Variant Pairing of Lath Bainite and Martensite in an Ultra-High-Strength Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Morphological Characterization
3.2. Mixed Lath Bainite and Martensite
3.3. Isolated Martensite
3.4. The Relationship between Variant Pairing and Chemical Driving Force
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, T.; Zhou, Y.; Jia, X.; Wang, Z. Effects of Microstructure on CVN Impact Toughness in Thermomechanically Processed High Strength Microalloyed Steel. Met. Mater. Trans. A 2017, 48, 685–696. [Google Scholar] [CrossRef]
- Zhao, H.; Palmiere, E.J. Influence of cooling rate on the grain-refining effect of austenite deformation in a HSLA steel. Mater. Charact. 2019, 158, 109990. [Google Scholar] [CrossRef]
- Kurdjumow, G.; Sachs, G. Der Mechanismus der Stahlhärtung. Naturwissenschaften 1930, 18, 534. [Google Scholar] [CrossRef]
- Kitahara, H.; Ueji, R.; Tsuji, N.; Minamino, Y. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006, 54, 1279–1288. [Google Scholar] [CrossRef]
- Furuhara, T.; Kawata, H.; Morito, S.; Maki, T. Crystallography of upper bainite in Fe–Ni–C alloys. Mater. Sci. Eng. A 2006, 431, 228–236. [Google Scholar] [CrossRef]
- Takayama, N.; Miyamoto, G.; Furuhara, T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel. Acta Mater. 2012, 60, 2387–2396. [Google Scholar] [CrossRef]
- Morito, S.; Huang, X.; Furuhara, T.; Maki, T.; Hansen, N. The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 2006, 54, 5323–5331. [Google Scholar] [CrossRef]
- Morito, S.; Tanaka, H.; Konishi, R.; Furuhara, T.; Maki, T. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003, 51, 1789–1799. [Google Scholar] [CrossRef]
- Stormvinter, A.; Miyamoto, G.; Furuhara, T.; Hedström, P.; Borgenstam, A. Effect of carbon content on variant pairing of martensite in Fe–C alloys. Acta Mater. 2012, 60, 7265–7274. [Google Scholar] [CrossRef]
- Furuhara, T.; Kawata, H.; Morito, S.; Miyamoto, G.; Maki, T. Variant Selection in Grain Boundary Nucleation of Upper Bainite. Met. Mater. Trans. A 2008, 39, 1003–1013. [Google Scholar] [CrossRef]
- Miyamoto, G.; Iwata, N.; Takayama, N.; Furuhara, T. Variant selection of lath martensite and bainite transformation in low carbon steel by ausforming. J. Alloy. Compd. 2013, 577, S528–S532. [Google Scholar] [CrossRef]
- Kaneshita, T.; Miyamoto, G.; Furuhara, T. Variant selection in grain boundary nucleation of bainite in Fe-2Mn-C alloys. Acta Mater. 2017, 127, 368–378. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, Z.Q.; Ma, X.P.; Subramanian, S.V.; Xie, Z.J.; Shang, C.J.; Li, X.C. Analysis of impact toughness scatter in simulated coarse-grained HAZ of E550 grade offshore engineering steel from the aspect of crystallographic structure. Mater. Charact. 2018, 140, 312–319. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, Z.Q.; Xie, Z.J.; Wang, J.L.; Li, X.C.; Shang, C.J. Toughening coarse grained heat affected zone of high strength offshore engineering steel by enhancing the completeness of austenite-bainite transformation. Mater. Lett. 2019, 257, 126727. [Google Scholar] [CrossRef]
- Wang, X.L.; Ma, X.P.; Wang, Z.Q.; Subramanian, S.V.; Xie, Z.J.; Shang, C.J.; Li, X.C. Carbon microalloying effect of base material on variant selection in coarse grained heat affected zone of X80 pipeline steel. Mater. Charact. 2019, 149, 26–33. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, Z.Q.; Dong, L.L.; Shang, C.J.; Ma, X.P.; Subramanian, S.V. New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection. Mater. Sci. Eng. A 2017, 704, 448–458. [Google Scholar] [CrossRef]
- Li, M.; Jia, T.; Ma, L.; Zhao, X.; Wang, Z. Investigation on Temper Embrittlement of TS1100 MPa Grade Ultra-High Strength Steel. Metall. Mater. Trans. A 2020, 51, 5306–5317. [Google Scholar] [CrossRef]
- Materials Algorithms Project (MAP). University of Cambridge, Cambridge. 2015. Available online: http://www.msm.cam.ac.uk/map/ (accessed on 4 May 2016).
