 3CuTeO3 + 1/2O2.
3.3. Influence of Roasting Temperature and Time on Tellurium Recovery at 0.67 kPa
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mastyugin, S.A.; Naboichenko, S.S. Processing of copper-electrolyte slimes: Evolution of technology. Russ. J. Non-Ferr. Met. 2012, 53, 367–374. [Google Scholar] [CrossRef]
- Liu, G.; Wu, Y.; Tang, A.; Pan, D.; Li, B. Recovery of scattered and precious metals from copper anode slime by hydrometallurgy: A review. Hydrometallurgy 2020, 197, 105460. [Google Scholar] [CrossRef]
- Xing, W.D.; Lee, M.S. Leaching of gold and silver from anode slime with a mixture of hydrochloric acid and oxidizing agents. Geosyst. Eng. 2017, 20, 216–223. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, Y.L.; Yu, Y.; Fu, G.Y.; Han, P.W.; Sun, Z.H.I.; Ye, S.F. An environmentally friendly process to selectively recover silver from copper anode slime. J. Clean. Prod. 2018, 187, 708–716. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, S.; Liu, B.; Li, B. Integrated process for recycling copper anode slime from electronic waste smelting. J. Clean. Prod. 2017, 165, 48–56. [Google Scholar] [CrossRef]
- Chizhikov, D.M.; Shchastlivyi, V.P. Tellurium and Tellurides; Collet’s Publishers Ltd.: London, UK, 1970; 279p. [Google Scholar]
- Hoffman, J.E. Recovering selenium and tellurium from copper refinery slimes. JOM 1989, 41, 33–38. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Shakibania, S.; Mokmeli, M.; Rashchi, F. Tellurium, from copper anode slime to high purity product: A review paper. Met. Mater. Trans. B 2020, 51, 2555–2575. [Google Scholar] [CrossRef]
- Mastyugin, S.A.; Volkova, N.A.; Naboichenko, S.S.; Lastochkina, M.A. Slime from Electrolytic Refining of Copper and Nickel; Ural Federal University: Ekaterinburg, Russia, 2013; 256p. [Google Scholar]
- Volodin, V.N.; Trebukhov, S.A.; Burabaeva, N.M.; Nitsenko, A.V. Melt-gas phase equilibria and state diagrams of the selenium-tellurium system. Russ. J. Phys. Chem. 2017, 91, 800–804. [Google Scholar] [CrossRef]
- Volodin, V.N.; Trebukhov, S.A.; Kenzhaliyev, B.K.; Nitsenko, A.V.; Burabaeva, N.M. Melt-vapor phase diagram of the Te-S system. Russ. J. Phys. Chem. 2018, 92, 407–410. [Google Scholar] [CrossRef]
- Wang, S. Tellurium, its resourcefulness and recovery. JOM 2011, 63, 90–93. [Google Scholar] [CrossRef]
- Shibasaki, T.; Abe, K.; Takeuchi, H. Recovery of tellurium from decopperizing leach solution of copper refinery slimes by a fixed bed reactor. Hydrometallurgy 1992, 29, 399–412. [Google Scholar] [CrossRef]
- Nitsenko, A.V.; Burabaeva, N.M.; Tuleytay, F.K.; Seisembaev, R.S.; Linnik, X.A.; Azlan, M.N. Study of physical and chemical properties of tellurium-containing middlings. Kompleks. Ispolz. Miner. Syra 2020, 315, 49–56. [Google Scholar] [CrossRef]
- Xu, L.; Xiong, Y.; Song, Y.; Zhang, G.; Zhang, F.; Yang, Y.; Hua, Z.; Tian, Y.; You, J.; Zhao, Z. Recycling of copper telluride from copper anode slime processing: Toward efficient recovery of tellurium and copper. Hydrometallurgy 2020, 196, 105436. [Google Scholar] [CrossRef]
