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Abstract: Many engineering structures are made of metal composite materials. External load infor-
mation is a key issue for the design and condition monitoring of the structures. Due to the limitation
of measurement technology and the external environment, it is difficult to directly measure dynamic
loads on structures in many circumstances. This paper focuses on evaluating the external load
applied on a structure with unknown dynamic properties. We proposed a novel dynamic load
identification method that is based on the Bayesian principle coupled with the extended Kalman filter
method. Firstly, the modal parameters are identified under ambient excitation using the Bayesian fast
Fourier transform method (FFT). The posterior probability density function (PDF) and covariance
of the modal parameters are obtained by the Fourier transform of the response data, and then the
modal parameters of the structure are obtained based on unconstrained optimization. Next, the
extended Kalman filter method in the modal space is used to update the modal parameters and
identify the time-domain information of dynamic loads. The accuracy of the proposed theory was
evaluated experimentally using a Bernoulli−Euler beam. The results showed that the method is
feasible and efficient.

Keywords: Bayesian analysis; ambient modal identification; dynamic load identification; extended
Kalman filter

1. Introduction

Identifying the dynamic load acting on a metal structure is essential for a large variety
of applications. For example, dynamic loads applied on a structure are responsible for the
majority of failures during service [1–4]. Therefore, to improve the safety and the reliability
of a structure, it is not enough to ensure that the static characteristics meet the design
requirements. Dynamic loads should also be closely monitored in order to ensure that they
do not exceed certain limits.

Current dynamic loads identification methods are mostly based on specified systems
with known parameters, e.g., the stiffness and the damping [5–7]. These parameters are
usually identified by applying artificial excitations. However, in many cases, this identifica-
tion method may affect the normal operation of a structure (such as bridges and rotors in
operation) [8,9]. Such artificial excitation may also cause structural damage. A practical
approach to obtaining modal parameters is ambient vibration tests (AVTs) [10,11], which
are usually economical and time-saving. Several modal parameter identification methods
based on ambient excitation, such as the lbrahim time domain technique (ITD) [12], the
autoregressive moving average model (ARMA) [13], and the random subspace method [14],
are available in the literature. Among these approaches, the fast Fourier transform modal
parameter identification method based on Bayesian probability [15,16] is the most efficient,
as it makes full use of the response data and obtains the modal priori parameters. Further-
more, in the presence of noise, the identification results are often more accurate than other
methods thanks to the Bayesian probability principle.
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In the field of dynamic load identification, among Bayesian methods we have the
Bayesian regularization method [17] and the Bayesian particle filter method [18]. Further-
more, the Kalman filter method [19] can also be considered as a special case of Bayesian
methods where the Kalman filter is usually combined with the least square method [20].
Zhang et al. [21] used the Bayesian method to reconstruct a structural load with measure-
ment noise and model uncertainty. Yan [22] identified the impact load on a composite
plate by the Bayesian regularization method, and they also used the Kalman filter algo-
rithm to identify the impact position. Faure et al. [23] used the Bayesian regularization
method to identify the load position by assessing the displacement response. This method
does not need the boundary conditions but is highly sensitive to the noise in the response
measurement. The Kalman filter is developed in the modern control theory and has been
successfully applied in the field of dynamic load identification. When considering a dy-
namic model that contains a Gaussian model error and the response signal is corrupted
by a Gaussian noise, the Kalman filter load identification method [24–28] can accurately
reconstruct the time-domain information of the load in both the physical space and the
modal space. Several scholars have proposed the extended Kalman filter [20,29,30] and the
unscented Kalman filter [27,31] to correct these errors and to identify loads. Lourens [25]
proposed the extended Kalman filter to identify the load, which extends the unknown force
vector to the state vector to form the augmented state vector, and uses the Kalman filter
to identify the augmented state vector so as to identify the load. Naets et al. [26] studied
the observability of this method and pointed out that the system is unobservable when
only the acceleration response is used to identify the load. In order to solve this problem,
they combined the virtual displacement technology with the acceleration response and
improved the Kalman filter to identify the load. Yang et al. [27–29] composed the state
vector and the model parameters into an augmented state vector. They used the extended
Kalman filter to identify the augmented state vector and employed complex mathematical
equations to identify the load.

The methods mentioned above are all based on the assumption of known system
parameters. However, it remains to be studied how to identify the load when only the
response data are known for an unspecified system under a random excitation. Moreover,
these methods are only developed in the physical space and not in the modal space, which
can lead to complicated computation when applied to large-scale structures. Developing
a similar approach for the modal space is useful for large-scale engineering structures.
In this paper, we firstly introduced the extended Kalman filter method into the modal
space to identify the modal parameters and load of unspecified systems using only random
excitation response data.

