Grain Boundary Precipitation Control of GCP Phase Using TCP or A2 Phase in Ni-Based Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Precipitation of Co7Nb2 Phase at the GB
3.2. Precipitation of the Co7Nb2 Phase and (Ni, Co)3Nb Phase at the GB in the Ni–Nb–Co System (Type I)
3.3. Precipitation of Cr and Ni3Nb Phases at the GB in the Ni–Nb–Cr System (Type II)
4. Discussion
5. Conclusions
- In the Ni/Co7Nb2 two-phase region in the Ni–Nb–Co ternary system, the Co7Nb2 phase grows along the GB. The average area fraction of the GB () by the Co7Nb2 phase in Ni-5Nb-80Co at 1273 K becomes greater than 90% in 1 h, and the difference in average area fraction becomes less than 10% even at 1000 h. In the Ni/Co7Nb2/(Ni, Co)3Nb three-phase region, however, decreases because the (Ni, Co)3Nb phase grows toward the GI.
- In the Ni/Cr/Ni3Nb three-phase region in the Ni–Nb–Cr ternary system, the of Ni-3.3Nb-39.4Cr at 1273 K by the Cr phase and Ni3Nb phase becomes greater than 90% because growth of the Ni3Nb phase toward the GI is suppressed and the GCP phase also grows along the GB.
- The Ni phase at the interface with the GCP phase becomes a non-equilibrium composition by precipitation of the GCP phase, which precipitates prior to the TCP or A2 phase. The suppression of growth of the GCP phase toward the GI and precipitation control for covering the GB using both the TCP or A2 and GCP phases might be possible in a system where the precipitation of the GCP phase nucleating on the GB prior to the TCP or A2 phase increases supersaturation for precipitation of the TCP or A2 phase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamamoto, K.; Fukuda, M.; Hanatani, A. Ultrasupercritical and Advanced Ultrasupercritical Power Plants in Advances in Power Boiler, 1st ed.; Ozawa, M., Asano, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 325–390. [Google Scholar]
- Tramošljika, B.; Blecich, P.; Bonefačić, I.; Glažar, V. Advanced Ultra-Spercritical Cpal-Fired Power Plant with Post-Combustion Carbon Capture: Analysis of Electricity Penalty and CO2 Emission Reduction. Sustainability 2021, 13, 801. [Google Scholar] [CrossRef]
- Shingledecker, J.; Purgert, R.; Rawls, P. Current status of the U.S. DOE/OCDO A-USC materials technology research and development program, advances in materials technology for fossil power plants. In Proceedings of the Seventh International Conference, Waikoloa, HI, USA, 22–25 October 2013. [Google Scholar] [CrossRef]
- Viswanathan, R.; Henry, J.F.; Tanzosh, J.; Stanko, G.; Shingledecker, J.; Vitalis, B.; Purgert, R.U.S. program on materials technology for ultra-supercritical coal power plants. JMEPEG 2005, 14, 281–292. [Google Scholar] [CrossRef]
- Shingledecker, J.P.; Evans, N.D. Creep-rupture performance of 0.07-C-23Cr-45Ni-6W-Ti, Nb austenitic alloy (HR6W) tubes. Int. J. Pressure Vessels Piping 2010, 87, 345–350. [Google Scholar] [CrossRef]
- Klöwer, J.; Husemann, R.U.; Bader, M. Development of nickel alloys based on alloy 617 for components in 700 °C power plants. Procedia Eng. 2013, 55, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Knezevic, V.; Schneider, A.; Landier, C. Creep behavior of thick-wall alloy 618 seamless pipes for 700 °C power plant technology. Procedia Eng. 2013, 55, 240–245. [Google Scholar] [CrossRef]
- Zhao, S.; Xie, X.; Smith, G.D.; Patel, S.J. Microstructural stability and mechanical properties of a new nickel-based superalloy. Mater. Sci. Eng. A 2003, 355, 96–105. [Google Scholar] [CrossRef]