- Xu, L.; Xiong, Y.; Zhang, G.; Zhang, F.; Yang, Y.; Hua, Z.; Tian, Y.; You, J.; Zhao, Z. An environmental-friendly process for recovery of tellurium and copper from copper telluride. J. Clean. Prod. 2020, 272, 122723. [Google Scholar] [CrossRef]
- Nitsenko, A.V.; Linnik, X.A.; Tuleytay, F.K.; Burabaeva, N.M.; Seisembaev, R.S. Physico-chemical characteristics of tellurium-containing industrial middling Kazakhmys Smelting LLP. Theory Process Eng. Metall. Prod. 2021, 38, 10–16. [Google Scholar]
- Dimitriev, Y.; Gatev, E.; Ivanova, Y. High-temperature X-ray study of the oxidation of CuTeO3. J. Mater. Sci. Lett. 1989, 8, 230–231. [Google Scholar] [CrossRef]
- Kindyakov, P.S.; Korshunov, B.G.; Fedorov, P.I.; Kislyakov, I.P. Chemistry and Technology of Rare and Trace Elements, 2nd ed.; Bolshakov, K.A., Ed.; 3rd Part; Vysshaja Shkola: Moscow, Russia, 1976; 320p. [Google Scholar]
- Krätschmer, A.; Odnevall Wallinder, I.; Leygraf, C. The evolution of outdoor copper patina. Corros. Sci. 2002, 44, 425–450. [Google Scholar] [CrossRef]
- Kukleva, T.V.; Fedorova, T.B.; Vishnyakov, A.V.; Kovtunenko, P.V. Features of low-temperature oxidation of copper (I) telluride. Inorg. Mater. 1988, 24, 1469–1471. [Google Scholar]
- Itkin, V.P.; Alcock, C.B. The O-Te (Oxygen-Tellurium) system. J. Phase Equilibria 1996, 17, 533–538. [Google Scholar] [CrossRef]
- Pashinkin, A.S.; Dolgikh, V.A. Some questions about chemistry and thermodynamics of oxygen compounds of tellurium in connection with the oxidation of tellurides. Russ. J. Inorg. Chem. 1997, 42, 190–195. [Google Scholar]
- Ahmed, M.A.K.; Fjellvåg, H.; Kjekshus, A. Synthesis, structure and thermal stability of tellurium oxides and oxide sulfate formed from reactions in refluxing sulfuric acid. J. Chem. Soc. Dalton Trans. 2000, 24, 4542–4549. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Z.; Su, X.; Vilarinho, P.M. New Cu3TeO6 ceramics: Phase formation and dielectric properties. ACS Appl. Mater. Interfaces 2014, 6, 11326–11332. [Google Scholar] [CrossRef]
- Kozhukharov, V.; Marinov, M.; Pavlova, J. On the phase equilibrium in the TeO2–Cu2O system. Z. Anorg. Allg. Chem. 1980, 460, 221–227. [Google Scholar] [CrossRef]
- Kozhukharov, V.; Marinov, M.; Pavlova, J. On the phase equilibrium in the TeO2–Cu2O (CuO) system. Mater. Chem. Phys 1984, 10, 401–412. [Google Scholar] [CrossRef]
- Gospodinov, G.G. Phase states of copper orthotellurates in an aqueous medium and in thermolysis. J. Mater. Sci. Lett. 1992, 1, 1460–1462. [Google Scholar] [CrossRef]
- Gospodinov, G.G. Synthesis, crystallographic data and thermostability of some metal ortho-tellurates of the type Me3TeO6 and Me2TeO6. Thermochim. Acta 1985, 83, 243–252. [Google Scholar] [CrossRef]
- The Materials Project. Available online: https://materialsproject.org/materials/mp-21861/ (accessed on 10 August 2022).
- Nitsenko, A.V.; Volodin, V.N.; Linnik, X.A.; Tuleutay, F.K.; Burabaeva, N.M. Distillation recovery of tellurium from copper telluride in oxide forms. Russ. J. Non-Ferr. Met. 2022, 63, 284–291. [Google Scholar] [CrossRef]
Sample | Elements, wt% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
O | Al | Si | S | Cl | Fe | Cu | As | Se | Te | Pb | |
1 | 18.88 | 0.11 | 0.03 | 2.09 | 0.29 | 0.02 | 47.19 | 0.11 | 0.04 | 31.22 | 0.02 |