- Girault, E.; Jacques, P.; Harlet, P.; Mols, K.; Van Humbeeck, J.; Aernoudt, E.; Delannay, F. Metallographic Methods for Revealing the Multiphase Microstructure of TRIP-Assisted Steels. Mater. Charact. 1998, 40, 111–118. [Google Scholar] [CrossRef]
- LePera, F.S. Improved etching technique for the determination of percent martensite in high-strength dual-phase steels. Metallography 1979, 12, 263–268. [Google Scholar] [CrossRef]
- Bandoh, S.; Matsumura, O.; Sakuma, Y. An improved tint etcing method for high strength steel sheets with mixed microstructures. Trans. Iron Steel Inst. Japan 1988, 28, 569–574. [Google Scholar] [CrossRef]
- Nambu, S.; Shibuta, N.; Ojima, M.; Inoue, J.; Koseki, T.; Bhadeshia, H.K.D.H. In situ observations and crystallographic analysis of martensitic transformation in steel. Acta Mater. 2013, 61, 4831–4839. [Google Scholar] [CrossRef]
- Oh, C.-S.; Han, H.N.; Lee, C.G.; Lee, T.-H.; Kim, S.-J. Dilatometric analysis on phase transformations of intercritical annealing of Fe−Mn−Si and Fe−Mn−Si−Cu low carbon TRIP steels. Met. Mater. Int. 2004, 10, 399–406. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S.; Wang, C.; Martín, D.S.; Xu, W. Modeling retained austenite in Q&P steels accounting for the bainitic transformation and correction of its mismatch on optimal conditions. Acta Mater. 2020, 188, 528–538. [Google Scholar] [CrossRef]
- Ramazani, A.; Pinard, P.T.; Richter, S.; Schwedt, A.; Prahl, U. Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel. Comput. Mater. Sci. 2013, 80, 134–141. [Google Scholar] [CrossRef]
- Wang, Y.; Hua, J.; Kong, M.; Zeng, Y.; Liu, J.; Liu, Z. Quantitative analysis of martensite and bainite microstructures using electron backscatter diffraction. Microsc. Res. Tech. 2016, 79, 814–819. [Google Scholar] [CrossRef]
- Baek, M.-S.; Kim, K.-S.; Park, T.-W.; Ham, J.; Lee, K.-A. Quantitative phase analysis of martensite-bainite steel using EBSD and its microstructure, tensile and high-cycle fatigue behaviors. Mater. Sci. Eng. A 2020, 785, 139375. [Google Scholar] [CrossRef]
- Da Silva, E.P.; De Knijf, D.; Xu, W.; Föjer, C.; Houbaert, Y.; Sietsma, J.; Petrov, R. Isothermal transformations in advanced high strength steels below martensite start temperature. Mater. Sci. Technol. 2015, 31, 808–816. [Google Scholar] [CrossRef]
- van Bohemen, S.M.C. Bainite and martensite start temperature calculated with exponential carbon dependence. Mater. Sci. Technol. 2012, 28, 487–495. [Google Scholar] [CrossRef]
Variant No. | Plane Parallel | Direction Parallel | Misorientation Axis and Angle between V1 | CP Group | Bain Group | Boundary Type |
---|---|---|---|---|---|---|
V1 | (111)γ//(011)α | [-101]γ//[-1-11]α | – | CP1 | Bain1 | – |
