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Abstract: In this study, we formulate a mechanical model of spall fracture of copper, which describes
both solid and molten states. The model is verified, and its parameters are found based on the data
of molecular dynamics simulations of this process under ultrahigh strain rate of tension, leading
to the formation of multiple pores within the considered volume element. A machine-learning-
type Bayesian algorithm is used to identify the optimal parameters of the model. We also analyze
the influence of the initial size distribution of pores or non-wettable inclusions in copper on the
strain rate dependence of its spall strength and show that these initial heterogeneities explain the
existing experimental data for moderate strain rates. This investigation promotes the development of
atomistically-based machine learning approaches to description of the strength properties of metals
and deepens the understanding of the spall fracture process.

Keywords: dynamic tension; spall strength; strain rate dependence; pores and inclusions; solid and
molten copper; molecular dynamics; fracture model; Bayesian identification of parameters

1. Introduction

Plastic deformation and fracture of metals substantially influence their performance as
structural materials, including various dynamic-oriented applications [1–3]. Understand-
ing of the physical mechanisms of dynamic fracture, allowing its mechanical description, is
one of keystones in the formulation of the constitutive equations of metals. Application
of molecular dynamics (MD) simulations allows one to consider atomistic details of the
initiation and development of various defects [3–7] and to gain a large amount of infor-
mation complementary to the experimental data. MD simulations are directly applicable
to very small spatial and temporal scales, which are on the verge of the modern experi-
mental techniques with ultra-short laser-driven shocks [8–11] and far beyond the typical
conditions of metal exploitation. Conversely, using of MD-generated data and machine
learning methods for verification and parameterization of mechanical models [12–14] is
a prospective route to extrapolate MD data to the scales of interest. In the present study
we develop this approach regarding the spall fracture of copper. Although MD-informed
models are the most promising for new and complex materials, the approach itself requires
examination for the case of a well-studied metal with known experimental data, such as
copper, for which a plenty of dynamic experiments were previously performed [15–21].

The spall fracture [22–25] of solid metals occurs at reflection of a shock wave from
a free surface or an interface with a material with lower mechanical impedance. A zone
of dynamic tension is formed at a certain distance from this free surface/interface, which
leads to the formation, growth, and coalescence of voids or cracks, and the spallation of a
layer of material by this reflected shock wave. A similar phenomenon occurs in the case of
metal melts [26–29], although it leads to ejection of multiple drops (micro-spall [30]) rather
than spallation of a solid layer. Direct MD simulation of the whole spallation process is
often used [4,30–32], but here we intend to develop a fracture model and, therefore, we
consider the stage of uniform tension of a representative volume element (RVE). It allows
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us to consider orders-of-magnitude lower strain rates and large spatial scales in comparison
with the simulation of the spatial non-uniform process of the shock wave reflection in the
direct MD approach. Our MD data for the representative volume element are generalized
in the form of fracture model, which can be incorporated in the corresponding continuum
mechanics code (hydrocode) intended to model the shock wave process.

2. Materials and Methods
2.1. Problem Statement for MD Simulations

Classical molecular dynamics simulations with LAMMPS [33] software package (San-
dia National Laboratories, Albuquerque, NM, USA), version 12 Dec 18, and extensively
tasted and widely used interatomic potential [34] of EAM type (embedded atom method)
are adopted to study the dynamic tensile fracture of copper. Additional verification of this
interatomic potential is performed in the present work by comparison with the experimen-
tal data on the spall strength of copper at ultrahigh strain rates [15–17].

We consider single crystals at room temperature (300 K) and elevated temperature
(1000 K), in addition to copper melt at 2000 K. To study the growth of existing voids, small
MD systems of 70 × 70 × 70 lattice parameters (about 25 nm3) with single spherical pores
in the center are simulated; the following initial radii of pores are considered: 5 lattice
parameters (about 1.9 nm) with the porosity 0.0017, 10 lattice parameters (about 3.7 nm)
with the porosity of 0.013, and 20 lattice parameters (about 7.3 nm) with the porosity of 0.1.
The number of atoms in these small systems varies from 1.37 to 1.23 million depending
on the porosity. In all cases, a spherical repulsive force field is placed inside the pore by
the command “indent” of LAMMPS, like in [35]. This force field mimics a non-wettable
inclusion and prevents the pore collapse in the case of melt. In the case of solid state, the
crystal remains perfect outside the pore.

