Advances in the Control and Improvement of Quality in the Resistance Spot Welding Process
Abstract
:1. Introduction
2. Quality Control
2.1. Use of Auxiliary Measuring Signals from External Sensors
2.2. Use of Intrinsic Process Variables
3. Development of New Strategies to Improve Weld Quality
3.1. New Process-Based Strategies
3.2. New Material-Based Strategies
3.3. New Equipment-Based Strategies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martín, Ó.; López, M.; De Tiedra, P.; Juan, M.S. Prediction of Magnetic Interference from Resistance Spot Welding Processes on Implantable Cardioverter-Defibrillators. J. Mater. Process. Technol. 2008, 206, 256–262. [Google Scholar] [CrossRef]
- Jou, M. Real Time Monitoring Weld Quality of Resistance Spot Welding for the Fabrication of Sheet Metal Assemblies. J. Mater. Process. Technol. 2003, 132, 102–113. [Google Scholar] [CrossRef]
- Pouranvari, M.; Aghajani, H.; Ghasemi, A. Enhanced Mechanical Properties of Martensitic Stainless Steels Resistance Spot Welds Enabled by in Situ Rapid Tempering. Sci. Technol. Weld. Join. 2020, 25, 119–126. [Google Scholar] [CrossRef]
- Ertas, A.H.; Akbulut, M. Experimental Study on Fatigue Performance of Resistance Spot-Welded Sheet Metals. Int. J. Adv. Manuf. Technol. 2021, 114, 1205–1218. [Google Scholar] [CrossRef]
- Mousavizade, S.M.; Pouranvari, M. Projection Friction Stir Spot Welding: A Pathway to Produce Strong Keyhole-Free Welds. Sci. Technol. Weld. Join. 2019, 24, 256–262. [Google Scholar] [CrossRef]
- Skowrońska, B.; Chmielewski, T.; Pachla, W.; Kulczyk, M.; Skiba, J.; Presz, W. Friction Weldability of UFG 316L Stainless Steel. Arch. Metall. Mater. 2019, 64, 1051–1058. [Google Scholar] [CrossRef]
- Skowrońska, B.; Chmielewski, T.; Kulczyk, M.; Skiba, J.; Przybysz, S. Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusion. Materials 2021, 14, 1537. [Google Scholar] [CrossRef]
- Shen, Z.; Ding, Y.; Gerlich, A.P. Advances in Friction Stir Spot Welding. Crit. Rev. Solid State Mater. Sci. 2020, 45, 457–534. [Google Scholar] [CrossRef]
- Ni, Z.L.; Ye, F.X. Ultrasonic Spot Welding of Aluminum Alloys: A Review. J. Manuf. Process. 2018, 35, 580–594. [Google Scholar] [CrossRef]
- Tian, J.; Tao, W.; Yang, S. Investigation on Microhardness and Fatigue Life in Spot Welding of Quenching and Partitioning 1180 Steel. J. Mater. Res. Technol. 2022, 19, 3145–3159. [Google Scholar] [CrossRef]
- Xia, Y.J.; Zhou, L.; Shen, Y.; Wegner, D.M.; Haselhuhn, A.S.; Li, Y.B.; Carlson, B.E. Online Measurement of Weld Penetration in Robotic Resistance Spot Welding Using Electrode Displacement Signals. Meas. J. Int. Meas. Confed. 2021, 168, 108397. [Google Scholar] [CrossRef]
- Martín, Ó.; López, M.; Martín, F. Artificial Neural Networks for Quality Control by Ultrasonic Testing in Resistance Spot Welding. J. Mater. Process. Technol. 2007, 183, 226–233. [Google Scholar] [CrossRef]
- Martín, Ó.; Pereda, M.; Santos, J.I.; Galán, J.M. Assessment of Resistance Spot Welding Quality Based on Ultrasonic Testing and Tree-Based Techniques. J. Mater. Process. Technol. 2014, 214, 2478–2487. [Google Scholar] [CrossRef] [Green Version]