- Evans, N.D.; Maziasz, P.J.; Swindeman, R.W.; Smith, G.D. Microstructure and phase stability in Inconel alloy 740 during creep. Scr. Mater. 2004, 51, 503–507. [Google Scholar] [CrossRef]
- Zhang, S.; Takahashi, Y. Long-term creep property and structural stability of Ni-based alloy 740H. J. Soc. Mater. Sci. Jpn. 2020, 69, 679–685. [Google Scholar] [CrossRef]
- Minami, R.; Terada, Y. Precipitation Behavior of Ni-Based superalloy Alloy 625 for A-USC Power Plants. ISIJ Int. 2022, 62, 1946–1951. [Google Scholar] [CrossRef]
- An, X.L.; Zhang, B.; Chu, C.L.; Zhou, L.; Chu, P.K. Evolution of microstructures and properties of the GH4169 superalloy during short-term and high temperature processing. Mater. Sci. Eng. A 2019, 744, 255–266. [Google Scholar] [CrossRef]
- Gianfrancesco, D.; Lombardi, P.; Venditti, D. In718: Higher temperature application range for an old superalloy. In Proceedings of the 3rd International ECCC Conference, ECCC 2014: Creep & Fracture in High Temperature Components Design & Life Assessment, Rome, Italy, 5–7 May 2014. [Google Scholar]
- Reed, R.C. The Superalloy; Cambridge University Press: Cambridge, UK, 2006; pp. 217–282. [Google Scholar] [CrossRef]
- Takeyama, M.; Kawasaki, K.; Matsuo, T.; Tanaka, R. Effect of grain boundary precipitates on high temperature creep properties of Ni-20Cr-Nb-W alloys. Tetsu To Hagane 1986, 72, 1605–1612. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T.; Ueki, M.; Takeyama, M.; Tanaka, R. Strengthening of nickel-base superalloys for nuclear heat exchanger application. J. Mater. Sci. 1987, 22, 1901–1907. [Google Scholar] [CrossRef]
- Takeyama, M. Fundamentals of physical metallurgy for high-temperature materials -microstructure control and design. NMS-ISIJ 2008, 194–195, 3–23. (In Japanese) [Google Scholar]
- Tarigan, I.; Kurata, K.; Takata, N.; Matsuo, T.; Takeyama, M. Novel concept of creep strengthening mechanism using grain boundary Fe2Nb Laves phase in austenitic heat resistant steel. Mater. Res. Symp. Proc. 2011, 1295, 317–322. [Google Scholar] [CrossRef]
- Tarigan, I.; Takata, N.; Ueda, M. Creep of the novel austenitic heat resistant steels strengthened by Fe2Nb Laves phase. In Proceedings of the 3rd International ECCC Conference, ECCC 2014: Creep & Fracture in High Temperature Components Design & Life Assessment, Rome, Italy, 5–7 May 2014. [Google Scholar]
- Shingledecker, J.P.; Evans, N.D.; Pharr, G.M. Influence of composition and grain size on creep-rupture behavior of Inconel 740. Mater. Sci. Eng. A 2013, 578, 277–286. [Google Scholar] [CrossRef]
- Azadian, S.; Wei, L.-Y.; Warren, R. Delta phase precipitation in Inconel 718. Mater. Charact. 2004, 53, 7–16. [Google Scholar] [CrossRef]
- da Cruz Gallo, F.; de Azevedo, L.M.B.; Labre, C.; Araújo, L.S.; Dille, J.; de Almeida, L.H. Correlation between grain boundary character distribution and d-phase precipitation in nickel-based superalloy 718. J. Mater. Res. Technol. 2020, 9, 1801–1808. [Google Scholar] [CrossRef]
- Ida, S.; Kobayashi, S.; Takeyama, M. Grain boundary precipitation behavior of δ-Ni3Nb (D0a) phase in a Ni-Nb-Fe ternary model alloy. J. Alloys Compd. 2018, 764, 1033–1038. [Google Scholar] [CrossRef]
- Tarigan, I.; Takata, N.; Takeyama, M. Grain boundary precipitation strengthening mechanism by Fe2Nb Laves phase in creep of Fe-20Cr-30Ni-2Nb austenitic heat resistant steel. In Proceedings of the 12th International Conference on Creep and Fracture of Engineering Materials and Structure, Kyoto, Japan, 27–31 May 2012. [Google Scholar]
