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Abstract: X-ray inspection is often an essential part of quality control within quality critical manu-
facturing industries. Within such industries, X-ray image interpretation is resource intensive and
typically conducted by humans. An increased level of automatization would be preferable, and recent
advances in artificial intelligence (e.g., deep learning) have been proposed as solutions. However,
typically, such solutions are overconfident when subjected to new data far from the training data,
so-called out-of-distribution (OOD) data; we claim that safe automatic interpretation of industrial
X-ray images, as part of quality control of critical products, requires a robust confidence estimation
with respect to OOD data. We explored if such a confidence estimation, an OOD detector, can be
achieved by explicit modeling of the training data distribution, and the accepted images. For this,
we derived an autoencoder model trained unsupervised on a public dataset with X-ray images of
metal fusion welds and synthetic data. We explicitly demonstrate the dangers with a conventional
supervised learning-based approach and compare it to the OOD detector. We achieve true positive
rates of around 90% at false positive rates of around 0.1% on samples similar to the training data and
correctly detect some example OOD data.

Keywords: deep learning; non-destructive evaluation; X-ray inspection; weld inspection

1. Introduction

Non-destructive evaluation (NDE) is an integral part of quality control within many
quality-concerned manufacturing industries, e.g., aerospace and energy. An NDE method
commonly utilized is X-ray inspection, and for high-value and critical products typically
all of the material volume, e.g., all welded material, on all of the product individuals is
inspected. Thus, a high level of automatization of X-ray inspection is desirable.

Industrial X-ray inspection can be divided into three steps: planning, data sampling,
and data interpretation. The automatization of the interpretation is one of the bottlenecks
for quality-critical industries. With interpretation, we mean the operation of transforming
(mainly) the X-ray image data into information that can be utilized later for decisions, e.g.,
decisions regarding the material quality. The interpretation is typically done with extensive
amounts of manual labor.

Most of the automatic industrial X-ray image interpretation algorithms in literature
have some steps in common: pre-processing, segmentation, feature extraction, and classifi-
cation. The preprocessing step typically includes image data calibration, noise removal,
and contrast enhancement. In some cases, the background noise, e.g., the weld geometry, is
subtracted with reference radiographs [1], polynomial weld geometry approximations [2],
or low pass filters [3]. Contrast enhancement operations, with, e.g., histogram equalization,
is also common [1].

For the segmentation step, many methods have been studied over the years. A com-
prehensive comparative study on segmentation methods for metal fusion-weld defect
segmentation can be found in [4]. The study confirmed trends in other studies, where edge
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detection-based segmentations are typically optimal for crack-like defects, region-growing
are optimal for cavity-like defects, and watershed-based segmentation for the lack-of-fusion
and similar defects.

Feature extraction, where each segmented region is described by a feature vector in a
suitable space and classification can be done with manually designed feature extractors or
automatically as in, e.g., deep learning (DL) [5]. The cases of manually derived features,
followed by a supervised classifier, have been extensively studied for the application
of metal fusion welds and aluminum castings, some examples are: fuzzy logic systems
combined with geometrical features ([6], accuracy 80%) and contrast-variance features ([7],
accuracy 98%); support vectors machines (SVM) with geometrical and texture features ([8],
accuracy 96%); artificial neural networks (ANN) with geometrical features ([9], accuracy
100%), texture/geometrical features ([10], accuracy 87%); and random forest classifiers
with Haar-like features ([11], accuracy 83%). Studies on unsupervised classification are
few, but in a recent study on weld defect classification, a high accuracy of around 95% was
reached [12] utilizing shape features and a generalized Gaussian mixture model. Overall the
studies indicate high accuracies when tested on data similar to the training data. Moreover,
there is a tendency for simple features, related to local variation, to perform well, such as
in [11] (welds), which utilized Haar-like features, and in [13] (aluminum castings), where
local binary pattern features [14] give the best results.