- Raoelison, R.; Fuentes, A.; Rogeon, P.; Carré, P.; Loulou, T.; Carron, D.; Dechalotte, F. Contact Conditions on Nugget Development during Resistance Spot Welding of Zn Coated Steel Sheets Using Rounded Tip Electrodes. J. Mater. Process. Technol. 2012, 212, 1663–1669. [Google Scholar] [CrossRef]
- Zhou, K.; Yao, P. Overview of Recent Advances of Process Analysis and Quality Control in Resistance Spot Welding. Mech. Syst. Signal Process. 2019, 124, 170–198. [Google Scholar] [CrossRef]
- Özyürek, D. An Effect of Weld Current and Weld Atmosphere on the Resistance Spot Weldability of 304L Austenitic Stainless Steel. Mater. Des. 2008, 29, 597–603. [Google Scholar] [CrossRef]
- Martín, Ó.; De Tiedra, P.; López, M.; San-Juan, M.; García, C.; Martín, F.; Blanco, Y. Quality Prediction of Resistance Spot Welding Joints of 304 Austenitic Stainless Steel. Mater. Des. 2009, 30, 68–77. [Google Scholar] [CrossRef]
- Hasanbasoglu, A.; Kacar, R. Resistance Spot Weldability of Dissimilar Materials (AISI 316L-DIN EN 10130-99 Steels). Mater. Des. 2007, 28, 1794–1800. [Google Scholar] [CrossRef]
- Kong, J.P.; Han, T.K.; Chin, K.G.; Park, B.G.; Kang, C.Y. Effect of Boron Content and Welding Current on the Mechanical Properties of Electrical Resistance Spot Welds in Complex-Phase Steels. Mater. Des. 2014, 54, 598–609. [Google Scholar] [CrossRef]
- JIS Z 3140; Japanese Industrial Standard Method of Inspection for Spot Weld. Japanese Standards Association: Tokyo, Japan, 1989.
- Hao, M.; Osman, K.A.; Boomer, D.R.; Newton, C.J. Developments in Characterization of Resistance Spot Welding of Aluminum. Weld. J. 1996, 75, 1S–8S. [Google Scholar]
- Chen, Z.; Shi, Y.; Jiao, B.; Zhao, H. Ultrasonic Nondestructive Evaluation of Spot Welds for Zinc-Coated High Strength Steel Sheet Based on Wavelet Packet Analysis. J. Mater. Process. Technol. 2009, 209, 2329–2337. [Google Scholar] [CrossRef]
- Spinella, D.J.; Brockenbrough, J.R.; Fridy, J.M. Trends in Aluminum Resistancespot Welding for the Auto Industry. Weld. J. 2005, 84, 34–40. [Google Scholar]
- Rupin, F.; Blatman, G.; Lacaze, S.; Fouquet, T.; Chassignole, B. Probabilistic Approaches to Compute Uncertainty Intervals and Sensitivity Factors of Ultrasonic Simulations of a Weld Inspection. Ultrasonics 2014, 54, 1037–1046. [Google Scholar] [CrossRef]
- Thornton, M.; Han, L.; Shergold, M. Progress in NDT of Resistance Spot Welding of Aluminium Using Ultrasonic C-Scan. NDT E Int. 2012, 48, 30–38. [Google Scholar] [CrossRef]
- Barrera Cardiel, G.; de los Fabián Alvarez, M.; Vélez Martínez, M.; Villaseñor, L. Inteligencias Artificiales y Ensayos Ultrasónicos Para La Detección de Defectos. Rev. Metal. 2001, 37, 403–411. [Google Scholar] [CrossRef]
- Zhang, H. Evaluation and Quality Control of Resistance-Welded Joints. In Welding Fundamentals and Processes, ASM Handbook, vol. 6A; Lienert, T., Siewert, T., Babu, S., Acoff, V., Eds.; ASM international: Materials Park, OH, USA, 2011; pp. 486–504. [Google Scholar]
- Mansour, T. Ultrasonic Testing of Spot Welds in Thin Gage Steel. In Nondestructive Testing Handbook. Vol. 7: Ultrasonic Testing; McIntire, P., Ed.; American Society for Nondestructive Testing: Metals Park, OH, USA, 1991; pp. 557–568. [Google Scholar]