This paper is organized as follows: In Section 1, the introduction of the research back-
ground is described. In Section 2, the posterior PDF and covariance of modal parameters
were obtained by the Fourier transform of the response data. Then, the modal parameters
of the structure were obtained based on unconstrained optimization (Section 2.1). The ex-
tended Kalman filter load identification method in the modal space was derived to update
the modal parameters with errors and identify the excitation (Section 2.2). In Section 3, a
3-DOF structure was simulated to verify the correctness of the extended Kalman filter. A
simply supported beam under random loads was used to demonstrate the effectiveness
and feasibility of the proposed methods in Section 2. Finally, the conclusions are presented
in Section 5.

2. Dynamic Load Identification Method

The method proposed in this paper includes two stages:
Firstly, a Bayesian method is used to identify the modal parameters of the structure

under ambient excitation. Secondly, the extended Kalman filter method is used to update
the modal parameters and identify the time-domain information of the dynamic loads.
Research manuscripts reporting large datasets that are deposited in a publicly available
database should specify where the data have been deposited and provide the relevant
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accession numbers. If the accession numbers have not yet been obtained at the time of
submission, please note that they will be provided during review. They must be provided
prior to publication.

2.1. Bayesian FFT Modal Identification

In this section we introduced a multi-modal identification method based on Bayesian
principle, which is a forward problem. The parameters optimal result was derived using
the probability, while the rationality of the results was measured by the variance. It
should be mentioned that the Bayesian method for multi-modal identification has the
disadvantages of needing complex calculations and often involving large errors especially
when considering high modal orders, i.e., orders exceed three. However, this is not the
case in a single-mode identification. In this paper, the single-mode identification method
was introduced.

We start by defining the vector
{

yj

}
, where

{
yj ∈ Rn : j = 1, · · ·N

}
is the acceleration

time history measured at n DOFs of a structure. The number of sampling points per channel
is N. The FFT of

{
yj

}
can then be defined as:

Yk = Fk + iGk =
√
(2∆t)/N

N

∑
j=1

yj exp{−2πi[(k− 1)(j− 1)/N]}(k = 1, · · ·N), (1)

where i2 = −1; Fk = ReYk and Gk = ImYk are the real and imaginary parts of the FFT,
respectively; and ∆t is the sampling interval. The FFT corresponds to the frequency
fk = (k− 1)/N∆t for k = 2, 3 · · ·Nd, where Nd = int[N/2] + 1 is the number of frequencies
used for the FFT. The scaling factor of the FFT makes the spectral density matrix unilateral
invertible, and the frequency is measured in Hz. The frequency resolution after being
converted to the frequency domain is ∆ f = 1/N∆t.

The modal parameters θ to be identified include the modal frequency f , the modal
damping ratio ζ, the modal mode shape Φ, the cross-spectral density of the modal excitation

Sij, and the spectral density of the prediction error σ2. Let
^
θ be the most probable value

(MPV). The posterior PDF of θ is proportional to the likelihood function p({Zk} |θ ):

p(θ|{Zk} ) ∝ p({Zk} |θ ) = (2π)−(Nq−1)/2

[
Nq

∏
k=2

detCk(θ)

]−1/2

× exp

[
−(1/2)

Nq

∑
k=2

ZT
k Ck(θ)Zk

] (2)

where
Zk =

[
FT

k , GT
k

]T
∈ R2Ns : k = 2, · · · , Nd, (3)

Ck is the covariance matrix of Zk [31] and described as:

Ck =
1
2

[
Φ(ReHk)Φ

T Φ(ImHk)
T

ΦT

Φ(ImHk)Φ
T Φ(ReHk)Φ

T

]
+

σ2

2
I2n, (4)

Hk is the spectral density matrix of the model response with βik = fi/ fk and written as:

Hk(i, j) = Sij

[
(β2

ik − 1) + i(2ζiβik)
]−1[

(β2
jk − 1) + i(2ζ jβ jk)

]−1
, (5)
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fi and ζi are the natural frequency and the damping ratio of the ith mode, respectively; Sij
is the cross spectral density between the ith- and jth-mode excitations. For convenience,
Equation (2) is rewritten as:

p(θ|{Zk} ) ∝ exp[−L(θ)], (6)

L(θ) =
1
2

Nq

∑
k=2

[
ln detCk(θ) + ZT

k Ck(θ)
−1Zk

]
. (7)

When the sampling data are large enough, the posterior PDF can be represented as a
Gauss distribution:

p(θ|{Zk} ) ∝ exp

[
−1

2
(θ−

^
θ)

T ^
C
−1

(
^
θ)(θ−

^
θ)

]
, (8)

^
C = HL(

^
θ)
−1

, (9)

where HL(
^
θ) is the Hessian of L at the most optimal parameter value [27].