The DL approach was also explored for the analysis of industrial X-ray images.
In [15,16], features were derived unsupervised with an autoencoder, and then utilized
for supervised training of a weld defect classifier (accuracy 92%). Pixel-level segmentation
of weld defects (utilizing a fully convolutional deep neural network similar to UNet [17]
and trained with a supervised approach) was demonstrated in [18]. Another model also
similar to the Unet architecture was explored in [19], in the X-ray images of welds but from
another dataset. Moreover, in [20], a deep neural network was successfully trained for weld
defect classification (accuracy 91%). Moreover, aluminum casting inspections have been
explored with DL. In [21], a deep convolutional neural network was trained–supervised
to classify whether or not image patches contained material defects. Moreover, in [22],
the segmentations of industrial X-ray computed tomography 3D data were successfully
explored with a UNet-similar model trained on modeled data.

In parallel to the above-described approach with segmentation, feature extraction,
and supervised classification, there are also studies on more statistical hypothesis testing
or residual analysis approaches, where anomalies, with respect to an accepted (material
defect-free) training dataset, are identified in test images. A model is derived for the
accepted intensity variation, and the residual image (the original input minus modeled)
is analyzed [23–25]. A test statistic is calculated for the residual image, often within
local small regions, and deviations are identified as anomalous or not with respect to the
expected noise. Sophisticated more complex statistical models and sparse reconstructions
or dictionary learning [26] for the accepted variation have also been explored. Studies on
such sparse models have indicated both promising results ([27] and accuracy of 100% for
welds), as well as some discouraging ([13], accuracy of 73% for aluminum casting data).
Recently, DL-based approaches have started to attract attention, such as in [28] (the authors
focused on industrial X-ray CT data) and industrial X-ray inspections of die-casts in [29];
both utilized autoencoders to detect anomalies in X-ray images.

In summary, many of the earlier studies showed promising results with high accuracies
on test data similar to training data. However, very few [28,29] of the studies have explicitly
addressed how the algorithms react when subjected to unexpected new input data far from
the training distribution, so-called out-of-distribution (OOD) data. In principle, dictionary
learning and sparse coding should be able to detect OOD data, though there has been very
limited explicit exploration. We claim that a confidence estimation (with respect to OOD
data) is important and should be addressed, and we argue for this by referring to NDE
reliability and the emerging NDE 4.0 [30] (NDE in the fourth industrial revolution).
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The problem is related to the NDE reliability field. The field is divided into questions
dealing with reproducibility (e.g., calibration), repeatability (e.g., stable process), and
capability (e.g., probability of detection, POD) [31]. The POD [32], a well-established
concept, is a statistical measure of the largest defect that will not be detected. Given a large
number of parameters (e.g., specific material, component geometry, manufacturing process,
material defects, flaw populations, and so on), each with their statistical distribution,
the POD can be derived as a function of, e.g., the specific material flaw size. The POD is
typically specific to a particular inspection case and requires that the above-listed parameter
distributions do not change without control. A well-calibrated–stable-repeatable inspection,
with quantified capability, is essential for a reliable NDE.

We strongly believe there will always be the risk of unexpected OOD data arriving
at the NDE interpretation step in some of the cases, indicating low-quality products (and
some not). We further suspect that a population of human operators will currently excel
over data-based computer algorithm interpreters in reasonably dealing with such OOD
data. The human capability of critically thinking with concrete knowledge outside of the
training data set, e.g., involving material and manufacturing process understanding, will
bring clarity to how to interpret OOD data. At the same time, the repetitive mundane tasks
of interpreting inspection data very similar to the training data (in most cases, defect-free
material) can be processed—to a high degree of accuracy—by the computer algorithms.

Human factors also impact the NDE reliability. Models for deriving, POD which
include understanding the human factors, have been proposed, as in the X-ray inspection
case in [33,34], where the detectability of defects (with respect to the human observer’s
vision system capabilities) was addressed. More complex human factors influencing the
reliability have also been addressed. In [35], the risks and challenges with mechanized NDT
were studied from the viewpoint of human factors, e.g., it was concluded that redundancy
in humans, instructed to monitor automatic algorithms, did not necessarily improve the
reliability. Simply letting the human operators review all of the machine interpretations
will not solve the safety issues, and certainly not the resource efficiency problem.

