Very High Cycle Fatigue Behavior of Austenitic Stainless Steels with Different Surface Morphologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Austenitic Stainless Steels
2.2. Experimental Methods
3. Results
3.1. Surface Morphology
3.2. Fatigue Behavior of Stable AISI 904L with Different Surface Morphologies
3.3. Fatigue Behavior of Metastable AISI 347 with Different Surface Morphologies
4. Conclusions
- Cryogenic turning of stable AISI 904L (SSLt035) and metastable AISI 347 (MSLt035) results in higher roughness (Rz~11 µm) and tensile residual stresses at the specimen’s surface. Moreover, a nanocrystalline layer of a few micrometers under the surface was formed in both materials. In the metastable AISI 347, phase transformation from austenite to martensite was observed additionally. Polishing of the cryogenically turned metastable austenitic specimens (MSLp) leads to very low average roughness (Rz < 1 µm) values and compressive residual stresses at the surface.
- Fatigue tests of conventionally turned and polished specimens with purely austenitic microstructure in the initial state leads to decreasing S-N curve of stable AISI 904L (SSLp) in the VHCF regime. With increasing number of cycles to failure, a change from surface to subsurface crack initiation was observed. Opposed to AISI 904L, the AISI 347 (ASLp) specimens only failed in the HCF regime.
- Fatigue tests at cryogenic turned specimens show shorter lifetime for specimens of stable AISI 904L (SSLt015 and SSLt035) and a lifetime extension for specimen of metastable AISI 347 (MSLt035) even in case of significantly higher surface roughness in comparison to conventionally turned and finally polished samples. The increase in fatigue strength of the cryogenic turned AISI 347 is mainly caused by the machining induced martensitic surface layers.
- In spite of its smaller monotonic strength, the metastable AISI 347 (MSLt035) reaches a higher HCF and VHCF strength after surface modification by cryogenic turning.
- The increase of material strength due to pre-deformation and martensitic formation in specimen volume of metastable AISI 347 (MSLdt035) was successful; however, in the VHCF regime a drop in S-N curve was observed.
- The best fatigue properties are achieved with specimens with surfaces polished after cryogenic turning of metastable AISI 347 (MSLp).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, J.K.L.; Shek, C.H.; Lo, K.H. Stainless Steels: An Introduction and Their Recent Developments; Bentham Science Publishers, eBook: United Arab Emirates, 2012; ISBN 1608053059. [Google Scholar]
- Smaga, M.; Boemke, A.; Daniel, T.; Klein, M.W. Metastability and fatigue behavior of austenitic stainless steels. MATEC Web Conf. 2018, 165, 4010. [Google Scholar] [CrossRef]
- de Bellefon, G.M.; van Duysen, J.C. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C. J. Nucl. Mater. 2016, 475, 168–191. [Google Scholar] [CrossRef] [Green Version]
- Carstensen, J.V.; Mayer, H.; Brønsted, P. Very high cycle regime fatigue of thin walled tubes made from austenitic stainless steel. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 837–844. [Google Scholar] [CrossRef]
- Lago, J.; Jambor, M.; Nový, F.; Bokůvka, O.; Trško, L. Giga-cycle Fatigue of AISI 316L After Sensitising of Structure. Procedia Eng. 2017, 192, 528–532. [Google Scholar] [CrossRef]
- Takahashi, K.; Ogawa, T. Evaluation of Giga-cycle Fatigue Properties of Austenitic Stainless Steels Using Ultrasonic Fatigue Test. J. Solid Mech. Mater. Eng. 2008, 2, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Grigorescu, A.; Hilgendorff, P.-M.; Zimmermann, M.; Fritzen, C.-P.; Christ, H.-J. Fatigue behaviour of austenitic stainless steels in the VHCF regime. In Fatigue of Materials at Very High Numbers of Loading Cycles: Experimental Techniques, Mechanisms, Modeling and Fatigue Life Assessment; Christ, H.-J., Ed.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2018; pp. 49–71. ISBN 978-3-658-24531-3. [Google Scholar]