To study the void nucleation, we consider uniform perfect single crystals and uniform
melt without preset pores or inclusions. The moderate MD system of 150× 150× 150 lattice
parameters (about 55 nm3, 13.5 million atoms) and large MD system of 200 × 200 × 200
lattice parameters (about 73 nm3, 32 million atoms) are simulated to provide a statistically
sound number of nucleated voids, like in [35,36].

Prior to tension, the MD system is held at the test temperature and zero stresses
during 50 ps in the case of solid copper. The temperature and stresses are controlled by the
Nose–Hoover thermostat and barostat [37], respectively. In the case of melt, to provide the
complete melting, the system is initially heated to 3000 K during 10 ps, and then relaxed at
2000 K during 40 ps. After this preparation, a uniform hydrostatic tension is applied with
the volumetric strain rate of 1 ns−1 by rescaling the atomic coordinates using the “deform”
command of LAMMPS. The temperature is kept constant during the tension by means of
the Nose–Hoover thermostat [37]. The constant temperature in MD simulations simplifies
the analysis of the obtained results and calibration of the fracture model, while the inherent
change of temperature at loading can be considered during the following application of the
fracture model.

The obtained atomic configurations are analyzed by means of the pore searching
algorithm [7,38], which allows one to trace in time both the total volume fraction of voids
(porosity) and the number and sizes of individual voids in the system. The pressure
averaged over the system volume is calculated by means of the virial theorem [39]. For
visualization of the atomic configurations, we use OVITO program [40] with the embedded
“Construct surface mesh” algorithm [41] and “Dislocation extraction algorithm” (DXA) [42].
The examples of the visualized evolution of the uniform solid copper and copper melt
during tension are shown in Figures 1 and 2, respectively. The tensile fracture of a uniform
material starts from the nucleation of voids due to small-scale (thermal) fluctuations. In the
case of a solid, as in Figure 1, these voids are coated by dislocations, which motion provides
the plastic growth of voids. Most of the pores grow under negative pressure, while the
smallest ones collapse after the pressure relaxation, which is the most pronounced in the
case of a melt, Figure 2c, and was discussed earlier [7,38,43].
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Figure 1. MD simulations of the dynamic tensile fracture of copper at room temperature (300 K): (a) 
Homogeneous nucleation of voids coated by dislocations; (b) Abrupt plastic growth of voids with 
the dislocation coats indicating zones of plastic flow around the voids; (c) Intersection of the plastic 
flow zones. The void surfaces and dislocation lines are shown; MD system with 13.5 million atoms. 
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Figure 2. MD simulations of the dynamic tensile fracture of copper melt at 2000 K: (a) Homogeneous 
nucleation of multiple voids; (b) Abrupt viscous growth of voids; (c) Collapse of small voids and 
growth of large ones after the relaxation of pressure. The void surfaces and copper atoms with in-
creased energy are shown; MD system with 13.5 million atoms. 

The evolution of pressure in a uniform metal under tension is compared for the cases 
of moderate and large MD systems in Figure 3a, while Figure 3b compares the radii of the 
largest voids for all test temperatures. The monotonous decrease in pressure, Figure 3a, is 
interrupted by the nucleation and fast growth of voids, Figure 3b, which leads to the pres-
sure relaxation and the following oscillations about some negative level much less than 
the tensile strength. The tensile strength is the maximal absolute value of the negative 
pressure. Figure 3a demonstrates that the mechanical response of both MD systems is al-
most the same, which means that the system size is large enough for the considered strain 
rate to reproduce the statistics of fracture process, and the statistical scatter is negligible 
for the system. At the same time, Figure 3b demonstrates that the behaviors of individual 
voids differ, because it is inherently random. In particular, a sharp increase in radius of a 
void indicates the random process of coalescence with smaller voids. This brief analysis 
substantiates the choice of the size of MD systems. 

Figure 1. MD simulations of the dynamic tensile fracture of copper at room temperature (300 K):
(a) Homogeneous nucleation of voids coated by dislocations; (b) Abrupt plastic growth of voids with
the dislocation coats indicating zones of plastic flow around the voids; (c) Intersection of the plastic
flow zones. The void surfaces and dislocation lines are shown; MD system with 13.5 million atoms.
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Figure 2. MD simulations of the dynamic tensile fracture of copper melt at 2000 K: (a) Homogeneous
nucleation of multiple voids; (b) Abrupt viscous growth of voids; (c) Collapse of small voids and
growth of large ones after the relaxation of pressure. The void surfaces and copper atoms with
increased energy are shown; MD system with 13.5 million atoms.