If all modes are completely separated and a selected frequency bandwidth contains
only a single mode, a single-mode identification method can be used in this bandwidth.
The FFT data of the selected bandwidth contain all the modal parameters of that mode.
Modal parameter θ consists of the natural frequency f , the damping ratio ζ, the mode
shape ϕ ∈ Rn, the spectral density of the modal excitation S, and the spectral density of
the prediction error σ2.

Next, L(θ) is given by:

L( f , ζ, S, σ2,ϕ) = −nN f ln 2 + (n− 1)N f ln σ2

+∑
k

ln(SDk + σ2) + σ−2(d−ΦTAΦ)
(10)

where N f is the total number of the sampling points in the selected bandwidth,

Dk =

[(
β2

k − 1
)2

+ (2ζβk)
2
]−1

, (11)

A = ∑
k
[1 + (σ2/SDk)]

−1
Dk, (12)

Dk=FkFT
k +GkGT

k , (13)

d = ∑
k
(FT

k Fk+GT
k Gk)=trace(A0), (14)

A0=∑
k

Dk. (15)

The sum in the equation adds N f terms of the bandwidth of the selected frequency.
The most probable value (MPV) of the mode vector ϕ is the eigenvector corresponding
to the maximum eigenvalue of A. Then, the unit normalization of the mode vector is
carried out as ϕ/‖ϕ‖, ‖ϕ‖2 = ϕTϕ. Minimizing with respect to ϕ leads to L being only
dependent on the remaining four parameters:

L( f , ζ, S, σ2) = −nN f ln 2 + (n− 1)N f ln σ2

+∑
k

ln(SDk + σ2) + σ−2(d− λ̂)
(16)
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where λ̂ is the largest eigenvalue of A. The MPV of the four remaining parameters can be
obtained using an unconstrained numerical optimization approach. To this end, we define
the following factor as the signal-to-noise ratio at the frequency fk:

γk = SDk/σ2. (17)

In the selected bandwidth, if γk >> 1, the following relationship can be obtained:

(1 + γk
−1)
−1

= [1 + (σ2/SDk)]
−1 ∼ 1− (σ2/SDk) ∼ 1. (18)

Using the zero-order approximation, the matrix A becomes:

A ∼∑
k

Dk = A0, (19)

which is a constant matrix. Then, the MPV of ϕ can be obtained from Equation (19), while
the MPV of σ2 and S can also be found as:

σ̂2 = (d− λ̂0)
/
(n− 1)N f , (20)

Ŝ( f , ς) = N−1
f ∑

k
Dk( f , ς)−1D̂k, (21)

where

λ̂0 =
^
ϕ

T
A0

^
ϕ, (22)

D̂k =
^
ϕ

T
Dk

^
ϕ. (23)

Thus, we see that L depends only on the remaining parameters f and ζ:

L( f , ζ) ∼∑
k

ln Dk( f , ζ) + N f ln[N−1
f ∑

k
Dk( f , ζ)−1D̂k] + const. (24)

The steps to obtain modal parameters of a single mode can be summarized as:

1. Calculate the FFT of the sequence {Fk, Gk} and then evaluate the matrices Dk using
Equation (13) and the matrix A0 using Equation (19);

2. Calculate the MPV as the eigenvector of A0 using the largest eigenvalue and then the
MPV of σ2 using Equation (20);

3. Numerically optimize Equation (24) with respect to f and ζ. The initial guess for f
can be obtained from the FFT spectrum of the response. The initial guess of ζ may be
set to 1%. Then, the MPV of S can be obtained from Equation (21).

2.2. Dynamic Load Identification Method Based on Extended Kalman Filter in the Modal Space

The equation of motion for a dynamic system can be expressed as a set of ordinary
differential equations:

M
..
p(t) + C

.
p(t) + Kp(t) = Bff(t), (25)

where f(t) is the excitation vector with B f ∈ Rn×r being the matrix of the excitation
positions composed of ones and zeros. Ones are used at the degrees of freedom corre-
sponding to the excitation locations and zeros everywhere else. M, C, and K denote
the mass, damping, and stiffness matrix, respectively. The state space model of the dy-
namic system, i.e., the equation of state and the equation of observation, can be written as
Equations (26) and (27), respectively:
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.
x(t) =


.
p(t)
..
p(t)

.
θ

+ w(t) =


.
p(t)

M−1[Bff(t)−Cθ
.
p(t)−Kθp(t)

]
[0]

+ w(t) = g(x(t), f(t)) + w(t), (26)

y(t) = H0
..
p(t) + v(t) = h(x(t), f(t)) + v(t), (27)

where g and h are non-linear functions, x(t) =
[
p(t)

.
p(t) θ

]T is the augmented state
vector, p(t) is the displacement vectors, θ =

[
θ1 θ2 · · · θs

]
is the modal parameter

vectors, y(t) is the acceleration vector of the observation point, w(t) and v(t) are the model
noise and the observation noise, respectively, the variances are Gk and Rk, and H0 is the
observation vectors.

