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Abstract: This work investigated the lubricating and anti-wear properties of several sulfur addi-
tives for a nickel-based superalloy–tungsten carbide friction pair. Compared with PAO40 without
any active chemical compounds, the three kinds of sulfur additives could decrease the friction
coefficient from 0.2 to 0.1 and the wear volume by 90%. Sulfurized fatty acid ester had the best
performance under high temperature and heavy load with COF below 0.1 and the smallest wear
volume. Furthermore, the lubricating mechanism was investigated by XPS. The physical adsorp-
tive film and the tribochemical film together enhanced the friction-reducing and anti-wear perfor-
mances of the lubricants. This effective lubricant for Inconel 718 can be applied to the machining of
nickel-based alloy.

Keywords: Inconel 718; sulfur additives; boundary lubrication; wear mechanism

1. Introduction

Nickel-based superalloys such as Inconel 718 are widely used in aerospace, gas turbine,
nuclear, and automotive industries because of their excellent high-temperature mechanical
strength and corrosion resistance [1]. At the same time, nickel-based superalloys are
recognized as difficult-to-machine materials. These metals exhibit serious problems during
machining such as high cutting force, rapid tool wear, short tool life, and poor surface
quality of the machined surface due to the physical, chemical, and thermal properties of
metals [2–5]. Tungsten carbide tools are the first choice for their good thermal conductivity,
high strength, and poor affinity with nickel [6]. It is of great importance to understand the
relationship between nickel-based alloy and carbide material, especially the tribological
behaviors, to reduce tool wear and improve tool life. The use of suitable cutting fluids can
effectively improve the machining conditions of nickel-based superalloys [7–9]. The cutting
fluid acts as a lubricant to reduce friction and as a coolant to cool the temperature at the
cutting zone. The lubricating ability of a cutting fluid greatly influences the quality of the
machined surface, as well as the tool life [10,11].

The chemical additives in the cutting fluid can act with the metal surface at high
temperature and pressure; thus, a lubricant film is formed to reduce friction between the
rake face and chips, the flank face, and machined surfaces. Sulfur additives are well known
for their extreme-pressure performance and anti-wear characteristics [12–14]. The sulfur
compounds, under extreme-pressure conditions, undergo chemical decomposition causing
sulfur release (rupture of the R–S bond) and their reaction with the metallic surface that
promotes the formation of an inorganic iron sulfide layer [12,15]. Most of the cutting
fluids are designed for ferrous metals [11,16–18]. However, there is a matching problem
between the additives and the workpiece materials [19,20]. Whether these additives have
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the same reaction with nickel-based superalloys is not clear. Few scholars have studied
the lubricants for nickel-based alloy–tungsten carbide contacts. Moreover, metal working
fluid which consists of several chemically active additives has a very complex chemical
composition. The individual actions of each component are not easily identifiable. However,
it is necessary for new metals such as nickel-based superalloys whose characteristics
are very different from traditional ferrous metals. Therefore, it is important to separate
contributions from different types of additives to the lubrication so as to select the most
efficient lubricant molecules and optimize the components of the cutting fluid. This
work focuses on the lubricating effect of different sulfur additives for the nickel-based
superalloy (Inconel 718)–tungsten carbide (YG8) tribopair, and the lubricating mechanism is
further investigated.

2. Experimental Details

Inconel 718 is the most widely used superalloy. YG8 (WC-Co) tungsten carbide is the
optimal tool material for nickel-based superalloy machining. The specimen used in this
paper was bought from Hengshihui company, Jiangsu, China. Table 1 shows the chemical
composition of Inconel 718 superalloy. The main component is Ni (60.01 wt.%) followed by
Cr (17.28 wt.%) and Fe (15.58 wt.%). The Table 2 displays the mechanical parameters of
Inconel 718.

Table 1. Chemical compositions of Inconel 718 superalloy (wt.%).

Ni C O Al Ti Cr Mo Nb Fe

60.01 2.31 0.62 0.29 0.51 17.28 1.25 2.15 15.58

Table 2. The mechanical parameters of Inconel 718.