The evolution of pressure in a uniform metal under tension is compared for the cases
of moderate and large MD systems in Figure 3a, while Figure 3b compares the radii of the
largest voids for all test temperatures. The monotonous decrease in pressure, Figure 3a,
is interrupted by the nucleation and fast growth of voids, Figure 3b, which leads to the
pressure relaxation and the following oscillations about some negative level much less
than the tensile strength. The tensile strength is the maximal absolute value of the negative
pressure. Figure 3a demonstrates that the mechanical response of both MD systems is
almost the same, which means that the system size is large enough for the considered strain
rate to reproduce the statistics of fracture process, and the statistical scatter is negligible
for the system. At the same time, Figure 3b demonstrates that the behaviors of individual
voids differ, because it is inherently random. In particular, a sharp increase in radius of a
void indicates the random process of coalescence with smaller voids. This brief analysis
substantiates the choice of the size of MD systems.
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2.2. Fracture Model

The general framework of the fracture model is taken from the previous publica-
tions [35,36], but here we use, in the case of solid, a simpler model for the plastic strain rate.
This simplification is partially compensated by a more efficient procedure of parameter
identification described in Section 2.3. Let us consider the used system of equations.

Like in the MD, we consider the RVE as a part of periodically repeated material. The
total volume V of the RVE increases with the constant rate:

V = V0

(
1 +

.
εt
)

(1)

where
.
ε is the engineering (volumetric) strain rate, which is equal to 1 ns−1 in the case

of comparison with the MD and varies in the case of investigation of the strain rate
dependence. We approximate all pores as spheres with radii Ri, and the total volume of
pores in the RVE can be calculated as follows:

Vp =
N

∑
i=1

4π

3
R3

i , (2)

where N is the number of pores in the RVE; the porosity is equal to ϕ = Vp/V. The
current volume of the condensed phase Vs = V − Vp and its initial value Vs0 allows us
to calculate the pressure inside the condensed phase. Analysis of MD data shows that
the dependence P(Vs) at a constant temperature T can be approximated by the following
third-order polynomial:

P = −K1

(
Vs

Vs0
− 1
)
+ K2

(
Vs

Vs0
− 1
)2
− K3

(
Vs

Vs0
− 1
)3

, (3)

where the constants K1, K2 and K3 are determined by fitting to the elastic part of the pressure-
strain curves, as in Figure 3a, before the pressure relaxation at the fracture beginning. The
pressure-volume relationship P(Vs) determines the isothermal bulk modulus

K = Vs

(
∂P
∂Vs

)
T
=

[
K1 − 2K2

(
Vs

Vs0
− 1
)
+ 3K3

(
Vs

Vs0
− 1
)2
](

Vs

Vs0

)
. (4)

Equations (3) and (4) allow us to calculate the shear modulus

G =
3
2
·1− 2µ

1 + µ
K, (5)
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where µ is the Poisson’s coefficient, and the volume-averaged pressure

〈P〉 = Vs

V
P, (6)

which should be compared with the volume-averaged pressure from the MD. The elastic
constants determined from the MD for the investigated temperatures are collected in Table 1.
For instance, zero Poisson’s coefficient µ = 0 gives us the case of molten metal.

Table 1. Elastic constants: K1, K2, and K3 are the coefficients of the pressure-volume relation deter-
mined with the used interatomic potential proposed in [34]; µ is the Poisson’s coefficient.

Temperature K1 (GPa) K2 (GPa) K3 (GPa) µ

300 K 138 333 192 0.337
1000 K 110 356 323 0.337
2000 K 58 256 517 0

The fracture model predicts the evolution of the number and size of voids. The
following equation describing the variation of the current void radius is derived in [35] and
valid for both viscous fluid and elastic-plastic medium:

Ri
..
Ri +

3
2

.
R

2
i +

4η
ρ

( .
Ri
Ri

+
.
P

3K

)
+ R2

i

[ ..
P

3K −
5
2

( .
P

3K

)2
]

= 1
ρ

[
−P
(

1 + 4G
3K

)
− 4G (Ri−Rp,i)