Discretizing the above nonlinear equations in the time domain, we obtain:

.
xk = g(xk, fk) + wk, (28)

yk = h(xk, fk) + vk = H0
..
pk + vk = H0M−1

[
B f fk −Cθ

.
pk −Kθpk

]
+ vk

=
¯
h(xk) + H0M−1B f fk + vk =

¯
h(xk) + Dkfk + vk

(29)

Applying the first-order Taylor expansion to the non-linear functions g and h, we
arrive at the following approximate linear functions:

gk(xk, fk) ≈ gk(E(xk), fk) +
∂g(x, f)

∂x

∣∣∣∣xk|k ,fk
·(xk − E(xk)) +

∂g(x, f)
∂f

∣∣∣∣xk|k ,fk
·(fk − E(fk)),

(30)

hk(xk, fk) ≈ hk(E(xk), fk) +
∂h(x, f)

∂x

∣∣∣∣xk|k ,fk
·(xk − E(xk)), (31)

with

∂g(x,f)
∂x

∣∣∣x=xk|k ,f=fk
=
[

∂g
∂p

∂g
∂

.
p

∂g
∂θ

]

=

 [0] I [0] · · · [0]
−M−1Kθ −M−1Cθ −M−1 ∂Kθ

∂θ1
pk|k −M−1 ∂Cθ

∂θ1

.
pk|k · · · −M−1 ∂Kθ

∂θs
pk|k −M−1 ∂Cθ

∂θs

.
pk|k

[0] [0] [0] · · · [0]

 = A
(32)

∂g(x,f)
∂f

∣∣∣∣∣∣x=xk|k ,f=fk
=

 [0]
M−1B f

[0]

 = B, (33)

∂h(x,f)
∂x

∣∣∣∣x=xk|k−1,fk
=

[
∂h
∂p

∂h
∂

.
p

∂h
∂θ

]
=

[
−H0M−1Kθ −H0M−1Cθ −H0M−1 ∂Kθ

∂θ1
pk|k−1 −H0M−1 ∂Cθ

∂θ1

.
pk|k−1

· · · −H0M−1 ∂Kθ
∂θs

pk|k−1 −H0M−1 ∂Cθ
∂θs

.
pk|k−1

]
= Hk

(34)

where Kθ is a stiffness matrix with unknown stiffness coefficients and Cθ is a damping
matrix with unknown damping coefficients. The steps of the extended Kalman filter
dynamic load identification method in the physical space are given as:

(1) Start by choosing initial values x0|0 and Px
0|0;

(2) Set the model error variance matrix Gk and the observation noise variance matrix Rk;
(3) Locally linearize the observation equations Hk and Dk;
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(4) Identify the load

Kk = Px
k|k−1HT

k

(
HkPx

k|k−1HT
k + Rk

)−1

Mk =
[
DT

k R−1
k (I−HkKk)Dk

]−1

fk = MkDT
k R−1

k (I−HkKk)

(
yk −

¯
h(xk|k−1)

)
;
)

(5) Update the status xk|k = xk|k−1 + Kk

[
yk −

¯
h(xk|k−1)−Dkfk

]
;

(6) Update the state covariance Px
k|k =

{
I + KkDkMkDT

k R−1
k Hk

}
(I−KkHk)Px

k|k−1;

(7) Update time xk+1|k = xk|k +
∫ tk+1

tk
g(x(t), f(t))dt;

(8) Locally linearize the state equation

Ak = I + A∆t, Bk = B∆t;

(9) Update the covariance of the state prediction

Px
k|k−1 = AkPk−1|k−1AT

k + Gk.

Next, we aim to introduce the method into the modal space. The transformation
equation of the physical space to the modal space is written as:

p(t) = Φq(t), (35)

where Φ is the mass normalized mode matrix and q(t) is the generalized coordinate. The
dynamic equation is described as:

..
q(t) + Γ

.
q(t) + Λq(t) = ΦTB f f(t), (36)

where with Λ being a generalized stiffness matrix, Λ = diag(λ1 λ2 · · · λn), where λj = ω2
j

and ωj is the natural frequency of order j, Γ is a generalized damping matrix,
Γ = diag(γ1 γ2 · · · γn), where γj = 2ζ jωj is the j-order modal damping with ζ j being
the modal damping ratio.