2 | 29.46 | 0.01 | 0.02 | 2.01 | 0.23 | 0.02 | 41.50 | 0.10 | 0.02 | 26.63 | – |
Phase | Phases Content (%) at the Roasting Time, min | ||||||
---|---|---|---|---|---|---|---|
5 | 10 | 15 | 30 | 45 | 60 | 90 | |
at 500 °C | |||||||
Cu3(SO4)(OH)4 | 27.0 | 24.6 | 9.0 | 6.6 | 5.3 | 5.2 | 5.1 |
Cu4(SO4)(OH)6 | 27.0 | 13.0 | – | – | – | – | – |
Cu4(SO4)(OH)6·H2O | 10.9 | – | – | – | – | – | – |
CuOSO4 | – | – | 8.4 | 7.8 | 10.5 | 12.0 | 13.5 |
Cu2-xTe | 18.5 | 13.9 | 8.0 | 5.1 | 4.6 | 6.0 | 8.1 |
Cu3TeO6 | – | – | 10.0 | 15.4 | 20.6 | 27.0 | 31.5 |
CuO | – | 19.4 | 43.0 | 41.7 | 34.7 | 31.3 | 22.4 |
Cu2O | 12.2 | 20.0 | – | – | – | – | 5.1 |
Te2O5 | 4.4 | 9.1 | 8.0 | 5.2 | 5.3 | – | – |
Te4O9 | – | – | 14.0 | 18.2 | 18.9 | 18.0 | 14.2 |
at 700 °C | |||||||
Cu3(SO4)(OH)4 | 5.5 | – | – | – | – | – | – |
CuOSO4 | 8.3 | 5.0 | – | – | – | – | – |
Cu3TeO6 | 43.8 | 47.1 | 71.3 | 80.0 | 94.1 | 95.5 | 94.5 |
CuTeO3 | 6.8 | 7.1 | 5.2 | – | – | – | – |
CuTeO4 | 2.9 | 13.2 | 9.6 | 8.5 | – | – | – |
Te3Cu2O7 | 9.1 | – | 6.0 | – | – | – | – |
CuO | 11.5 | 12.8 | 7.9 | 11.5 | 5.9 | 4.5 | 5.5 |
Te4O9 | 12.1 | 14.8 | – | – | – | – | – |
Sample | Phases Content (%) at the Roasting Time, min | ||||||
---|---|---|---|---|---|---|---|
5 | 10 | 15 | 30 | 45 | 60 | 90 | |
at 900 °C | |||||||
Cu3(SO4)(OH)4 | 4.3 | – | – | – | – | – | – |
Cu3TeO6 | 27.2 | 59.1 | 5.1 | 47.7 | 77.2 | 55.4 | 30.3 |
CuTeO3 | 6.5 | – | – | – | – | – | – |
CuTeO4 | 19.3 | – | – | – | – | – | – |
Te3Cu2O7 | 11.5 | – | – | – | – | – | – |
CuO | 23.6 | 32.3 | 22.9 | 49.7 | 22.8 | 32.8 | 55.3 |
Cu2O | 4.1 | 8.6 | 14.3 | 2.6 | – | 11.8 | 14.3 |
Te4O9 | 3.5 | – | 4.7 | – | – | – | – |
at 1000 °C | |||||||
Cu3TeO6 | 56.6 | – | – | – | – | – | – |
CuTeO3 | 2.9 | – | – | – | – | – | – |
Te3Cu2O7 | 4.3 | – | – | – | – | – | – |
CuO | 14.4 | 81.7 | 76.2 | 27.6 | 35.4 | 87.1 | 15.5 |
Cu2O | 6.3 | 12.0 | 20.3 | 60.9 | 56.1 | 12.9 | 82.7 |
Te4O9 | 4.5 | – | – | – | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nitsenko, A.; Linnik, X.; Volodin, V.; Tuleutay, F.; Burabaeva, N.; Trebukhov, S.; Ruzakhunova, G. Phase Transformations and Tellurium Recovery from Technical Copper Telluride by Oxidative-Distillate Roasting at 0.67 kPa. Metals 2022, 12, 1774. https://doi.org/10.3390/met12101774
Nitsenko A, Linnik X, Volodin V, Tuleutay F, Burabaeva N, Trebukhov S, Ruzakhunova G. Phase Transformations and Tellurium Recovery from Technical Copper Telluride by Oxidative-Distillate Roasting at 0.67 kPa. Metals. 2022; 12(10):1774. https://doi.org/10.3390/met12101774
Chicago/Turabian StyleNitsenko, Alina, Xeniya Linnik, Valeriy Volodin, Farkhat Tuleutay, Nurila Burabaeva, Sergey Trebukhov, and Galiya Ruzakhunova. 2022. "Phase Transformations and Tellurium Recovery from Technical Copper Telluride by Oxidative-Distillate Roasting at 0.67 kPa" Metals 12, no. 10: 1774. https://doi.org/10.3390/met12101774
APA StyleNitsenko, A., Linnik, X., Volodin, V., Tuleutay, F., Burabaeva, N., Trebukhov, S., & Ruzakhunova, G. (2022). Phase Transformations and Tellurium Recovery from Technical Copper Telluride by Oxidative-Distillate Roasting at 0.67 kPa. Metals, 12(10), 1774. https://doi.org/10.3390/met12101774