Ri
− 2γ

Ri

]
,

(7)

where Rp,i is the plastically stabilized radius for i-th void, ρ is the mass density, γ is the
surface tension coefficient, and η is the coefficient of viscosity. In the case of viscous fluid
(melt) one must use G = 0, which excludes the elastic counteraction to the expansion
of void; specifically, for incompressible fluid K → 0 , Equation (7) transforms into the
Rayleigh–Plesset equation [44,45]. In the elastic-plastic case (solid metal), one can neglect
the viscosity η = 0, but must calculate the plastically stabilized radius Rp,i, which the pore
will have in the absence of applied pressure and surface tension. The difference between
the current radius Ri and the plastically stabilized one Rp,i determines the elastic part of
deformation and the corresponding shear stress in the pore vicinity [35]:

σi = −P
G
K
− 3G

Ri − Rp,i

Ri
. (8)

This shear stress provides plastic flow and variation of Rp,i. Previously, we used
explicit dislocation kinetics-based models of the plastic flow [35,36]. Here we employ the
following equation taken from [46] for the plastic strain rate in the vicinity of i-th pore:

.
wi =

1
2Gτ

[
σi −

Y
2
·sign(σi)

]
·H
(
|σi| −

Y
2

)
, (9)

where H(σ) is the Heaviside step function. Equation (9) expresses the modified Maxwell
relaxation model with accounting of the yield strength Y like in [35,46]. In contrast to [35,46],
both the yield strength Y and the relaxation time τ are treated as constants and directly
optimized to reach the correspondence with the MD, as described in Section 2.3. This
simplification can be eliminated in the future works, but here we try to use the simplest
possible model of plasticity and to concentrate on the optimal parameter fitting. Estimating
the linear scale, on which the plastic flow develops around a void, as the minimum from the
pore radius Ri and the average distance 3

√
V/N between the pore centers, we can calculate

the rate of the plastic growth as follows:

Rp,i = min
{

Ri,
3
√

V/N
}
· .
wi. (10)



Metals 2022, 12, 1878 6 of 15

The remaining part of the model includes the description of the homogeneous nu-
cleation of pores and activation of pores on the pre-existing heterogeneities. At negative
pressure P < 0, the critical radius of void, which can mechanically grow, is equal to
Rc = −2γ/P. The work required for the homogeneous nucleation of voids can be ex-
pressed as follows:

Wc =
16π

3
γ3

P2 + Wp, (11)

where the first term in the right-hand part is the work of surface tension partially com-
pensated by the work of the negative pressure favoring the nucleation, while the second
part, Wp, is the plastic work of void nucleation in solids. We neglected this plastic work
in the previous works [35,36], but here we estimate its value as discussed in Section 2.3.
According to [36], the moments tN+1 of nucleation of the next new void can be determined
from the following integral criterion:

tN+1∫
tN

Vs

( cs

a4

)
· exp

(
− Wc

kBT

)
dt = 1, (12)

where kB is the Boltzmann constant, cs =
√

K/ρ is the bulk sound velocity, and a is the
mean interatomic distance.

Activation of a pore on a pre-existing heterogeneity occurs when the critical radius
Rc becomes smaller than the size of heterogeneity. According to [35], the moments of void
activation t∗N+1 can be also determined from the integral criterion:

t∗N+1∫
t∗N

Vs

(
dn
dR

)∣∣∣∣
R=Rc

∣∣∣ .
Rc

∣∣∣·H(− .
Rc

)
dt = 1, (13)

where the function (dn/dR) is the size distribution of heterogeneities, it means distribution
of spherical heterogeneities over radius R. The following size distributions are considered
here: The monodisperse ensemble of pores or inclusions with the radius of R0 and total
concentration of n0 (

dn
dR

)
= n0δ(R− R0), (14)

where δ(R) is the Dirac delta function, the exponential distribution(
dn
dR

)
=

n0

R0
exp

(
− R

R0

)
, (15)

which also has two parameters, R0 and n0, and the power-law distribution(
dn
dR

)
= n0RA−1

0 (A− 1)R−A (16)

with an additional parameter A.
The presented equations constitute the complete model of the spall fracture and related

pressure relaxation, which allows one to trace evolution of individual voids in addition
to the average parameters. The time-differential equations are integrated by means of the
explicit Euler scheme with small enough time step, which depends on the considered strain
rate, and it is as small as 1 fs for the strain rate of 1 ns−1 considered in the MD.