In the modal space, Equation (26) is transformed into the following equation:

.
x(t) =


.
q(t)
..
q(t)

.
θ

+ w(t) =


.
q(t)

ΦTB f f(t)− Γθ
.
q(t)−Λθq(t)

[0]

+ w(t) = g[x(t), f(t)] + w(t). (37)

Splitting the function g into two parts, we obtain:

g[x(t), f(t)] =


.
q(t)

−Γθ
.
q(t)−Λθq(t)

[0]

+


[0]

ΦTB f

[0]

f(t) =
¯
g[x(t)] + Bf(t). (38)

Local linearization and time domain discretization leads to the following equations:
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A = ∂g(x,f)
∂x

∣∣∣x=xk|k ,f=fk
=
[

∂g
∂q

∂g
∂

.
q

∂g
∂θ

]

=


[0] I [0] · · · [0]

−Λθ −Γθ − ∂Λθ
∂θ1

qk|k −
∂Γθ
∂θ1

.
qk|k +

(
∂Φ
∂θ1

)T
B f fk · · · − ∂Λθ

∂θs
qk|k −

∂Γθ
∂θs

.
qk|k +

(
∂Φ
∂θs

)T
B f fk

[0] [0] [0] · · · [0]


(39)

Ak = I + A∆t, (40)

B =
∂g(x,f)

∂f

∣∣∣∣∣∣x=xk|k ,f=fk
=

 [0]
ΦTB f
[0]

. (41)

The observation equation is then obtained as:

y(t) = H0Φ
..
q(t) + v(t) = H0Φ

[
ΦTB f −Λθq(t)− Γθ

.
q(t)

]
+ v(t) = h[x(t), f(t)] + v(t). (42)

Again, splitting the function h into two parts:

h[x(t), f(t)] =
[
−H0ΦΛθ −H0ΦΓθ 0

]q(t)
.
q(t)
θ

+ H0ΦΦTB f f(t)

=
¯
h[x(t)] + Df(t)

(43)

D = H0ΦΦTB f . (44)

The discrete form of the observation equation in the time domain is expressed as:

yk =
¯
h(xk|k) + Dkfk. (45)

The linearization of the observation function produces the following equations:

Hk =
∂h(x)

∂x

∣∣∣∣x=xk|k−1,f=fk−1
=

[
∂h
∂q

∂h
∂

.
q

∂h
∂θ

]
=[

−H0ΦΛθ −H0ΦΓθ −H0
∂Φ
∂θ1 Λθqk|k−1 −H0Φ ∂Λθ

∂θ1
qk|k−1

· · · −H0
∂Φ
∂θ1

Γθ
.
qk|k−1 −H0Φ ∂Γθ

∂θ1

.
qk|k−1 + 2H0

∂Φ
∂θ1

ΦTB f fk−1

· · · −H0
∂Φ
∂θs

Λθqk|k−1 −H0Φ ∂Λθ
∂θs

qk|k−1 −H0
∂Φ
∂θs

Γθ
.
qk|k−1 −H0Φ ∂Γθ

∂θs

.
qk|k−1 + 2H0

∂Φ
∂θs

ΦTB f fk−1

]
, (46)

Dk =
∂h[xk, fk]

∂fk
= H0ΦΦTB f (47)

The error parameters in θ are eigenvalues and modal damping coefficients. ∂Λ/∂θs
and ∂Γ/∂θs which are relatively easy to get while ∂Φ/∂θs can be used for the eigenvector
sensitivity analysis.

The mode matrix Φ is differentiated by the variable structure parameter pij:

∂Φ

∂pij
=
[

∂ϕ1
∂pij

∂ϕ2
∂pij

· · · ∂ϕn
∂pij

]
, (48)
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where ϕi is the mode vector of the ith order. If r 6= s, the sensitivity of the eigenvectors to
the stiffness coefficient kij can be given as:

∂ϕr

∂kij
=

n

∑
s=1

βsϕs, (49)

βs =


1

λs−λr

(
ϕis ϕjr + ϕir ϕjs

)
(i 6= j)

1
λs−λr

ϕis ϕjr (i = j)
. (50)

If r = s,
∂ϕr

∂kij
=

n

∑
s=1

βsϕs (51)

βs = 0 (52)

If r 6= s, the sensitivity of eigenvectors to damping coefficient cij is shown as:

∂ϕr

∂cij
=

n

∑
s=1

γsϕs (53)