- Krautkrämer, J.; Krautkrämer, H. Welded Joints. In Ultrasonic Testing of Materials; Krautkrämer, J., Krautkrämer, H., Eds.; Springer: Berlin, Germany, 1990; pp. 431–465. [Google Scholar]
- Hua, L.; Wang, B.; Wang, X.; He, X.; Guan, S. In-Situ Ultrasonic Detection of Resistance Spot Welding Quality Using Embedded Probe. J. Mater. Process. Technol. 2019, 267, 205–214. [Google Scholar] [CrossRef]
- Wang, X.; Guan, S.; Hua, L.; Wang, B.; He, X. Classification of Spot-Welded Joint Strength Using Ultrasonic Signal Time-Frequency Features and PSO-SVM Method. Ultrasonics 2019, 91, 161–169. [Google Scholar] [CrossRef]
- Qiuyue, F.; Guocheng, X.; Xiaopeng, G. Ultrasonic Nondestructive Evaluation of Porosity Size and Location of Spot Welding Based on Wavelet Packet Analysis. J. Nondestruct. Eval. 2020, 39, 7. [Google Scholar] [CrossRef]
- Liu, J.; Xu, G.; Ren, L.; Qian, Z.; Ren, L. Defect Intelligent Identification in Resistance Spot Welding Ultrasonic Detection Based on Wavelet Packet and Neural Network. Int. J. Adv. Manuf. Technol. 2017, 90, 2581–2588. [Google Scholar] [CrossRef]
- Moghanizadeh, A. Evaluation of the Physical Properties of Spot Welding Using Ultrasonic Testing. Int. J. Adv. Manuf. Technol. 2016, 85, 535–545. [Google Scholar] [CrossRef]
- Amiri, N.; Farrahi, G.H.; Kashyzadeh, K.R.; Chizari, M. Applications of Ultrasonic Testing and Machine Learning Methods to Predict the Static & Fatigue Behavior of Spot-Welded Joints. J. Manuf. Process. 2020, 52, 26–34. [Google Scholar] [CrossRef]
- Lindner, S.; Deike, R. Detection Method for Liquid Metal Embrittlement Cracks Inside the Intermediate Sheet Zone of Dissimilar Resistance Spot Welds. Steel Res. Int. 2020, 91, 2000044. [Google Scholar] [CrossRef]
- Ma, N.; Gao, X.; Tian, M.; Wang, C.; Zhang, Y.; Gao, P.P. Magneto-Optical Imaging of Arbitrarily Distributed Defects in Welds under Combined Magnetic Field. Metals 2022, 12, 1055. [Google Scholar] [CrossRef]
- Vértesy, G.; Tomáš, I. Nondestructive Magnetic Inspection of Spot Welding. NDT E Int. 2018, 98, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Tsukada, K.; Miyake, K.; Harada, D.; Sakai, K.; Kiwa, T. Magnetic Nondestructive Test for Resistance Spot Welds Using Magnetic Flux Penetration and Eddy Current Methods. J. Nondestruct. Eval. 2013, 32, 286–293. [Google Scholar] [CrossRef]
- Tsukada, K.; Yoshioka, M.; Kiwa, T.; Hirano, Y. A Magnetic Flux Leakage Method Using a Magnetoresistive Sensor for Nondestructive Evaluation of Spot Welds. NDT E Int. 2011, 44, 101–105. [Google Scholar] [CrossRef]
- Song, N.; Shiga, K.; Sakai, K.; Kiwa, T.; Tsukada, K. Development of a Magnetic Phase Map for Analysis of the Internal Structure of a Spot Weld. Electromagn. Nondestruct. Eval. 2016, 41, 302. [Google Scholar]
- Harada, D.; Sakai, K.; Kiwa, T.; Tsukada, K. Analysis of the Internal Structure of a Spot-Weld by Magnetic Measurement. In Proceedings of the Singapore International NDT Conference & Exhibition, Singapore, 19–20 July 2013. [Google Scholar]
- Cho, Y.; Rhee, S. Experimental Study of Nugget Formation in Resistance Spot Welding. Weld. J. 2003, 82, 195S–201S. [Google Scholar]