Young’s Modulus
(GPa at 20 ◦C) Poisson’s Ratio Hardness (HRC) Yield Strength (MPa)

199.9 0.3 26.4 1035

The commercial sulfur additives were bought from Symarin company, Shanghai,
China. Each additive contained a different amount of sulfur in the molecule (by weight),
and the sulfur bonding mechanism was different in each additive. According to the
manufacturer’s data, the sulfur content of sulfurized olefin was as much as 40%, more than
that of sulfurized fatty acid ester (17%) and sulfurized lard (10%). The kinematic viscosity
of sulfurized olefin was much smaller than that of the other two kinds of additives for the
smallest molecular weight. Table 3 shows the available information about the lubricants.
Furthermore, PAO40, the viscosity of which is 396 mm2/s, was used as pure oil without
any active elements for comparison.

Table 3. The basic parameters of sulfur additives.

Name Sulfur
Content

Kinematic Viscosity
mm2/s (at 40 ◦C) Appearance Flash

Point (◦C)

Sulfurized olefin 40% 45 pale yellow 150

Sulfurized fatty acid ester 17% 582 tan 210

Sulfurized lard 10% 900–1300 dark brown >160

The frictional tests were carried out utilizing a ball-on-disc apparatus SRV-IV (Optimol,
Munich, Germany) under different lubricating conditions. The schematic diagram of the
tester is displayed in Figure 1. The discs were Inconel 718 with a hardness of HRC 35. All
of the specimens were polished before frictional tests by an automatic polishing/grinding
machine, and a surface roughness (Sa) less than 40 nm was obtained. The counter specimen
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was tungsten carbide YG8 ball with a diameter of 10 mm and surface roughness (Sa) of
25 nm. The hardness of the carbide ball was 89HRA. The samples were ultrasonically
cleaned using acetone and ethanol and then ultrapure water successively, each for 10 min,
before tests. The upper ball slid reciprocally against the stationary disc with an amplitude
of 2 mm and frequency of 20 Hz for 5 min. Before the frictional test, plenty of lubricant was
dropped onto the surface of the disc, and the ball returned to yield a normal load of 100 N.
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Figure 1. The schematic diagram of SRV-IV tribo-tester.

After the frictional tests, the morphology of rubbing surfaces was observed using a
LEXT™OLS5100 laser scanning confocal microscope (Olympus, Tokyo, Japan), and wear
volume is calculated. Each test was repeated three times, and the average values were used.
The relative errors were on the order of ±5%. A Quanta200 scanning electron microscope
(SEM) (FEI, Hillsboro, OR, USA) combined with energy dispersion spectrometry (EDS)
(FEI, Hillsboro, OR, USA) was used for the surface analysis of the investigated materials.
The chemical compositions of the worn surfaces were characterized using a PHI Quantera
SXM X-ray photoelectron spectrometer (ULVAC-PHI, Chigasaki, Japan).

3. Results and Discussions
3.1. Friction and Wear Properties Lubricated with Sulfur Additives

The curves of the friction coefficient and wear volume of the lower samples lubricated
by the four kinds of lubricants are shown in Figure 2. For PAO40, the friction coefficient
increased to 0.7 rapidly in the running-in period. Then, it decreased gradually and stabilized
at about 0.2 after 200 s. When using sulfurized olefin as lubricant, the initial friction
coefficient fluctuated to 0.17, before remaining stable at about 0.14 after 100 s. For sulfurized
fatty acid ester and sulfurized lard, the friction coefficients remained stable at 0.1 and 0.11,
respectively, until the end of the experiment. Compared with PAO40, the three kinds of
sulfur-containing additives could reduce the friction coefficient significantly for the nickel-
based superalloy. The friction coefficient of sulfurized fatty acid ester was the smallest,
while that of sulfurized olefin was 27% larger.