γs =


1

λs−λr

(
ϕis ϕjr + ϕir ϕjs

)
(i 6= j)

1
λs−λr

ϕis ϕjr (i = j)
(54)

If r = s,

γs =

−ϕir ϕjr (i 6= j)

− 1
2 ϕ2

ir (i = j)
(55)

where ϕjs is the jth element of the mode vector of the order s.
In practical engineering applications, it is not possible to obtain all modes, and only

the first m modes are usually used. If the sensitivity matrix is to be calculated by the above
method, there will be a severe modal truncation error, which may not be calculated in this
algorithm. For this reason, Wang [32] has proposed an incomplete modal method, in which
the static modes are used to approximate the contribution of higher modes such that:

∂ϕr

∂pij
=

m

∑
s=1

βs(γs)ϕs + SR, (56)

where βs(γs) means either βs or γs are selected, with βs representing the derivation of the
stiffness coefficient and γs representing the derivation of the damping coefficient. In the
next step, we write:

SR = K−1Fr −
m

∑
s=1

1
λs
ϕT

j Frϕj, (57)

Fr =
∂K
∂pij

+
∂λr

∂pij
C + λr

∂C
∂pij

. (58)

It should be noted that the matrices Hk and Ak obtained in the modal space are
different from those obtained in the physical space. The load identification values in the
previous step are used to calculate the matrices Hk and Ak in the modal space. Therefore,
the order of the load identification step, the state-updating step, and the time-updating
step of the load identification algorithm are changed in the modal space. Furthermore, the
initial value needs to be set to include the augmented state vector and its covariance. The
algorithm can then be summarized as:

(1) Start by initializing x0|0, Px
0|0, and f0;

(2) Set the model error variance matrix Gk and the observation noise variance matrix Rk;
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(3) Update time xk+1|k = xk|k +
∫ tk+1

tk
g(x, fk)dτ;

(4) Locally linearize the state equation to obtain Ak and Bk;
(5) Update the covariance for the state prediction Px

k|k−1 = AkPk−1|k−1AT
k + Gk;

(6) Locally linearize the observation equations Hk and Dk;
(7) Identify the load

Kk = Px
k|k−1HT

k

(
HkPx

k|k−1HT
k + Rk

)−1
,

Mk =
[
DT

k R−1
k (I−HkKk)Dk

]−1
,

fk = MkDT
k R−1

k (I−HkKk)

(
yk −

¯
h(xk|k−1)

)
;

(8) Update the status xk|k = xk|k−1 + Kk

[
yk −

¯
h(xk|k−1)−Dkfk

]
;

(9) Update the state covariance Px
k|k =

{
I + KkDkMkDT

k R−1
k Hk

}
(I−KkHk)Px

k|k−1.

3. Numerical Study

A numerical example is given in this section to study the reliability of the proposed
algorithm in the modal space. Using the proposed method, the error parameters of the
model are corrected, and the load is identified. The considered dynamic system is shown
in Figure 1. The system parameters are given in Tables 1 and 2.
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Table 1. Stiffness values of the springs.

k1 k2 k3 k4

80 N/m 120 N/m 100 N/m 160 N/m

Table 2. Masses of the loads.

m1 m2 m3

2 kg 4 kg 3 kg

Computational acceleration response data were collected for 10 s, and the sampling
interval was 0.01 s. The results showed that the first three natural frequencies of the multi-
degree-of-freedom system were f1 = 0.712 Hz, f2 = 1.513 Hz, and f3 = 1.823 Hz. The
corresponding generalized stiffness matrix was Λ = diag(ω2

1 ω2
2 ω2

3) = diag(20 90.4 131.3).
The normalized mode shapes of the mass were Φ = [ϕ1 ϕ2 ϕ3], ϕ1 = [0.309 0.413 0.206]T ,
ϕ2 = [0.349 0.056 −0.498]T , and ϕ3 = [0.531 −0.277 0.207]T . The excitation position ma-
trix was B f = [0 1 0]T . We considered 25%, 11%, and 5% errors to be applied to the
eigenvalues of the generalized stiffness matrix. Thus, the generalized stiffness matrix was
given as Λ’ = diag(25 80 128). The acceleration responses of the three degrees of freedom
were measured. To further test the robustness of the algorithm, the acceleration responses
were contaminated with a zero-mean white Gaussian noise with the noise-to-signal ratio
being 5%. The parameters to be identified are as follows:
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(1) Augmented state vector x =
[
q1 q2 q3

.
q1

.
q2

.
q3 λ1 λ2 λ3

]T ;
(2) Unknown excitation signal.