- Xia, Y.J.; Su, Z.W.; Li, Y.B.; Zhou, L.; Shen, Y. Online Quantitative Evaluation of Expulsion in Resistance Spot Welding. J. Manuf. Process. 2019, 46, 34–43. [Google Scholar] [CrossRef]
- Mahmud, K.; Murugan, S.P.; Cho, Y.; Ji, C.; Nam, D.; Park, Y.-D. Geometrical Degradation of Electrode and Liquid Metal Embrittlement Cracking in Resistance Spot Welding. J. Manuf. Process. 2021, 61, 334–348. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Sabatakakis, K.; Papacharalampopoulos, A.; Mourtzis, D. Infrared (IR) Quality Assessment of Robotized Resistance Spot Welding Based on Machine Learning. Int. J. Adv. Manuf. Technol. 2022, 119, 1785–1806. [Google Scholar] [CrossRef]
- Gedeon, S.A.; Sorensen, C.D.; Ulrich, K.T.; Eagar, T.W. Measurement of Dynamic Electrical and Mechanical Properties of Resistance Spot Welds Displacement Curves and Dynamic Resistance Provide Significant Data for Evaluating Nugget Quality. Weld. J. 1987, 66, 378S–385S. [Google Scholar]
- Xing, B.; Xiao, Y.; Qin, Q.H.; Cui, H. Quality Assessment of Resistance Spot Welding Process Based on Dynamic Resistance Signal and Random Forest Based. Int. J. Adv. Manuf. Technol. 2018, 94, 327–339. [Google Scholar] [CrossRef]
- Luo, Y.; Rui, W.; Xie, X.; Zhu, Y. Study on the Nugget Growth in Single-Phase AC Resistance Spot Welding Based on the Calculation of Dynamic Resistance. J. Mater. Process. Technol. 2016, 229, 492–500. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, F.; Xi, T.; Zhao, J.; Wang, L.; Gao, W. A Novel Quality Evaluation Method for Resistance Spot Welding Based on the Electrode Displacement Signal and the Chernoff Faces Technique. Mech. Syst. Signal Process. 2015, 62–63, 431–443. [Google Scholar] [CrossRef]
- Xing, B.; Xiao, Y.; Qin, Q.H. Characteristics of Shunting Effect in Resistance Spot Welding in Mild Steel Based on Electrode Displacement. Measurement 2018, 115, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.J.; Wang, F.J.; Gao, W.G.; Hou, Y.Y. Quality Assessment for Resistance Spot Welding Based on Binary Image of Electrode Displacement Signal and Probabilistic Neural Network. Sci. Technol. Weld. Join. 2014, 19, 242–249. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Ponder, K.; Brizes, E.; Abke, T.; Edwards, P.; Ramirez, A.J. Combining Resistance Spot Welding and Friction Element Welding for Dissimilar Joining of Aluminum to High Strength Steels. J. Mater. Process. Technol. 2019, 273, 116192. [Google Scholar] [CrossRef]
- Wen, J.; De Jia, H.; Wang, C.S. Quality Estimation System for Resistance Spot Welding of Stainless Steel. ISIJ Int. 2019, 59, 2073–2076. [Google Scholar] [CrossRef] [Green Version]
- Aslanlar, S.; Ogur, A.; Ozsarac, U.; Ilhan, E.; Demir, Z. Effect of Welding Current on Mechanical Properties of Galvanized Chromided Steel Sheets in Electrical Resistance Spot Welding. Mater. Des. 2007, 28, 2–7. [Google Scholar] [CrossRef]
- Aslanlar, S.; Ogur, A.; Ozsarac, U.; Ilhan, E. Welding Time Effect on Mechanical Properties of Automotive Sheets in Electrical Resistance Spot Welding. Mater. Des. 2008, 29, 1427–1431. [Google Scholar] [CrossRef]
- Kianersi, D.; Mostafaei, A.; Mohammadi, J. Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel. Metall. Mater. Trans. A 2014, 45, 4423–4442. [Google Scholar] [CrossRef]