Considering that tungsten carbide is much harder than nickel-based superalloys, wear
occurs on the surface of the disc apparently while no wear is observed on the ball. After the
frictional tests, the remaining solution and debris on the wear track are washed away by
water and alcohol. From Figure 2b, it can be seen that the wear volume of the disc lubricated
by PAO40 was 2.4 × 107 µm3, about ten times that lubricated by the sulfur additives. Thus,
basic oil without any active chemical elements failed to lubricate nickel-based superalloy
under boundary lubrication. Compared with PAO40, the sulfur additives showed good
lubricating and anti-wear performance for the Inconel 718–tungsten carbide friction pair. It
is easy to generate inorganic protective films in the tribochemical reaction for an excellent
anti-wear effect. For sulfurized fatty acid ester and sulfurized lard, the wear volumes were
2.6 × 106 µm3 and 2.8 × 106 µm3, respectively. With sulfurized olefin lubrication, the wear
volume was 4.1 × 106 µm3. The relatively big wear volume is related to the long running-in
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period during the friction test. A lubricating film was formed, but it was not stable enough
to prevent direct contact between Inconel 718 and tungsten carbide completely during the
running-in period. It can be concluded that sulfurized fatty acid had the best lubrication
for Inconel 718 with the smallest COF and wear volume.
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The micro-morphology of the friction pairs was obtained by SEM as shown in Figure 3.
It can be seen that there were furrows on the surface of the superalloy discs and irregular
block materials on the surface of the balls lubricated by the three kinds of additives. From
Figure 3(a1), delaminated scars and abrasive particles can be seen on the surface of the disc
lubricated by sulfurized olefin. There were obvious furrows on the worn surface lubricated
by sulfurized lard (Figure 3(c1)). Furthermore, large dark blocky materials were detected
on the ball surface (Figure 3(c2)). The worn surface was compared to the smoothest with no
adhesive scar when lubricated by sulfurized fatty acid ester (Figure 3(b1)). However, there
were still patches on the surface of the ball (Figure 3(b2)). To ascertain the ingredients of
the materials on the surface (the red frame in Figure 3), EDS analysis was conducted. The
results show that the nickel-based superalloy on the ball surface was transferred from the
discs and adhered to the balls (Figure 3d). The materials on the balls were the same; thus,
the EDS result is listed once. The main wear mechanism of the superalloy was significant
adhesion, delamination, and ploughing. From the EDS results of the worn surface of the
discs, the sulfur element was detected, which did not belong to the alloy. This demonstrates
that sulfides formed on the metal surface during the friction process. However, the sulfur
contents on the surface of the discs lubricated by the additives were different, seen from
Table 4. The sulfur content of the worn surface lubricated by sulfurized olefin was the
highest (12.37%), while the adhesion on the ball was relatively mild. It should be considered
that the active sulfur content of sulfurized olefin was also the highest. The sulfur content
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of the worn surface lubricated by sulfurized lard was the lowest (1.34%) with the most
adhesive blocky material on the ball. For the sulfurized fatty acid ester, the adhesion on the
ball was significantly decreased compared with the sulfurized lard. This indicates that the
sulfide generated on the metal surface during the friction process played an important role
in reducing the adhesion of nickel-based superalloy to tungsten carbide ball during friction.
Sulfurized fatty acid ester contains active sulfur that can react with the metal surface at a
lower temperature; hence, the surface quality of the disc and the adhesion of the ball were
better than those lubricated by sulfurized lard. Meanwhile, the sulfurized fatty acid ester
molecule has a long carbon chain which helps to separate the two surfaces; thus, direct
contact was avoided compared with sulfurized olefin.

Metals 2022, 12, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 3. SEM morphology of the tracks on Inconel 718 and tungsten carbide ball lubricated by 

(a1,a2) sulfurized olefin, (b1,b2) sulfurized fatty acid ester, and (c1,c2) sulfurized lard; (a3,b3,c3) 

EDS spectrum of the red box in (a1,b1,c1); (d) EDS spectrum of the red box in (a2). 

  

Figure 3. SEM morphology of the tracks on Inconel 718 and tungsten carbide ball lubricated by
(a1,a2) sulfurized olefin, (b1,b2) sulfurized fatty acid ester, and (c1,c2) sulfurized lard; (a3,b3,c3) EDS
spectrum of the red box in (a1,b1,c1); (d) EDS spectrum of the red box in (a2).
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Table 4. The elements content of the above EDS analysis.