As we proceed into the fourth industrial revolution (Industry 4.0), NDE is predicted
to also change [30]. In a recent article [36], the concept of intelligence augmentation in
NDE was elaborated on. Human intelligence enhanced by artificial intelligence, rather
than AI working alone, was proposed as a possibility for NDE for Industry 4.0. Our
current study connects to this, as we propose that an integral part of such enhanced
human intelligence involves the capability of the computer algorithm to correctly estimate
confidence, especially with respect to OOD input, which is still an open scientific question.
With a confidence estimate, with respect to OOD data, new input, far from the training
data distribution, can be identified by the computer algorithm, such as low confidence in
interpretations, and be delivered to a human for further processing; at the same time, most
of the data, i.e., the parts similar to the training data can be interpreted safely by computer
algorithms alone.

In this work, we focused on how to achieve a robust confidence estimation with
respect to OOD data, when interpreting industrial X-ray images. Essentially, it can be seen
as an OOD detector algorithm. We propose (and experimentally explored) a solution based
on utilizing a deep learning autoencoder-based convolutional neural network model for
modeling the accepted variation in the input image. The model was trained unsupervised
in a denoising mode, with an additional perturbation dataset containing material defects
and synthetic indications representing non-accepted variations in input images.

Our approach has conceptual similarities with the above-mentioned sparse represen-
tation and statistical hypothesis approaches, i.e., it models accepted variations in input
images. Moreover, as in [28,29], we utilized deep learning-based autoencoders that were
trained unsupervised to model the accepted X-ray intensity distributions, as opposed to
most of the earlier studies, which also utilized autoencoders, but only for deriving features
later used for supervising the learning of a classifier. To the best of our knowledge, our
approach to modeling the accepted variations in input with autoencoders trained unsuper-
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vised with such perturbation datasets of structural noise, together with the localized kernel
loss term, is new within X-ray imaging analyses.

This work is based on one of our previously published conference papers and can
be considered an extended version of [37]. The unsupervised model and its description
are essentially the same (as well as the state-of-the-art and the background). However,
in this current work, we expanded the conference paper and explicitly compared the
unsupervised–trained model to a supervised–trained binary classifier (deep convolutional
neural network), as well as trained and tested the algorithms in a more systematic way
(e.g., utilizing synthetic data) than in [37]. In this current study, we successfully show (a)
the dangers with supervised–trained deep learning classifiers, with respect to unexpected
data and the application area industrial X-ray inspection; (b) that the performance (true
positive rate at a fixed false positive rate) of the unsupervised–trained OOD detector was
comparable to or better than a supervised–trained classifier on a dataset of X-ray images of
metal fusion welds; (c) that synthetic data can be utilized to increase the performance of
the unsupervised–trained OOD detector.

2. Background

For the OOD detector, we propose a framework that models the actual pixel intensities
of the training dataset. The modeled intensities are then subtracted from the input to form
a reconstruction error image, e.g., a residual image. Large deviations in the reconstruction
image will flag the existence of OOD data, something unexpected, an anomaly; that is, the
residual image intensity distribution will be related to a level of confidence with respect to
OOD data. The concept is similar to [23–25]. However, those previous studies used other
models to model the pixel intensities.

The proposed OOD detector can be trained unsupervised to model material with
accepted quality (e.g., accepted welds) or trained with known defects, or a set of different
models can be trained on each of them separately, with each separating the intensity varia-
tions originating from different higher abstraction level entities, such as weld geometries
and different material defects. Optionally, a conventional classifier-trained–supervised
model can be utilized to further split the dataset into classes. We suggest that additional
information refinement, such as quantifying the size of material defects, should be related
to existing international standards, e.g., the quality levels of imperfections in fusion-welded
joints are defined in ISO 5817; ISO 17636-2 defines how to perform X-ray inspections of
metal fusion welds.