- Tercan, H.; Meisen, T. Machine Learning and Deep Learning Based Predictive Quality in Manufacturing: A Systematic Review. J. Intell. Manuf. 2022, 33, 1879–1905. [Google Scholar] [CrossRef]
- Pereda, M.; Santos, J.I.; Martín, Ó.; Galán, J.M. Direct Quality Prediction in Resistance Spot Welding Process: Sensitivity, Specificity and Predictive Accuracy Comparative Analysis. Sci. Technol. Weld. Join. 2015, 20, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Zamanzad Gavidel, S.; Lu, S.; Rickli, J.L. Performance Analysis and Comparison of Machine Learning Algorithms for Predicting Nugget Width of Resistance Spot Welding Joints. Int. J. Adv. Manuf. Technol. 2019, 105, 3779–3796. [Google Scholar] [CrossRef]
- Martín, Ó.; Ahedo, V.; Santos, J.I.; De Tiedra, P.; Galán, J.M. Quality Assessment of Resistance Spot Welding Joints of AISI 304 Stainless Steel Based on Elastic Nets. Mater. Sci. Eng. A 2016, 676, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Pashazadeh, H.; Gheisari, Y.; Hamedi, M. Statistical Modeling and Optimization of Resistance Spot Welding Process Parameters Using Neural Networks and Multi-Objective Genetic Algorithm. J. Intell. Manuf. 2016, 27, 549–559. [Google Scholar] [CrossRef]
- Martin, O.; Ahedo, V.; Santos, J.I.; Galan, J.M. Comparative Study of Classification Algorithms for Quality Assessment of Resistance Spot Welding Joints From Pre- and Post-Welding Inputs. IEEE Access 2022, 10, 6518–6527. [Google Scholar] [CrossRef]
- Dai, W.; Li, D.; Tang, D.; Jiang, Q.; Wang, D.; Wang, H.; Peng, Y. Deep Learning Assisted Vision Inspection of Resistance Spot Welds. J. Manuf. Process. 2021, 62, 262–274. [Google Scholar] [CrossRef]
- Zhao, D.; Ivanov, M.; Wang, Y.; Liang, D.; Du, W. Multi-Objective Optimization of the Resistance Spot Welding Process Using a Hybrid Approach. J. Intell. Manuf. 2021, 32, 2219–2234. [Google Scholar] [CrossRef]
- Zhao, D.; Ivanov, M.; Wang, Y.; Du, W. Welding Quality Evaluation of Resistance Spot Welding Based on a Hybrid Approach. J. Intell. Manuf. 2021, 32, 1819–1832. [Google Scholar] [CrossRef]
- Zhou, B.; Pychynski, T.; Reischl, M.; Kharlamov, E.; Mikut, R. Machine Learning with Domain Knowledge for Predictive Quality Monitoring in Resistance Spot Welding. J. Intell. Manuf. 2022, 33, 1139–1163. [Google Scholar] [CrossRef]
- Safari, M.; Mostaan, H.; Ghaderi, A. Dissimilar Resistance Spot Welding of AISI 304 to AISI 409 Stainless Steels: Mechanical Properties and Microstructural Evolutions. Metall. Res. Technol. 2018, 115, 610. [Google Scholar] [CrossRef] [Green Version]
- Aghajani, H.; Pouranvari, M. Influence of In Situ Thermal Processing Strategies on the Weldability of Martensitic Stainless Steel Resistance Spot Welds: Effect of Second Pulse Current on the Weld Microstructure and Mechanical Properties. Metall. Mater. Trans. A 2019, 50, 5191–5209. [Google Scholar] [CrossRef]
- Soomro, I.A.; Pedapati, S.R.; Awang, M. Double Pulse Resistance Spot Welding of Dual Phase Steel: Parametric Study on Microstructure, Failure Mode and Low Dynamic Tensile Shear Properties. Materials 2021, 14, 802. [Google Scholar] [CrossRef]