Element
(wt.%) Ni Fe Cr S C Al Si Ti Nb

(a3) 45.23 18.2 16.8 12.37 6.09 0.36 0.16 0.96 −
(b3) 43.71 17.67 16.75 2.71 6.75 0.37 0.97 0.87 10.19

(c3) 46.44 18.93 18.36 1.34 4.54 0.52 0.14 1.35 8.38

Element
(wt.%) Ni Fe Cr Nb Ti C W O −

(d) 33.92 16.54 16.01 8.54 1.13 7.31 9.04 1.5 −

3.2. Temperature Effect

Temperature is very important for the chemical reaction of additives with tribo-surface.
The influence of temperature on the friction and wear behavior of Inconel 718 sliding against
WC-Co under the lubrication of sulfur additives was investigated. The experimental
temperature was increased to 150 ◦C with the other experimental parameters the same as
those in Section 3.1. Figure 4a shows the friction coefficient curve at 150 ◦C. For sulfurized
olefin, the fluctuation of the friction coefficient was reduced at the beginning of the test
compared with that at 30 ◦C. Furthermore, the friction coefficient stabilized at about 0.18
after 20 s. For sulfurized fatty acid ester and sulfurized lard, the friction coefficient remained
at 0.1 from the beginning to the end of the test without running-in time at 150 ◦C. This
indicates that the lubricant film formed rapidly and remained more stable under high
temperature as expected. The wear volumes of the Inconel 718 discs are shown in Figure 4b.
Compared with that at 30 ◦C, the wear volume of the discs with different sulfur lubricants
did not change much. The wear volume lubricated by sulfurized fatty acid ester was
slightly smaller compared to the other two kinds of additives. It can be seen that the sulfur
lubricants had very good temperature stability for nickel-based superalloys.
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(F = 100 N, f = 20 Hz, L = 2 mm).

The morphology of the lower disc and the upper tungsten carbide ball after frictional
tests at 150 ◦C was observed by SEM, and the pictures are shown in Figure 5. Compared
with 30 ◦C, the furrows on the surface of the discs decreased, especially for sulfurized
fatty acid ester and sulfurized lard (Figure 5(b1,c1)). This indicates that high temperature
promoted the formation of a lubricant film, thus increasing the surface quality of the
nickel-based superalloy. With respect to the surface of the balls, the adhesive materials



Metals 2022, 12, 1841 7 of 13

were also decreased when lubricated by sulfurized fatty acid ester and sulfurized lard
(Figure 5(b2,c2)). However, the block material on the surface of the ball lubricated by
sulfurized olefin increased significantly, indicating that adhesion was aggravated, as seen
in Figure 5(a2). EDS analysis was performed on the wear scar of the nickel-based superalloy
and the adhesion area on the tungsten carbide (the red box in Figure 5). The dark materials
on the balls were the same; thus, the EDS results are listed once (Figure 5d). A nickel-based
superalloy was transferred from the disc and adhered to the ball. It can be speculated
that, under high temperature, the main wear mechanism of the superalloy was adhesion.
The elements content of the EDS analysis is listed in Table 5. From the EDS spectrum of
the surface lubricated by sulfurized fatty acid ester (Figure 5(b3)), it can be seen that the
peak of sulfur in the wear scar increased significantly and the sulfur content increased
from 2.71% (30 ◦C) to 16.33% (150 ◦C). The sulfide acted as an effective lubricant film,
which significantly decreased the adhesion on tungsten carbide balls and the ploughing on
nickel-based superalloy discs. For sulfurized lard, the sulfur content increased from 1.34%
(30 ◦C) to 5.43% (Figure 5(c3)), and the surface quality of the frictional pairs improved.
As for sulfurized olefin, the sulfur peak did not change very much, and the content of
sulfur was 11.63%. This indicates that high temperature did not promote the tribochemical
reaction of sulfurized olefin with nickel-based superalloy. Considering that the flash point
of sulfurized olefin is 150 ◦C, when the experimental temperature increased to 150 ◦C, the
sulfurized olefin began to volatilize continuously, and the material left in the friction area
was unstable. This led to the aggravation of adhesion at 150 ◦C lubricated by sulfurized
olefin. The flash points of the other two sulfur lubricants were both higher than 150 ◦C, and
the molecules remained stable with temperature increasing. Moreover, the tribochemical
reaction was promoted, leading to better surface quality and less adhesion.