The initial value of the augmented state vector was set to
x0|0 =

[
0 0 0 0 0 0 25 80 128

]T . The initial state prediction covariance was

set to Px0|0 = diag[1 1 1 1 1 1 108 108 108]
T . The initial value of the excitation was zero.

The measured noise covariance and the model noise covariance were set to Rk = 102I2,
Gk = 10−1I9, respectively, where Im is the unit matrix. The identification results of the
modal parameters and excitation are shown in Figures 2–7.
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The results in Figures 2–4 showed that the modal parameters converged to stable
values after several iterations and the recognition accuracy was high. The identification
results of the modal parameters and their errors are shown in Table 3, where the identified
eigenvalues were converted into natural frequencies and compared to the exact values.
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Table 3. Modification results of the modal parameters.

Modal Parameter Convergent Value Accurate Value Error (%)

Characteristic value λ1 20.6 20 3
Characteristic value λ2 90.6 90.4 0.2
Characteristic value λ3 130.6 131.26 −0.7

Modal frequency f1(Hz) 0.722 0.712 1.4
Modal frequency f2(Hz) 1.514 1.513 0.06
Modal frequency f3(Hz) 1.818 1.823 -0.2

Figures 5–7 show the load identification results. It can be seen that the error of the
load identification was relatively large in Figure 6. However, the accuracy of the results
improved significantly, as the time progresses after the model parameters converged as
can be seen in Figure 7. Clearly, the accuracy of the model is dependent on the modal
parameters, and once they converge, the load can be identified with good accuracy.

Moreover, to evaluate the accuracy of the identified results, the mean square error
(MSE) and the peak relative error method (PREM) were used. The equations to evaluate
these errors are shown as follows:

MSE(X, Y) =
N

∑
i=1

[Y(i)− X(i)]2
/

N,

PREM(X, Y) =
∣∣∣∣maxY(i)−maxX(i)

maxX(i)

∣∣∣∣× 100%.

Load identification errors for different periods are shown in Table 4. The identified load
matched the applied load with good accuracy, despite the noise in the measurements and
the initially large errors in the identified modal parameters. Furthermore, the converged
modal parameters remained to have some errors and the extended Kalman filter algorithm
itself involves a truncation error resulting from considering a finite number of terms in the
Taylor expansion. However, the proposed algorithm shows good stability and reliability
for modal parameter identification as well as load identification.

Table 4. Error assessment of load identification results in different periods.

Time MSE PREM

0–1 s 8.7 93.4
5–6 s 0.056 18.57

4. Experimental Study

In this section, we aimed to evaluate the accuracy of the proposed algorithm using
experimental validation. Many engineering metal structures can be abstracted into beams
and plates. To this end, a simply supported beam made of steel was used. The acceleration
responses of the beam under random loads were collected, and the modal parameters were
obtained using the Bayesian modal parameter identification method. Furthermore, the
extended Kalman filter in the modal space was used to correct the error parameters and to
identify random loads.

The known parameters included the acceleration response of the simply supported
beam under a random excitation (generated by a modal shaker) and the mass matrix of the
beam. The geometric dimensions and the material properties are shown in Table 5.
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Table 5. Geometric dimensions and material properties of the simply supported beam.

Parameters Value

length a = 0.7 m
Section width b = 0.04 m

Section height h = 0.008 m
Density ρ = 7900 kg/m3

Modulus of elasticity E = 206 GPa
Poisson ratio µ = 0.3

The simply supported beam was meshed into 10 elements, each of which had a length
of 0.07 m and a total of 11 nodes. The beam was supported in the vertical direction at the
nodes of both ends. The acceleration sensors were placed at the other nine sections. The
test setup is shown in Figure 8.
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A random excitation with a frequency bandwidth from 0 to 1500 Hz was then applied
on the beam. The sampling frequency of the sensor was 4096 Hz. The Fourier transforma-
tion of the response signal is shown in Figure 9. Figure 10 shows the Fourier spectra of the
response signals.

It can be clearly seen that the spectrum had six peaks and the adjacent peaks were far
apart. Hence, a single mode analysis can be performed. Furthermore, the seventh mode
frequency was 1821 Hz, which was not considered in the simulation. We then considered
the frequency corresponding to each peak as an initial value of the modal frequency in the
unconstrained numerical optimization equation, which is also called a priori parameter in
the Bayesian theory. The initial assumptions and the frequency bands are shown in Table 6.
The identified modes are shown in Figure 11.
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Table 6. Initial assumptions and initial frequency bands.

Mode Initial Assumption (Hz)
Frequency Band (Hz)

Lower Upper

1 39 38 40
2 150.1 145 155
3 339.2 330 350
4 602.6 590 615
5 931.8 900 960
6 1322.6 1290 1360
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Figure 11. Identification of the first six modes.