- Hamedi, M.; Atashparva, M. A Review of Electrical Contact Resistance Modeling in Resistance Spot Welding. Weld. World 2017, 61, 269–290. [Google Scholar] [CrossRef]
- Tang, H.; Hou, W.; Hu, S.J.; Zhang, H. Force Characteristics of Resistance Spot Welding of Steels. Weld. J. 2000, 79, 175S–183S. [Google Scholar]
- Wohner, M.; Mitzschke, N.; Jüttner, S. Resistance Spot Welding with Variable Electrode Force—Development and Benefit of a Force Profile to Extend the Weldability of 22MnB5+AS150. Weld. World 2021, 65, 105–117. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Q.; Qi, L.; Deng, L.; Li, Y. Effect of External Magnetic Field on Resistance Spot Welding of Aluminum Alloy AA6061-T6. J. Manuf. Process. 2020, 50, 456–466. [Google Scholar] [CrossRef]
- Chabok, A.; van der Aa, E.; Pei, Y. A Study on the Effect of Chemical Composition on the Microstructural Characteristics and Mechanical Performance of DP1000 Resistance Spot Welds. Mater. Sci. Eng. A 2020, 788, 139501. [Google Scholar] [CrossRef]
- Shirmohammadi, D.; Movahedi, M.; Pouranvari, M. Resistance Spot Welding of Martensitic Stainless Steel: Effect of Initial Base Metal Microstructure on Weld Microstructure and Mechanical Performance. Mater. Sci. Eng. A 2017, 703, 154–161. [Google Scholar] [CrossRef]
- Badkoobeh, F.; Nouri, A.; Hassannejad, H.; Mostaan, H. Microstructure and Mechanical Properties of Resistance Spot Welded Dual-Phase Steels with Various Silicon Contents. Mater. Sci. Eng. A 2020, 790, 139703. [Google Scholar] [CrossRef]
- Chen, T.; Ling, Z.; Wang, M.; Kong, L. Effect of a Slightly Concave Electrode on Resistance Spot Welding of Q&P1180 Steel. J. Mater. Process. Technol. 2020, 285, 116797. [Google Scholar] [CrossRef]
- Murugan, S.P.; Mahmud, K.; Ji, C.; Jo, I.; Park, Y. Critical Design Parameters of the Electrode for Liquid Metal Embrittlement Cracking in Resistance Spot Welding. Weld. World 2019, 63, 1613–1632. [Google Scholar] [CrossRef]
- Tang, H.; Hou, W.; Hu, S.J.; Zhang, H.Y.; Feng, Z.; Kimchi, M. Influence of Welding Machine Mechanical Characteristics on the Resistance Spot Welding Process and Weld Quality. Weld. J. 2003, 82, 116S–124S. [Google Scholar]
- Sun, X.; Zhang, Q.; Wang, S.; Han, X.; Li, Y.; David, S.A. Effect of Adhesive Sealant on Resistance Spot Welding of 301L Stainless Steel. J. Manuf. Process. 2020, 51, 62–72. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, Ó.; De Tiedra, P. Advances in the Control and Improvement of Quality in the Resistance Spot Welding Process. Metals 2022, 12, 1810. https://doi.org/10.3390/met12111810
Martín Ó, De Tiedra P. Advances in the Control and Improvement of Quality in the Resistance Spot Welding Process. Metals. 2022; 12(11):1810. https://doi.org/10.3390/met12111810
Chicago/Turabian StyleMartín, Óscar, and Pilar De Tiedra. 2022. "Advances in the Control and Improvement of Quality in the Resistance Spot Welding Process" Metals 12, no. 11: 1810. https://doi.org/10.3390/met12111810
APA StyleMartín, Ó., & De Tiedra, P. (2022). Advances in the Control and Improvement of Quality in the Resistance Spot Welding Process. Metals, 12(11), 1810. https://doi.org/10.3390/met12111810