2.3. Bayesian Identification of Parameters
A machine-learning-type Bayesian algorithm is used to identify the optimal parame-

ters of the model. We have MD results as the training data set, which includes two runs
for uniform material with different system size and three runs for heterogeneous material
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with non-wettable inclusions for each considered temperature. The trial sets of model
parameters are randomly seeded inside a reasonable range. Probability of each set of
parameters is calculated as a degree of correspondence of the model to the training data:

p =
k0

∏
k=1

exp

−0.1

(P− PMD

∆PMD

)2

+

(
ϕ− ϕMD

∆ϕMD

)2

+

(
N − NMD

∆NMD

)2

+

(
R1 − RMD

1
∆RMD

1

)2


k

 , (17)

where ∆PMD, ∆ϕMD, ∆NMD, and ∆RMD
1 are the ranges of the corresponding values from the MD,

and k0 is the number of training points from the MD. The comparison is performed with a step of
10−3 of engineering strain consequently for all MD runs (two MD systems for homogeneous copper
and three MD systems with different size of non-wettable inclusions) at the same temperature. Thus,
the total number k0 of comparison points reaches about 1500. This procedure allows one to calculate
the probability distribution in the space of model parameters; an example of such distribution for
1000 K is presented in Figure 4, while Figures S1 and S2 in Supplementary Materials represent similar
distributions for 300 K and 2000 K, respectively. The areas of large probability indicate the most
suitable parameters, and an arbitrary set of parameters from these areas can be used, because a little
variation of them does not significantly influence the model correspondence to the MD. The absolute
value of probability is not indicated in Figures 4 , S1 and S2, since it does not make sense due to the
lack of normalization in Equation (17). The chosen parameters for all test temperatures are collected
in Table 2. Relatively narrow areas of high probability in Figure 4 mean that the used composition of
the training data from the MD is enough for unambiguous determination of the model parameters,
which holds for the surface tension and relaxation time. Concurrently, stripes along the yield strength
and the plastic work of nucleation means that the model results are less sensitive to these parameters.

Metals 2022, 12, x FOR PEER REVIEW 7 of 16 
 

 

2.3. Bayesian Identification of Parameters 
A machine-learning-type Bayesian algorithm is used to identify the optimal param-

eters of the model. We have MD results as the training data set, which includes two runs 
for uniform material with different system size and three runs for heterogeneous material 
with non-wettable inclusions for each considered temperature. The trial sets of model pa-
rameters are randomly seeded inside a reasonable range. Probability of each set of param-
eters is calculated as a degree of correspondence of the model to the training data: 

𝑝 = ෑ exp ൭−0.1 ቆ𝑃 − 𝑃MD∆𝑃MD ቇଶ + ቆ𝜑 − 𝜑MD∆𝜑MD ቇଶ + ቆ𝑁 − 𝑁MD∆𝑁MD ቇଶ + ቆ𝑅ଵ − 𝑅ଵMD∆𝑅ଵMD ቇଶ൩൱బ
ୀଵ  , (17) 

where ∆𝑃MD, ∆𝜑MD, ∆𝑁MD, and ∆𝑅ଵMD are the ranges of the corresponding values from 
the MD, and 𝑘 is the number of training points from the MD. The comparison is per-
formed with a step of 10−3 of engineering strain consequently for all MD runs (two MD 
systems for homogeneous copper and three MD systems with different size of non-wetta-
ble inclusions) at the same temperature. Thus, the total number 𝑘 of comparison points 
reaches about 1500. This procedure allows one to calculate the probability distribution in 
the space of model parameters; an example of such distribution for 1000 K is presented in 
Figure 4, while Figures S1 and S2 in Supplementary Materials represent similar distribu-
tions for 300 K and 2000 K, respectively. The areas of large probability indicate the most 
suitable parameters, and an arbitrary set of parameters from these areas can be used, be-
cause a little variation of them does not significantly influence the model correspondence 
to the MD. The absolute value of probability is not indicated in Figures 4, S1 and S2, since 
it does not make sense due to the lack of normalization in Equation (17). The chosen pa-
rameters for all test temperatures are collected in Table 2. Relatively narrow areas of high 
probability in Figure 4 mean that the used composition of the training data from the MD 
is enough for unambiguous determination of the model parameters, which holds for the 
surface tension and relaxation time. Concurrently, stripes along the yield strength and the 
plastic work of nucleation means that the model results are less sensitive to these param-
eters. 

