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Abstract: Magnesium is an abundant material with high specific strength, and its use as a structural
metal is increasing. However, its properties cause difficulty in its formation at room temperature.
Therefore, the objective of this study was to form a magnesium alloy at room temperature using an
underwater shock wave generated by the discharge of an aluminum wire. Forming was conducted
using an auxiliary plate composed of aluminum instead of magnesium alloy alone. In addition,
hyperbolic and parabolic pressure vessels were employed. Numerical simulations were performed
to measure the pressure values, propagation of underwater shock waves, and deformation of the
magnesium alloy. Large deformation was observed when an auxiliary aluminum plate was placed
on the upper surface of an AZ31 magnesium alloy plate inside the hyperbolic pressure vessel.

Keywords: magnesium alloy; high-voltage electric discharge; underwater shock wave; computa-
tional simulation

1. Introduction

Magnesium alloys have been widely used as structural metal materials because of
their low specific gravity. They are employed in the automobile, aviation, and aerospace in-
dustries and in portable devices such as mobile phone cases and tablet personal computers
(PCs) [1–4]. Magnesium alloy has several advantages, such as a large strength-to-specific-
gravity ratio, good machinability, excellent vibration absorption, good electromagnetic-
wave shielding performance, and abundant magnesium sources [5–7]. However, the
plastic deformation and extrusion of magnesium alloy sheets present certain difficulties.
Casting and high-temperature processing has been proposed as a solution; however, this
approach is still under development because of the high cost incurred in device develop-
ment and energy consumption. Therefore, to expand the utilization of magnesium alloy,
its quality must be improved, and the metal processing costs must be reduced. In addition,
forming techniques for the development of magnesium alloy sheet materials are required.
The mechanical properties of magnesium alloys are highly dependent on the grain size [8].
By refining the grains, the strength at room temperature [9–11] and ductility [12] are
improved, whereas the workability is improved by enhancing the superplasticity [13].
The application of this processing method to magnesium alloys is expected to increase in
the future.

The impact forming of a metal plate using an underwater shock wave is widely
employed in high-energy-rate processing in plastic working and has been studied since the
1950s [14]. Many studies on technologies involving such high-strain-rate forming of metal
plates have focused on deformation and bonding due to the impact loading of magnesium
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and aluminum alloys. Technologies for the explosive welding of AZ31 to aluminum alloy,
steel, copper, and titanium by the application of shock waves are expected to have practical
applications in industry [15–24].

In addition, impact forming can be achieved by utilizing shock waves generated
by the melting vaporization of a fine metal wire through high-voltage underwater dis-
charge [25–27]. Another method employs shock waves and a similar power supply device
and exploits a gap discharge phenomenon [28,29]. High-speed metal forming utilizing
shock waves generated by discharge in liquid has also been developed [30,31]. This process
enables aluminum alloy sheets to be accelerated to a speed of ≥100 m/s and subjected to
a high strain rate of 100 s−1. Corresponding numerical simulations have also been con-
ducted [32,33]. Electromagnetic seam welding has also been studied, in which aluminum
sheets are joined using powerful electromagnetic pulse technology [34,35] and then joined
to magnesium alloys heated to 200–300 ◦C [36,37]. The method that uses explosives to
generate shock waves creates a high impact pressure. However, the approach that em-
ploys electric energy is considered optimal for industrial production because it does not
present problems such as handling issues, excessive noise, and limited implementation
locations. The objective of this study was to establish a magnesium alloy forming method
using underwater shock waves generated by the high-voltage, underwater melting, and
vaporization of a thin aluminum wire.

The findings of this study are expected to contribute to the development of explosive
welding and forming processes, which involve high-speed deformation in metal forming
techniques utilizing impact loads. In addition, no joining technology employs electrohy-
draulic forming, which uses shock waves from underwater electrical discharges. When
performing the explosive joining of magnesium alloys, it is important to establish a defor-
mation method that does not result in cracks at room temperature. Hence, evaluating the
magnesium forming performance is required. In this study, experimental investigations
were conducted under various conditions to form magnesium alloys at room temperature
using shock waves generated by an underwater electrical discharge of metal wires. The
results are reported herein.