Four frequency bands were selected for each order modal analysis. The final modal
frequency and damping ratio were the average values of the four calculations. Table 7
shows the identification values of the modal frequencies and the damping ratios for each
order of the modal analysis compared with the results of the modal tests, as well as the
MAC values of each mode.

Table 7. Identification results of the modal parameters.

Modal
Modal Frequency MPV(Hz) Damping Ratio MPV (%)

MAC
Identification Value Test Value Identification Value Test Value

1 38.12 38.14 0.88 1.08 1
2 149.1 149.13 0.42 0.31 0.997
3 336.4 336.36 0.16 0.21 1
4 597.6 594.73 0.23 0.24 1
5 928.8 920.23 1.04 1.16 0.995
6 1314.2 1300.29 0.8 0.48 0.99

The results shown in Table 7 indicated that the Bayesian modal parameter identifica-
tion method has relatively large errors in the identification of high-order modal frequencies.
Hence, the first two modal frequencies can be considered to be accurate. The third to sixth
order modal frequencies were used as errors parameters to form an extended vector with
the state vector. The extended Kalman filter load identification method in the modal space
was then used to correct these errors parameters and to identify the time-domain load.

The modal error parameter vector was θ =
[
λ3 λ4 λ5 λ6

]
. The extended state

vector was then x =
[
q1 q2 · · · q6

.
q1

.
q2 · · · .

q6 λ3 λ4 λ5 λ6
]
. The un-

known quantities to be identified are as follows:

1. The extended vector;
2. The random excitation.
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The initial values for the state variables were zero, and the initial assumptions for
λ3, λ4, λ5, λ6 were the identified values: λi = (2π fi)

2. The initial error covariance matrix
of the extended state vector was taken to be Px0|0 = diag[1 1 1 1 1 1 1 1 1 1 1 1 108 108 1010].
The initial value of the excitation was zero. The covariance matrices of both the measure-
ment noise and the model noise were chosen to be Rk = 102I6 and Gk = I18, respectively.
The identified parameters are presented in Figures 12 and 13. The identified eigenvalues
and the natural frequencies and the error comparisons are shown in the Table 8. In the first
few iterations of filtering, the identified value had a very large jump, but it converged to
the exact value after several iterations.
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Figure 14 shows the identified load for the first two seconds. Since the identification
result was extremely abnormal in several iterative steps of the initial calculation, the
statistics started from 0.02 s. Figure 15 shows the load from 0.02 to 0.1 s when the parameters
were still being identified. Figure 16 shows the excitation identification results from 0.6 to
0.65 s, during which the modal parameters converged.
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The MSE and the PREM were evaluated for the time span from 0.02 to 0.1 s, where the
identification algorithm is still in the process of the model parameters updating. The errors
measurements were then evaluated again for the time span from 0.6 to 0.65 s, when the
load identification started to use converged parameters. The errors for both time spans are
displayed in Table 9. The errors showed a significant improvement in the error once the
algorithm has converged. The small errors for the time span from 0.6 to 0.65 s showed a
good accuracy of the proposed algorithm in capturing the dynamic load.

Table 9. Statistical errors of load identification results in different periods.

Periods (s) MSE PREM

0.02–0.5 3.6 174.4
0.6–0.65 1.34 26.7

5. Conclusions

In this paper, we proposed an algorithm for identifying the modal parameters and
the dynamic load of an unspecified metal system using the system measured response.
We used the Bayesian FFT to identify the modal parameters under the ambient excitation.
Hence, the prior parameters of the modal frequency were obtained from the FFT spectrum
of the measured response. Then, the modal parameters were refined using numerical
unconstrained optimization. It should be noted that the resonance frequency band needs
to be selected manually. The dynamic load identification method based on the extended
Kalman filter was firstly derived in the modal space.

The results obtained from the numerical test of a 3-DOFs system and then an ex-
periment of a random load applied on a simply supported steel beam demonstrated the
advantages of the proposed method in identifying the applied dynamic loads. The main
conclusions are as follows:

(1) The modal parameters identified by the single-mode identification method had good
accuracy. They were the initial values of the subsequent algorithm and can be further
improved by iteration.

(2) At the initial stage of load identification, the modal parameters were still in the
progress of revision and did not converged. As a result, the error of the load was large.
After many iterations, the error modal parameters converged to a stable value, and
the recognition accuracy of the load was high.
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(3) The algorithm is suitable for large-scale structures with discrete model errors. It can
reduce the amount of calculation while ensuring the calculation accuracy in the modal
space compared with the methods in the time domain. It is simple, reliable and easy
to be coded.
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