Table 5. The elements content of the above EDS analysis.

Element
(wt.%) Ni Fe S C Ti Cr Nb −

(a3) 41.8 16.12 11.63 6.22 0.72 16.26 3.68 −
(b3) 43.71 17.67 16.33 6.45 0.71 15.4 10.19 −
(c3) 47.56 17.7 5.43 4.35 0.81 17.27 4.16 −

Element
(wt.%) Ni Fe Nb Cr Ti C W O

(d) 45.29 14.14 3.73 13.7 0.7 6.22 10 3.51

3.3. Load Capacity

The extreme-pressure performance of the lubricants is also an important index used to
measure the lubricating property. To illustrate the performance under extreme pressure,
the load slope test results of the three kinds of sulfur additives are shown in Figure 6a.
The test load increased from 100 N to1000 N in steps of 100 N. The friction coefficient
of sulfurized olefin fluctuated significantly with each load increase. For sulfurized fatty
acid ester and sulfurized lard, the friction coefficients remained stable at about 0.1 before
the load increased to 600 N. When the load was more than 600 N, the friction coefficients
had a little fluctuation. Thus, the load-bearing capacity of sulfurized fatty acid ester and
sulfurized lard was better than that of sulfurized olefin.



Metals 2022, 12, 1841 8 of 13Metals 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 5.  SEM morphology of the tracks on Inconel 718 and tungsten carbide ball lubricated under 

150 °C lubricated by (a1,a2) sulfurized olefin, (b1,b2) sulfurized fatty acid ester, and (c1,c2) sulfu-

rized lard; (a3,b3,c3) EDS spectrum of the red box in (a1,b1,c1); (d) EDS spectrum of the red box in 

(a2). 

Table 5. The elements content of the above EDS analysis. 

Element 

(wt.%) 
Ni Fe S C Ti Cr Nb − 

(a3) 41.8 16.12 11.63 6.22 0.72 16.26 3.68 − 

(b3) 43.71 17.67 16.33 6.45 0.71 15.4 10.19 − 

(c3) 47.56 17.7 5.43 4.35 0.81 17.27 4.16 − 

Element 

(wt.%) 
Ni Fe Nb Cr Ti C W O 

(d) 45.29 14.14 3.73 13.7 0.7 6.22 10 3.51 

Figure 5. SEM morphology of the tracks on Inconel 718 and tungsten carbide ball lubricated under
150 ◦C lubricated by (a1,a2) sulfurized olefin, (b1,b2) sulfurized fatty acid ester, and (c1,c2) sulfurized
lard; (a3,b3,c3) EDS spectrum of the red box in (a1,b1,c1); (d) EDS spectrum of the red box in (a2).

The wear volumes of sulfurized fatty acid ester and sulfurized lard on nickel-based
superalloy under different loads were further tested. The experimental load was set to
300 N, 500 N, 700 N, and 900 N, and the results are shown in Figure 6b. When sulfurized
fatty acid ester lubricated the nickel-based superalloy, the wear volume increased steadily
with the increase in load. As for sulfurized lard, the wear volume had a larger increase
compared to sulfurized fatty acid when the load increased to 700 N. The big wear volume
was consistent with the large friction coefficient, indicating unstable lubricant condition.
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3.4. Exploration of the Adsorption Characteristics