V2 | [-101]γ//[-11-1]α | [0.58 −0.58 0.58], 60.0° | Bain2 | Block | ||
V3 | [01-1]γ//[-1-11]α | [0.00 −0.71 −0.71], 60.0° | Bain3 | Block | ||
V4 | [01-1]γ//[-11-1]α | [0.00 0.71 0.71], 10.5° | Bain1 | Subblock | ||
V5 | [1-10]γ//[-1-11]α | [0.00 0.71 0.71], 60.0° | Bain2 | Block | ||
V6 | [1-10]γ//[-11-1]α | [0.00 −0.71 −0.71], 49.5° | Bain3 | Block | ||
V7 | (1-11)γ//(011)α | [10-1]γ//[-1-11]α | [−0.58 −0.58 0.58], 49.5° | CP2 | Bain2 | Packet |
V8 | [10-1]γ//[-11-1]α | [0.58 −0.58 0.58], 10.5° | Bain1 | Packet | ||
V9 | [-1-10]γ//[-1-11]α | [−0.19 0.77 0.62], 50.5° | Bain3 | Packet | ||
V10 | [-1-10]γ//[-11-1]α | [−0.49 −0.46 0.74], 50.5° | Bain2 | Packet | ||
V11 | [011]γ//[-1-11]α | [0.35 −0.93 −0.07], 14.9° | Bain1 | Packet | ||
V12 | [011]γ//[-11-1]α | [0.36 −0.71 0.60], 57.2° | Bain3 | Packet | ||
V13 | (-111)γ//(011)α | [0-11]γ//[-1-11]α | [0.93 0.35 0.07], 14.9° | CP3 | Bain1 | Packet |
V14 | [0-11]γ//[-11-1]α | [−0.74 0.46 −0.49], 50.5° | Bain3 | Packet | ||
V15 | [-10-1]γ//[-1-11]α | [−0.25 −0.63 −0.74], 57.2° | Bain2 | Packet | ||
V16 | [-10-1]γ//[-11-1]α | [0.66 0.66 0.36], 20.6° | Bain1 | Packet | ||
V17 | [110]γ//[-1-11]α | [−0.66 0.36 −0.66], 51.7° | Bain3 | Packet | ||
V18 | [110]γ//[-11-1]α | [−0.30 −0.63 −0.72], 47.1° | Bain2 | Packet | ||
V19 | (11-1)γ//(011)α | [-110]γ//[-1-11]α | [−0.62 0.17 −0.77], 50.5° | CP4 | Bain3 | Packet |
V20 | [-110]γ//[-11-1]α | [−0.36 −0.60 −0.71], 57.2° | Bain2 | Packet | ||
V21 | [0-1-1]γ//[-1-11]α | [0.96 0.00 −0.30], 20.6° | Bain1 | Packet | ||
V22 | [0-1-1]γ//[-11-1]α | [−0.71 0.30 −0.63], 47.1° | Bain3 | Packet | ||
V23 | [101]γ//[-1-11]α | [−0.73 −0.25 0.63], 57.2° | Bain2 | Packet | ||
V24 | [101]γ//[-11-1]α | [0.91 0.41 0.00], 21.1° | Bain1 | Packet |
C | Si | Mn | Cr | Mo | Al | Ti | Ni | V | Nb | Fe |
---|---|---|---|---|---|---|---|---|---|---|
0.18 | 0.27 | 0.56 | 2.3 | 0.54 | 0.03 | 0.02 | 1.22 | 0.20 | 0.04 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, S.; Jia, T.; Zhao, X. Variant Pairing of Lath Bainite and Martensite in an Ultra-High-Strength Steel. Metals 2022, 12, 1896. https://doi.org/10.3390/met12111896
Li M, Wang S, Jia T, Zhao X. Variant Pairing of Lath Bainite and Martensite in an Ultra-High-Strength Steel. Metals. 2022; 12(11):1896. https://doi.org/10.3390/met12111896
Chicago/Turabian StyleLi, Meiying, Shun Wang, Tao Jia, and Xianming Zhao. 2022. "Variant Pairing of Lath Bainite and Martensite in an Ultra-High-Strength Steel" Metals 12, no. 11: 1896. https://doi.org/10.3390/met12111896
APA StyleLi, M., Wang, S., Jia, T., & Zhao, X. (2022). Variant Pairing of Lath Bainite and Martensite in an Ultra-High-Strength Steel. Metals, 12(11), 1896. https://doi.org/10.3390/met12111896