2. Experimental Methods
2.1. Shock Wave Generator and Pressure Measurement Method

Figure 1 provides the circuit diagram of the shock wave generator. A Cockcroft-Walton
circuit is used in the power supply. Electric energy is stored in the power supply circuit, and
a high-voltage current flows to the electrodes via switching with the thyristor (R2620ZC25,
IXYS Corp., Milpitas, CA, USA) depicted in Figure 2. Figure 3 shows a device for measuring
the pressure of a shock wave generated by an underwater discharge. A thin aluminum wire
is set on an electrode installed at the bottom of a container filled with water. A pressure
sensor (ICP® 109C11, PCB Piezotronics, Depew, NY, USA) is placed at a distance “D” from
the aluminum wire. When electrical energy is supplied to the aluminum wires by the power
circuit, the aluminum wires instantly melt and vaporize, generating an underwater shock
wave. When the pressure of this shock wave reaches the pressure sensor, the pressure is
converted into a voltage, which is output to an oscilloscope (DS-5634A, Iwatsu Electric Co.,
Ltd., Suginami-Ku, Tokyo, Japan) as a waveform. The current is measured simultaneously
with the pressure using a Rogowski coil (SS-629M, Iwatsu Electric Co., Ltd., Suginami-Ku,
Tokyo, Japan).
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Figure 3. Apparatus for pressure measurement.

2.2. Materials and Numerical Simulation

The compositions and mechanical properties of the magnesium alloys employed as
target materials in this study are shown in Table 1 [38]. Numerical simulations were
performed using Altair® HyperWorks® 2019. Generally, on explosive forming, a sealed
pressure vessel is utilized to apply the pressure of the shock wave to the metal plate. It
is known that the internal shape of this pressure vessel changes the pressure distribution
acting on the metal plate [39]. Therefore, in this study, we assumed hyperbolic and parabolic
types of pressure vessel geometries and investigated the effects of the shock pressure
distribution inside the vessel.
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Table 1. Major composition and mechanical properties of each magnesium alloy material [20].

Major Components Other
than Magnesium (mass %) Major Mechanical Properties

Material Aluminum Zinc Tensile strength
(MPa)

0.2% proof
stress

Elongation
(%)

AZ31 3 1 220–260 105–200 4–11

AZ61 6 1 240–260 140–160 4–11

AZ91 9 1 190 90 20

Figure 4 shows a schematic diagram of the pressure vessel, part of the simulation
model, and the entire simulation model. The pressure vessel was assumed to be hyperbolic
(Figure 4a) and parabolic (Figure 4b). In addition, the target metal plate was sandwiched
between the pressure vessel and the die, as depicted in Figure 4c. Numerical simulation
was performed using the domain shown in the figure as the computational field, divided
into quadrilateral meshes.
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The shock wave is generated by the melting and vaporization of the thin aluminum
wire because of electrical discharge. However, as there is no analytical model for math-
ematically evaluating the physical phenomena from the discharge phenomenon in the
generation of underwater shock waves, in this numerical simulation, the shock wave was
generated by the explosion of an explosive. It is necessary to identify the amount of this
explosive. The numerical simulation was based on the assumption that Safety Explosives
(SEP, Kayaku Japan Co., Ltd., Sumida-ku, Tokyo, Japan) would be used. Based on pressure
measurements from underwater discharges, pressure conversions were performed for the
use of SEP. The detonation velocity of SEP explosives is approximately 7000 m/s, and the
detonation pressure is approximately 15.9 GPa [40]. The results are described in Section 3.2.
The pressure of the SEP explosive can be calculated using the Jones–Wilkins–Lee equation
of state [41]. As depicted in the schematic diagram (Figure 4c), the explosive was set at the
top of the pressure vessel filled with water. In this numerical simulation, the target metal
plate was AZ31. Because the analysis was performed using an axisymmetric model, half of
the model on one side of the central axis was analyzed and the numerical simulations were
conducted using an arbitrary Lagrangian–Eulerian method [42].