XPS is a practical method to clarify the chemical states of elements within the ad-
sorption film on the surface of tribopair. To further explain the lubrication mechanism
of sulfur additives for nickel-based superalloy, the worn surfaces were tested by XPS.
Figures 7 and 8 show the spectra of the several elements lubricated by sulfurized fatty
acid ester and sulfurized olefin. It can be observed that the peak shapes and binding
energies of the corresponding elements were similar. Therefore, the tribochemical reaction
processes were the same when sulfurized fatty acid ester and sulfurized lard were used
as lubricants for the nickel-based superalloy. Figure 7a shows typical XPS survey scans
inside and outside the wear track over a binding energy at the range of 0–1400 eV with the
lubrication of sulfurized fatty acid ester. The values were shifted 400,000 upward from the
second line to show a clear contrast. The peak intensities of Ni2p and Fe2p inside the wear
track are lower than those outside the wear track. Furthermore, a sulfur peak at 168 eV
appeared at the position inside the wear track, while no sulfur was detected outside the
track. This demonstrates that sulfide compounds remained after the frictional test when
lubricated by sulfurized fatty acid ester. Ni2p inside the wear track was apparently lower
than the substrate, which further demonstrates that some film existed on the wear track.
To further investigate the way in which the sulfide compounds acted with nickel-based
superalloy, detailed high-resolution XPS scans of Ni2p, Fe2p, S2p, and O1s were recorded,
and the results are shown in Figure 7b–e. The peak at 852.8 eV is Ni–S, and the peak at
855.2 eV is Ni–SO4 (Figure 7b). The peaks at 710.11 eV and 723.4 eV correspond to Fe–S and
FeSO4, respectively (Figure 7c) [11]. The S2p spectrum is shown in Figure 7d. The peak at
161 eV–162 eV corresponds to Fe–S, the peak at 162.8 eV corresponds to Ni–S, and the peak
at 169.7 eV is the metal sulfate [21]. The O1s spectrum is shown in Figure 7e. The peak at
531.7 eV corresponds to S–O in –SO4, and the peak at 530.2 is metallic oxide. Combining the
Ni2p, S2p, and O1s data, it can be inferred that NiSO4 may have existed on the surface of
the wear track. Compared with the S2p spectra on the surface lubricated by sulfurized fatty
acid ester, the peak intensities of Ni2p and Fe2p inside the wear track were higher when
lubricated by sulfurized olefin (Figure 8a). Moreover, the peak of metal sulfates was much
lower than that lubricated by sulfurized fatty acid ester (Figure 8c). It can be speculated
that the tribochemical reaction film on Inconel 718 surface lubricated by sulfurized olefin
was thinner than that lubricated by sulfurized fatty acid ester, leading to a higher COF and
bigger wear volume.

According to the XPS results, the lubricating mechanism of the sulfur additives for
Inconel 718–tungsten carbide contact can be summarized. In the frictional process, the
molecules adsorb on the metal surface to form a physical adsorption protective film. The
active element S reacts with the metal matrix Inconel 718. A tribochemical protective film
composed of high-toughness inorganic salts such as nickel sulfide and nickel sulfate is
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formed, playing a role in lubrication. The physical adsorptive film and the tribochemical
film together enhance the friction-reducing and anti-wear performances of the lubricants.
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3.5. The Improvement of the Cutting Fluid

The experimental results show that, for the nickel-based superalloy–tungsten carbide
friction pair, sulfurized fatty acid ester had the best lubricating and anti-wear performance
among the three kinds of extreme-pressure agents. The effect of sulfurized fatty acid ester
on the lubricating performance of some kind of cutting fluid without sulfur-containing
additives was tested. The cutting fluid was diluted to 5 wt.% with different content of
sulfur additives. The frictional experiments were completed, and the friction coefficients are
shown in Figure 9. The results show that the friction coefficient dropped to 0.133 with the
concentration of sulfurized fatty acid ester at 1 wt.%. When the concentration of sulfurized
fatty acid ester increased to 2%, the friction coefficient further dropped to 0.127. The ester
concentration was further increased to 3%, and the friction coefficient did not continue to
decrease and remained stable at 0.127. It can be seen that 2 wt.% sulfurized fatty acid ester
could successfully decrease the friction coefficient of the cutting fluid.
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4. Conclusions

In the present work, the tribological performance of three kinds of sulfur additives for
the Inconel 718–tungsten carbide friction pair was investigated. The friction experiment
results showed that sulfurized fatty acid ester possessed excellent antifriction (COF 0.1)
and anti-wear performance (wear volume 90% smaller than that lubricated by PAO 40),
particularly at the high temperature of 150 ◦C and at heavy load. The lubrication mechanism
of the sulfur additives for the Inconel 718–tungsten carbide friction pair was investigated
using XPS. The physical adsorptive film and the tribochemical film together enhanced the
friction-reducing and anti-wear performance of the lubricants. This effective lubricant for
Inconel 718 can be applied to the machining of nickel-based superalloy.
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