 
Figure 4. Bayesian identification of parameters: Probability distributions in the space of model pa-
rameters for solid copper at the increased temperature of 1000 K; 80,000 parameter points. Subfig-
ures show distributions along the following pairs of parameters: (a) the yield strength and the re-
laxation time; (b) the surface tension and the plastic work of nucleation. 

  

Figure 4. Bayesian identification of parameters: Probability distributions in the space of model pa-
rameters for solid copper at the increased temperature of 1000 K; 80,000 parameter points. Subfigures
show distributions along the following pairs of parameters: (a) the yield strength and the relaxation
time; (b) the surface tension and the plastic work of nucleation.

Table 2. Identified parameters of the fracture model (copper): γ is the surface tension coefficient; Wp

is the plastic work of void nucleation in solids; Y is the yield strength; τ is the relaxation time; η is the
viscosity coefficient.

Temperature γ (J/m2) Wp (eV) Y (GPa) τ (ps) η (Pa × s)

300 K 1.0 0.08 1.8 6 −
1000 K 1.1 0.08 1.8 2.7 −
2000 K 0.65 − − − 3·10−3
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3. Results
3.1. Compilance of the Model and the MD

Here we consider the case of solid copper at the increased temperature of 1000 K. The fit for the
case of room temperature and for the case of melt is on the same level or better; Figures S3 and S4 for
300 K, as well as Figures S5 and S6 for 2000 K are collected in the Supplementary Materials.

Figure 5 displays the comparison for copper with non-wettable inclusions of three different sizes.
In this case, the fracture process is reduced to the activation and growth of voids on the inclusions,
and there is no homogeneous nucleation of voids. Voids start to grow at a certain level of negative
pressure, which decreases in absolute value with an increase in the radius of inclusion equal to the
initial radius of void, as in Figure 5b,d,f. The initial fast growth of voids leads to a rapid relaxation
of pressure, Figure 5a,c,e, while the following slower growth mostly compensates the expansion of
the RVE. The model adequately reproduces all main stages of the fracture development, while it
somewhat overestimates the rate of void growth after its activation and, consequently, underestimates
the achieved level of negative pressure. Note that a small difference in the void radius, Figure 5b,d,f,
leads to a significant difference in pressure, Figure 5a,c,e.
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Figure 5. Comparison of the model and MD data for the case of copper at 1000 K with non-wettable
inclusions of three different initial radii: Evolution of (a,c,e) pressure and (b,d,f) void radius.

Figure 6 presents the comparison for the case of tension of the initially uniform and defect-free
copper, MD system size is 200 × 200 × 200 lattice parameters. The results for the medium MD
system are similar. In the case of uniform single crystal, the fracture starts from the homogeneous
nucleation of voids, Figure 6c. The number of voids rapidly grows, while the porosity remains small,
see Figure 6b, and the negative pressure continues to increase in absolute value, Figure 6a. Thereafter,
an accelerated growth of voids begins with sharp increase in porosity and a rapid relaxation of
pressure. After the pressure relaxation, the smallest voids become subcritical and collapse in both the
MD and the model. In the case of uniform material, the model also correctly predicts the main stages
of the fracture development and gives close numerical results. Concurrently, the delay between
the pore nucleation and growth is longer in the model than in the MD. Therefore, the mechanical
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response (Figure 6a) is delayed in comparison with the void nucleation (Figure 6c). Comparing this
discrepancy with the opposite one in the case of non-wettable inclusions, one can conclude that
the present model underestimates the growth rate of small voids (comparable with the interatomic
distance), but overestimates the growth rate of larger ones; this shortcoming should be addressed in
future works.
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3.2. Strain Rate Dependence of Solid Copper: Influence of Initial Heterogenieties
After the “training” of the fracture model by means of the Bayesian optimization of parameters,

the model is used to explore the strain rate dependence of the spall strength of copper at room
temperature in a wide range of strain rates, from 10 ms−1 to 1 ns−1. Each point of the strain rate
dependence is obtained by means of a separate run of the fracture model with constant strain rate, and
the outcome is a single value of the spall strength as the maximum of the absolute value of negative
pressure achieved during this run. The behavior of uniform perfect single crystal and the influence
of initial heterogeneities with different size distributions are analyzed. These heterogeneities are
interpreted as some inclusions, maybe non-wettable, which prevent collapse of surrounding pores
until the tension activates growth of the pores (see Section 2.2).