- Kanno, N.; Yoshimura, K.; Takata, N.; Tarigan, I.; Takeyama, M. Mechanical properties of austenitic heat-resistant Fe-20Cr-30Ni-2Nb steel at ambient temperature. J. Mater. Sci. Eng. A 2016, 662, 551–563. [Google Scholar] [CrossRef]
- Intermetallic Compounds; Westbrook, J.H. (Ed.) John Wiley & Sons: New York, NY, USA, 1967. [Google Scholar]
- Physical Metallurgy; Cahn, R.W.; Haasen, P. (Eds.) North-Holland: New York, NY, USA, 1996; Volume 1. [Google Scholar]
- Leineweber, A.; Kreiner, G.; Gruner, D.; Dinnebier, R.; Stein, F. Crystal Structure, Layer Defect, and the Origin of Plastic Deformability of Nb2Co7. Intermetallics 2012, 25, 34–41. [Google Scholar] [CrossRef]
- Poter, D.; Easterling, K.; Sherif, M. Phase Transformations in Metals and Alloys, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Ida, S.; Yamagata, R.; Nakashima, H.; Kobayashi, S.; Takeyama, M. Phase equilibria among γ/TCP/GCP phases in Nb-poor region of Ni-Nb-Co ternary system at elevated temperatures. J. Phase Equilib. Diffus. 2019, 40, 570–582. [Google Scholar] [CrossRef]
- Hasebe, Y.; Hashimoto, K.; Takeyama, M. Phase Equilibria among g-Fe/Fe2Nb (TCP)/Ni3Nb (GCP) phases in Fe-Ni-Nb Ternary System at Elevated Temperatures. J. Japan Inst. Metals 2011, 75, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Kodentsov, A.A.; van Loo, F.J.J. Phase relationship in Ni-Nb-Cr system at 1100 °C. Monatsh. Chem. 2012, 143, 1309–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofin, M.V.; Kerimov, E.Y.; Chastukhin, A.E.; Bazhanova, N.A.; Slyusarenko, E.M. Determination of phase equilibria in the Ni-V-Nb-Ta-Cr-Mo-W system at 1375 K using the graph method. J. Alloys Compd. 2001, 321, 102–131. [Google Scholar] [CrossRef]
- Patil, R.V.; Kale, G.B. Chemical diffusion of niobium in nickel. J. Nucl. Mater. 1996, 230, 57–60. [Google Scholar] [CrossRef]
- Murarka, S.P.; Anand, M.S.; Agarwala, R.P. Diffusion of chromium in nickel. J. Appl. Phys. 1964, 35, 1339–1341. [Google Scholar] [CrossRef]
Bulk Alloy Composition | Phase Present | Composition (at%) | |||||||
---|---|---|---|---|---|---|---|---|---|
1373 K | 1273 K | ||||||||
Ni | Nb | Cr | Ni | Nb | Cr | Ni | Nb | Cr | |
55 | 15 | 30 | Ni | 56.1 | 4.3 | 39.5 | 57.7 | 2.6 | 39.7 |
Ni3Nb | 72.8 | 22.1 | 5.1 | 73.3 | 22.2 | 4.5 | |||
Cr | 10.7 | 0.3 | 89.0 | 5.5 | 0.2 | 94.3 | |||
35 | 15 | 50 | Ni3Nb | 72.1 | 23.0 | 4.9 | |||
Cr2Nb (C14) | 45.1 | 25.7 | 29.2 | ||||||
Cr | 5.1 | 0.2 | 94.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ida, S.; Yamagata, R.; Nakashima, H.; Kobayashi, S.; Takeyama, M. Grain Boundary Precipitation Control of GCP Phase Using TCP or A2 Phase in Ni-Based Alloys. Metals 2022, 12, 1817. https://doi.org/10.3390/met12111817
Ida S, Yamagata R, Nakashima H, Kobayashi S, Takeyama M. Grain Boundary Precipitation Control of GCP Phase Using TCP or A2 Phase in Ni-Based Alloys. Metals. 2022; 12(11):1817. https://doi.org/10.3390/met12111817
Chicago/Turabian StyleIda, Shuntaro, Ryosuke Yamagata, Hirotoyo Nakashima, Satoru Kobayashi, and Masao Takeyama. 2022. "Grain Boundary Precipitation Control of GCP Phase Using TCP or A2 Phase in Ni-Based Alloys" Metals 12, no. 11: 1817. https://doi.org/10.3390/met12111817
APA StyleIda, S., Yamagata, R., Nakashima, H., Kobayashi, S., & Takeyama, M. (2022). Grain Boundary Precipitation Control of GCP Phase Using TCP or A2 Phase in Ni-Based Alloys. Metals, 12(11), 1817. https://doi.org/10.3390/met12111817