2.3. Magnesium Alloy Forming Method

Figure 5 shows schematics of the pressure vessel, plate holder, and mold used in the
experiment. Figure 5a shows a hyperbolic pressure vessel with a hole at the top where an
electrode is set. The plate holder depicted in Figure 5c is set 70 mm downward from the
electrode. The interior of the vessel between the electrode and plate holder is a hyperbolic
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cavity with a radius of 80 mm, which is filled with water. The target metal plate is placed
under the plate holder, and the mold (Figure 5d) and metal plate are sandwiched between
the mold and plate holder. The other pressure vessel has a parabolic cavity, as shown in
Figure 5b. As with the hyperbolic pressure vessel, the cavity is parabolic from the hole in
which the electrode is set to a position 70 mm downward. The diameter of the opening is
100 mm for both the hyperbolic and parabolic pressure vessels.
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pressure vessel. (c) Plate holder. (d) Die.

Figure 6 shows the assembly diagram for the aforementioned configuration. When
the auxiliary plate was provided during the trial forming experiment, the deformation of
the magnesium alloy plate was not transient, cracks did not occur, and the magnesium
alloy plate deformed along with the auxiliary plate, even though the magnesium plate
was sandwiched between the plate holder and the die. To determine the formability
improvement, we examined (a) the aluminum alloy auxiliary plate placed on the upper
side of the magnesium alloy plate and (b) the auxiliary plate placed on the opposite side. A
sandwich method in which (a) and (b) were set was also considered. A schematic diagram
of the electrodes installed on the top of the pressure vessel is provided in Figure 7. The
electrode was fabricated by inserting a brass rod with a diameter of 3 mm into a cylindrical
polyoxymethylene material, and then, a fine pure aluminum wire was wound between
the brass rods. The current flowing from the power supply circuit melted and vaporized
the thin aluminum wire, generating an underwater shock wave. A non-contact three-
dimensional shape measuring machine (NAZCA-3D, Mitani Corporation, Chiyoda-ku,
Tokyo, Japan) was used to measure the forming shape with a laser displacement gauge.
The configuration is illustrated in Figure 8.
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3. Results and Discussion
3.1. Pressure Measurement Results for the Underwater Shock Wave

Figure 9 shows the pressure and current measurements obtained at a charging voltage
of 1000 V, charging energy of 5 kJ, fine aluminum wire diameter of 0.5 mm, and distance
from the electrode of 40 mm. The resulting maximum pressure is approximately 5.2 MPa.
As the maximum current is 42.8 kA, the current from the power supply circuit was supplied
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to the electrode for only one cycle because the thyristor was used. In addition, this electrical
energy caused the thin wire to melt and vaporize, transforming it into plasma. When
the maximum current value was reached, the thin aluminum wire melted and vaporized,
generating the pressure peak of the underwater shock wave approximately 60 µs later
than when the current was maximized. Figure 10 presents the pressure and current
measurements obtained with a distance between the electrode and the pressure sensor
of 50 mm. Increasing the distance, D, from 40 mm to 50 mm reduces the pressure by
approximately 30%, whereas the time taken to reach maximum peak pressure does not
change significantly.
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3.2. Numerical Simulation Results

First, the pressure distribution inside the pressure vessel was obtained. It is important
to identify the amount of explosive at the source of the shock wave. When identifying the
pressure, the pressure vessel was assumed to be of the hyperbolic type. In addition, the
charging voltage was set to 1000 V, and the diameter of the fine metal wire of the electrode
used was 0.5 mm. The results of the forming experiment and numerical simulation of
aluminum alloy plates with a thickness of 0.5 mm were compared under these conditions.
The amount of SEP explosive was approximately 0.11 g. The simulation results were
easily identified because they were similar. The pressure contour map inside the pressure
vessel was obtained when the explosive was used. In addition, the forming amount of the
magnesium alloy plate when each container was employed was determined.