- Grigorescu, A.C.; Hilgendorff, P.M.; Zimmermann, M.; Fritzen, C.P.; Christ, H.J. Cyclic deformation behavior of austenitic Cr–Ni-steels in the VHCF regime: Part I—Experimental study. Int. J. Fatigue 2016, 93, 250–260. [Google Scholar] [CrossRef]
- Cherif, A.; Pyoun, Y.; Scholtes, B. Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) on Residual Stress State and Fatigue Strength of AISI 304. J. Mater. Eng. Perform. 2010, 19, 282–286. [Google Scholar] [CrossRef]
- Meyer, D. Cryogenic deep rolling—An energy based approach for enhanced cold surface hardening. CIRP Ann.—Manuf. Technol. 2012, 61, 543–546. [Google Scholar] [CrossRef]
- Aurich, J.C.; Mayer, P.; Kirsch, B.; Eifler, D.; Smaga, M.; Skorupski, R. Characterization of deformation induced surface hardening during cryogenic turning of AISI 347. CIRP Ann.—Manuf. Technol. 2014, 63, 65–68. [Google Scholar] [CrossRef]
- Mayer, P.; Kirsch, B.; Müller, C.; Hotz, H.; Müller, R.; Becker, S.; von Harbou, E.; Skorupski, R.; Boemke, A.; Smaga, M.; et al. Deformation induced hardening when cryogenic turning. CIRP J. Manuf. Sci. Technol. 2018, 23, 6–19. [Google Scholar] [CrossRef]
- Smaga, M.; Skorupski, R.; Eifler, D.; Beck, T. Microstructural characterization of cyclic deformation behavior of metastable austenitic stainless steel AISI 347 with different surface morphology. J. Mater. Res. 2017, 32, 4452–4460. [Google Scholar] [CrossRef]
- Smaga, M.; Skorupski, R.; Mayer, P.; Kirsch, B.; Aurich, J.C.; Raid, I.; Seewig, J.; Man, J.; Eifler, D.; Beck, T. Influence of surface morphology on fatigue behavior of metastable austenitic stainless steel AISI 347 at ambient temperature and 300 °C. Procedia Struct. Integr. 2017, 5, 989–996. [Google Scholar] [CrossRef]
- Boemke, A.; Smaga, M.; Beck, T. Influence of surface morphology on the very high cycle fatigue behavior of metastable and stable austenitic Cr-Ni steels. MATEC Web Conf. 2018, 165, 20008. [Google Scholar] [CrossRef]
- Koster, M. Ultraschallermüdung des Radstahls R7 im Very-High-Cycle-Fatigue (VHCF)-Bereich. Ph.D. Thesis, Technische Universität, Kaiserslautern, Germany, 2011. [Google Scholar]
- Man, J.; Smaga, M.; Kuběna, I.; Eifler, D.; Polák, J. Effect of metallurgical variables on the austenite stability in fatigued AISI 304 type steels. Eng. Fract. Mech. 2017, 185, 139–159. [Google Scholar] [CrossRef]
- Eichelmann, G.H.; Hull, T.C. The effect of composition on the temperature of spontaneous transformation of austenite to martensite in 18-8 type stainless steel. Trans. Am. Soc. Met. 1953, 45, 77–104. [Google Scholar]
- Angel, T. Formation of Martensite in Austenitic Stainless Steels—Effects of Deformation, Temperature, and Composition. J. Iron Steel Inst. 1954, 177, 165–174. [Google Scholar]
- Martin, S.; Fabrichnaya, O.; Rafaja, D. Prediction of the local deformation mechanisms in metastable austenitic steels from the local concentration of the main alloying elements. Mater. Lett. 2015, 159, 484–488. [Google Scholar] [CrossRef]
- Smaga, M.; Boemke, A.; Daniel, T.; Skorupski, R.; Sorich, A.; Beck, T. Fatigue Behavior of Metastable Austenitic Stainless Steels in LCF, HCF and VHCF Regimes at Ambient and Elevated Temperatures. Metals 2019, 9, 704. [Google Scholar] [CrossRef] [Green Version]
- Daniel, T.; Smaga, M.; Beck, T. Cyclic deformation behavior of metastable austenitic stainless steel AISI 347 in the VHCF regime at ambient temperature and 300 °C. Int. J. Fatigue 2022, 156, 106632. [Google Scholar] [CrossRef]