Figure 7 shows the results for monodisperse ensemble of inclusions, Equation (14), as the
simplest case of its size distribution. At the moderate strain rates (less than about 106−107 s−1), the
fracture develops by the mechanism of heterogeneous activation of voids on inclusions, and the
spall strength is completely determined by the size of inclusions; the larger the inclusions, the lower
the spall strength. At ultra-high strain rates (above 108 s−1) the inclusions lose their influence, and
all curves coincide with that for the uniform perfect single crystal controlled by the homogeneous
nucleation of voids. This is because ultra-fast tension requires a high number of voids to compensate
this tension, and the existing concentration of pores on inclusions is not enough to accommodate the
material tension. In the intermediate range of strain rates (from 106 to 108 s−1), there is a transition
from the heterogeneous activation to the homogeneous nucleation of voids, and the spall strength
depends on both the radius and concentration of inclusions: The higher the concentration, the higher
the strain rate of the transition to homogeneous nucleation.
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Figure 7. Influence of a monodisperse ensemble of pores or non-wettable inclusions on the strain rate
dependence of the spall strength of copper at room temperature: Model results in comparison with
the experimental data of Moshe et al. (1998) [15], Moshe et al. (2000) [16], and Kanel et al. (2007) [18].
Solid black curve shows the case of uniform perfect single crystal, in which the homogeneous
nucleation of voids triggers the fracture.

Figure 7 also compares the model results with the existing experimental data from the litera-
ture [15,16,18]. The spall strength in the mode of homogeneous nucleation corresponds to that is
observed in [16] for the laser-driven shock waves in thin foils. The transition from the heterogeneous
activation to the homogeneous nucleation explains the fast growth of the spall strength at the strain
rates above 107 s−1 reported in [15], based on experiments with the laser-driven shock waves. Differ-
ence in the size of imperfections can explain the difference in the spall strength of single crystals and
polycrystals reported in [18] based on the analysis of the plate impact experiments.

Figure 8 shows the case of exponential size distribution of inclusions, as in Equation (15). The
general regularities are close to that for the monodisperse ensemble, but the strain rate dependencies
and the transition to the homogeneous nucleation are smoother.
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Figure 8. Influence of initial pores or non-wettable inclusions with an exponential size distribution
on the strain rate dependence of the spall strength of copper at room temperature; model results in
comparison with the experimental data of Moshe et al. (1998) [15], Moshe et al. (2000) [16], and Kanel
et al. (2007) [18].

Figures 9 and 10 present the results for the case of power-law size distribution of inclusions.
This distribution has an additional parameter A, see Equation (16), and Figure 9 studies the influence
of this parameter on the strain rate dependence of the spall strength of copper. Figure 9a shows
that an increase in the degree A of the power-law distribution leads to smoothing of the strain
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rate dependence, while low degree A = 2 leads to a sharp transition to the mode of homogeneous
nucleation. According to Figure 9b, the homogeneous nucleation leads to a weak rate dependence
of the spall strength σspall, close the power-law dependence σspall =

.
ε

δ with the degree δ ≈ 0.053.
Rate dependencies of spall strength in the case of inclusions with the power-law size distributions
also contain regions close to the power-law dependence on the strain rate, and the degree of this
dependence δ decreases with the increase in the degree A of the size dependence.
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Figure 9. Influence of initial pores or non-wettable inclusions with a power-law size distribution with
different degree A on the strain rate dependence of the spall strength of copper at room temperature;
(a) Model results in comparison with the experimental data of Moshe et al. (1998) [15], Moshe et al.
(2000) [16], and Kanel et al. (2007) [18]; (b) approximation of the strain rate dependence of spall
strength by a power function; R0 = 0.5 nm and n0 = 1 µm−3.
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Figure 10. Influence of initial pores or non-wettable inclusions with a power-law size distribution
with different total concentration on the strain rate dependence of the spall strength of copper at room
temperature; model results in comparison with the experimental data of Moshe et al. (1998) [15],
Moshe et al. (2000) [16], and Kanel et al. (2007) [18]; R0 = 0.5 nm.