Figure 11 shows the pressure contour maps inside the pressure vessel when the
explosive amount was 0.11 g. Figure 11a,b present the pressure contour maps of the
hyperbolic and parabolic pressure vessels, respectively. In the case of the hyperbolic type,
a pressure rise of the shock wave at the center of the vessel is observed, which gradually
expands to the outer circumference. In the case of the parabolic type, the reflected pressure
from the wall surface is large, and the pressure trend is such that the reflected pressure
gradually affects the central part of the vessel.
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Figure 12 compares the maximum values of the pressure of the water element facing
the central part of the magnesium alloy plate. The maximum pressures for the parabolic
and hyperbolic pressure vessels are approximately 57.7 and 136 MPa, respectively. The
high pressure for the hyperbolic type is observed at the center of the metal plate. Figure 13
illustrates the deformation simulation of AZ31 with a plate thickness of 1.0 mm when a
hyperbolic pressure vessel is used. In addition, a contour diagram of the velocity component
in the vertical downward direction is shown. At approximately 350 µs, the plate maintains
a speed of approximately 20–25 m/s, which gradually decreases. Forming is completed at
approximately 650 µs. The plate has a substantially rounded shape.
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Figure 14 compares the forming simulation and experimental results obtained under
the same conditions. The amount of forming in the central part of the magnesium plate is
similar in shape. However, in the experimental results, the peripheral part bulges, whereas
in the simulation results, the shape is not observed, because the boundary conditions in the
numerical simulation were set to restrict radial movement of the outer peripheral portion
of the magnesium alloy plate. Removing this condition may result in an unstable solution,
and it is considered that an unstable strain element exists in the circumferential direction.
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forming shape.

3.3. Magnesium Alloy Forming Experiment Results

When the charging voltages were 1900 and 2000 V, the charging energies obtained
were 18.05 and 20.0 kJ, respectively. Forming experiments were conducted under these
conditions using (a) only the auxiliary plate, (b) only the auxiliary plate, and both plates.
An AZ31 magnesium alloy with 1.0 mm thickness and 140 mm diameter was employed.

Figure 15 shows the results obtained using (a), where an aluminum plate was placed
on the AZ31 top surface, and impact pressure acted on the aluminum plate once, deforming
it concurrently with the AZ31 plate. In addition, the figure shows the results obtained
when using the two pressure vessels. According to these findings, the hyperbolic type
has a larger forming amount than the parabolic type. The higher the charging voltage,
the larger the forming amount. Defects such as cracks are not observed in the deformed
AZ31 material.

Figure 16 depicts the forming shape of (b), where an aluminum plate was stacked
on the bottom surface of the AZ31 plate from the opposite side. The larger the charging
voltage, the larger the forming amount; however, at 2000 V, the effect on the pressure
vessel is hardly noticeable. Figure 17 presents the formed shape when the AZ31 plate
was sandwiched between the aluminum plates using auxiliary plates placed on each side.
Owing to the increased mass, the deformation amount is reduced. However, when the
charging voltage is 2000 V, the use of the hyperbolic pressure vessel yields the same amount
of forming as in the other cases. Because only AZ91 material with a diameter of 100 mm
was available, a forming experiment was conducted after attaching the AZ91 material to
the center of the aluminum plate, which was an auxiliary plate, as shown in Figure 18.
This approach resulted in the occurrence of cracks, as depicted in Figure 19. Therefore, the
experiment was conducted after lowering the charging voltage to 1600 V. The AZ31 and
AZ61 materials were deformed at a charging voltage of 2000 V, and the deformed shapes of
the three magnesium alloys were compared. For the AZ61 material, we conducted forming
experiments on two types of rolled material and extruded material and assessed whether
there was any influence of the manufacturing process on these magnesium alloys. Figure 20
compares the formed shapes. The deformation amount of the AZ31 material is the largest.
In the forming experiment results for the AZ61 material, no effects of the extrusion or
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rolling working processes are observed. Therefore, a similar forming shape is obtained.
The AZ91 material has a small diameter and is difficult to compare; however, the shape is
similar to that of the AZ61 material.
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Figure 15. Comparison of pressure vessel shape to charging voltage when an auxiliary plate is
overlaid on top of an AZ31 plate.
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Figure 16. Comparison of pressure vessel shape to charging voltage when an auxiliary plate is placed
under an AZ31 plate.
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4. Conclusions

In this study, we investigated the forming performance of magnesium alloys at room
temperature using underwater shock waves generated by the underwater discharge of fine
aluminum wires. The results can be summarized as follows.

1. When a thin aluminum wire with a diameter of 0.5 mm, charging voltage of 1000 V,
and charging energy of 5 kJ were used, a maximum pressure of approximately 52 MPa
was obtained at a position 40 mm from the electrode.

2. Numerical simulations showed that the maximum peak pressure was higher with a
hyperbolic pressure vessel than with a parabolic pressure vessel.

3. Because it is difficult to form magnesium alloy plates at room temperature, an auxiliary
plate was added, which enabled forming without breakage.
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