- Hornbach, D.J.; Prevéy, P.S.; Mason, P.W. X-ray diffraction charcterization of the residual stress and hardness distributions in induction hardened gears. In Proceedings of the First International Conference on Induction Hardened Gears and Critical Components, Indianapolis, IN, USA, 15–17 May 1995; pp. 69–76. [Google Scholar]
- Talonen, J.; Aspegren, P.; Hanninen, H. Comparison of different methods for measuring strain induced alpha-martensite content in austenitic steels. Mater. Sci. Technol. 2004, 20, 1506–1512. [Google Scholar] [CrossRef]
- M’Saoubi, R.; Outeiro, J.C.; Changeux, B.; Lebrun, J.L.; Morão Dias, A. Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels. J. Mater. Process. Technol. 1999, 96, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Chai, G.; Zhou, N. Study of crack initiation or damage in very high cycle fatigue using ultrasonic fatigue test and microstructure analysis. Ultrasonics 2013, 53, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Schwerdt, D.; Pyttel, B.; Berger, C. Fatigue strength and failure mechanisms of wrought aluminium alloys in the VHCF-region considering material and component relevant influencing factors. Int. J. Fatigue 2011, 33, 33–41. [Google Scholar] [CrossRef]
- Khan, M.K.; Wang, Q.Y. Investigation of crack initiation and propagation behavior of AISI 310 stainless steel up to very high cycle fatigue. Int. J. Fatigue 2013, 54, 38–46. [Google Scholar] [CrossRef]
- Müller-Bollenhagen, C.; Zimmermann, M.; Christ, H.J. Very high cycle fatigue behaviour of austenitic stainless steel and the effect of strain-induced martensite. Int. J. Fatigue 2010, 32, 936–942. [Google Scholar] [CrossRef]
- Müller-Bollenhagen, C.; Zimmermann, M.; Christ, H.J. Adjusting the very high cycle fatigue properties of a metastable austenitic stainless steel by means of the martensite content. Procedia Eng. 2010, 2, 1663–1672. [Google Scholar] [CrossRef]
C | N | Cr | Ni | Nb | Mo | Cu | Mn | |
---|---|---|---|---|---|---|---|---|
AISI 904L (stable) | 0.03 | 0.06 | 19.92 | 24.34 | 0.03 | 4.22 | 1.42 | 0.95 |
AISI 347 (metastable) | 0.02 | 0.02 | 17.19 | 9.44 | 0.39 | 0.23 | 0.11 | 1.55 |
Young’s modulus in GPa | Rp0.2 in MPa | UTS in MPa | Md30,Angel in °C | Ms,Eichelmann in °C | SFE in mJ/m2 | ξ in FE-% | |
---|---|---|---|---|---|---|---|
AISI 904L (stable) | 187 | 307 | 631 | −220 | −1156 | 54 | 0 |
AISI 347 (metastable) | 179 | 225 | 603 | 46 | -87 | 26 | 15 |
AISI 904L | Stable Surface Layer polished | SSLp |
Stable Surface Layer turned with f = 0.15 mm/rev | SSLt015 | |
Stable Surface Layer turned with f = 0.35 mm/rev | SSLt035 | |
AISI 347 | Austenitic Surface Layer polished | ASLp |
Martensitic Surface Layer polished | MSLp | |
Martensitic Surface Layer turned with f = 0.15 mm/rev | MSLt015 | |
Martensitic Surface Layer turned with f = 0.35 mm/rev | MSLt035 | |
Martensitic Surface Layer of pre-deformed and finial turned with f = 0.35 mm/rev | MSLdt035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smaga, M.; Boemke, A.; Eifler, D.; Beck, T. Very High Cycle Fatigue Behavior of Austenitic Stainless Steels with Different Surface Morphologies. Metals 2022, 12, 1877. https://doi.org/10.3390/met12111877
Smaga M, Boemke A, Eifler D, Beck T. Very High Cycle Fatigue Behavior of Austenitic Stainless Steels with Different Surface Morphologies. Metals. 2022; 12(11):1877. https://doi.org/10.3390/met12111877
Chicago/Turabian StyleSmaga, Marek, Annika Boemke, Dietmar Eifler, and Tilmann Beck. 2022. "Very High Cycle Fatigue Behavior of Austenitic Stainless Steels with Different Surface Morphologies" Metals 12, no. 11: 1877. https://doi.org/10.3390/met12111877
APA StyleSmaga, M., Boemke, A., Eifler, D., & Beck, T. (2022). Very High Cycle Fatigue Behavior of Austenitic Stainless Steels with Different Surface Morphologies. Metals, 12(11), 1877. https://doi.org/10.3390/met12111877