Figure 10 shows that an increase in the total concentration of inclusions simultaneously decreases
the spall strength at moderate strain rates in the mode of heterogeneous activation of voids and
increases the threshold strain rates of the transition to the mode of homogeneous nucleation of voids.
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4. Discussion
The model of dynamic spall fracture developed in the previous works is verified by the results

of MD simulation for solid and molten copper. To identify the parameters of the model, an approach
in the form of machine learning based on the Bayesian algorithm is developed; for a large number
of random sets of parameters, the probability is estimated as a measure of the compliance of the
model with the MD results. The use of this approach allows us to automate the process of choosing
parameters and justify the choice itself. The machine learning makes it possible to quickly and
formally determine the parameters for the required conditions basing on MD data. Additionally, it is
possible to make a conclusion, is the used data set sufficient for an unambiguous choice of parameters
and is the model suitable for describing the phenomenon under consideration.

The parameters of the fracture model for solid copper and copper melt are determined. For
solid metals, in addition to the full dislocation model of plastic growth of cavities used in the previous
papers [35,36], a simplified version has been developed with four parameters: yield strength, shear
stress relaxation time, surface tension, and plastic work of nucleation. In this case, the plastic flow
is described based on the Maxwell relaxation model with an additionally introduced threshold for
the onset of relaxation, which is the yield strength. The full dislocation model contains a larger set
of parameters, including the coefficients of dislocation friction and dislocation multiplication, in
addition to the strain hardening coefficient. The full dislocation model creates a more physically
based and detailed description, considering the local density of linear defects for each pore and their
influence on the yield strength and relaxation rate. Nevertheless, the use of a simplified model seems
to be justified, since in the most cases it gives a comparable quality of description of MD modeling
curves. The model for melts contains two parameters: surface tension and melt viscosity.

In an ideal homogeneous material, as the strain rate decreases, the spall strength decreases
much more slowly than in the experiment. The presence of cavities or inhomogeneities weakly linked
to the matrix (non-wettable inclusions, gas bubbles) leads at moderate strain rates to destruction by a
heterogeneous mechanism through the activation of voids. The limited concentration of volumetric
defects causes the transition to homogeneous nucleation at ultrahigh strain rates. A monodisperse
ensemble of pores or inclusions corresponds to a sharp transition from a heterogeneous plateau
to a homogeneous branch in a narrow range of strain rates. The exponential distribution creates a
parabolic increase in strength on the heterogeneous branch. The power-law distribution creates, at
certain intervals, an increase in strength close to a power-law one. In particular, when the distribution
density (dn/dR) is inversely proportional to the radius R to the power A = 8, the spall strength in
the range up to 10 µs−1 is proportional to the strain rate to the power δ = 0.2; this power is indicated
in a number of works as a generalization of experimental data [23,47], while slightly different powers
ranging from about 0.16 to 0.24 are reported in [20]. Conversely, the degree A = 8 leads to δ ≈ 1/3
expected for brittle solids [48–50]. Concurrently, a sharp increase in the spall strength in a limited
range of strain rates recorded in several experiments [15–17] correlates well with the monodisperse
distribution of inhomogeneities near the corresponding spatial scale. Real materials can have a
complex combination of different distributions at different scale levels, which lead to a complex rate
dependence of the spall strength. For example, a set of volumetric defects of a certain scale associated
with the structure of grain boundaries can be superimposed on a power-law distribution of volumetric
defects inside the grains, etc. The strong relationship between the strain rate dependence of the spall
strength and the size distribution of volumetric defects indicates that the rate dependence is not
only a characteristic of the material itself, but also depends on the technology of its manufacturing,
processing, and preloading (compression prior to tension).

5. Conclusions
We develop a multiscale approach to numerical investigation of the spall fracture of molten

and solid metals and apply it to the case of copper. MD data are used to verify the fracture model of
continuum level and to find its parameters by means of machine-learning-type Bayesian identification.
Initial volumetric defects, such as pores or non-wettable inclusions, can explain the experimental
strain rate dependence of the spall strength. On the basis of the developed model, we investigate
the influence of different size distributions of volumetric defects on the character of this strain
rate dependence.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/met12111878/s1, Figure S1: Bayesian identification of parameters
for solid copper at the room temperature of 300 K; Figure S2: Bayesian identification of parameters
for copper melt at 2000 K; Figure S3: Comparison of the model and the MD for the case of solid
copper at 300 K with non-wettable inclusions; Figure S4: Comparison of the model and the MD for
the case of uniform solid copper at 300 K; Figure S5: Comparison of the model and the MD for the
case of copper melt at 2000 K with non-wettable inclusions; Figure S6: Comparison of the model and
the MD for the case of uniform copper melt at 2000 K.
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