This current work explores the proposed OOD detector concept via modeling of the
accepted metal fusion welding geometry utilizing an autoencoder (AE) deep learning
model. Further information refinement is not addressed here. This is why we refer to
the anomalies, defects, and material imperfections or flaws as one class; the criticality
of the anomaly (flaw or defect, accepted or not accepted with respect to the required
quality) is not addressed in this model (in order to simplify this work). Moreover, only
defect or anomaly indications reasonably detectable by humans with the current inspection
setup were considered, i.e., other NDE methods or other X-ray setup suitabilities for the
application were also out of the scope of this study.

For an introduction to deep learning see [5]. In brief, AE models are trained to
reconstruct the input, by transforming the input into a latent space representation (code
or z-space) with an encoder, and then reconstructing the input from the latent space with
a decoder. AE models have previously been successfully utilized to discover patterns in
input data, in the feature selection for classification, denoising, and so on.

The concept to utilize deep learning models for anomaly detection has already been
explored for various applications, such as computer vision and medical imaging. Refer-
ence [38], regarding the computer vision field, where an AE was trained on accepted input
images and anomalies were identified in the reconstructed error images, is very similar to
what we conducted in this work. Other approaches to the confidence estimation of results
from deep neural networks, e.g., drop-out approximation of the Bayesian inference, as
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in [39], and ensemble approaches, as in [40], are interesting; however, as pointed out in [38],
they likely do not address the problem with test data far from the training data.

Early and important work on anomaly detection with deep learning models can be
found within the medical imaging field. In [41], an AE was trained unsupervised on the
image data of optical tomography imaged healthy tissue. Potentially unhealthy tissue
(anomalies) were successfully detected by comparing the test image z-space coordinates to
a modeled (one-class support vector machine [42]) z-space distribution of healthy tissue.

A similar optical imaging dataset was utilized in [43] to explore an anomaly detection
approach with a deep generative adversarial network (GAN) [44]. A GAN was trained
to generate new data similar to the data it was trained on; in an adversarial training
setup, a discriminator model was trained to discern between real and generated data while
competing against a generator model trained to fool the discriminator. Promising results
were reported in [43] regarding identifying anomalies with the trained discriminator part
of the GAN as well as the reconstruction errors. The model was improved in [45], with fast
mapping from the input image space to the z-space (not part of GANs).

Within medical X-ray imaging, similar ideas on anomaly detection have been explored.
In [46], abnormal chest tissue was successfully identified with an adversarial AE model
trained on X-ray images of healthy tissue. They added skip-connections in the AE, similar
to the UNet architecture [17], in order to better preserve high-frequency content in the
reconstructed image.

Anomaly detection in airport security screening X-ray images is another studied ap-
plication area. In [47], an adversarially trained AE model was derived with an additional
encoder after the encoder–decoder part of the AE. The authors claimed the additional en-
coder enabled the modeling of the normal/accepted image z-space distribution. Promising
results on detecting anomalies by comparing the test image z-space coordinates to the
training data distribution in z-space were shown.

In this work, we explored an approach to AE modeling not based on adversarial
training. Instead, we added a localized maximum deviation reconstruction loss term, and
trained the model on both accepted input images as well as on systematic noise from
non-accepted (anomalies) images. The systematic noise images were added in order to
delimit the generalization capabilities of the AE in order to address the problem with high
similarity between the accepted and non-accepted images within our selected application
of industrial X-ray inspection of metal fusion welds. The systematic noise consisted of real
experimental anomalies as well as synthetic ones.

Our proposed approach applied to industrial X-ray inspection has already been ad-
dressed in the conference paper [37], of which, this current work, as noted, is an expansion.
We also explored the approach to X-ray computed tomography data in [48]. Recently, a
similar approach was also explored in [28] on industrial X-ray CT data and on industrial
X-ray inspection of die-casts in [29]. However, in [28], the analysis of the residual image
was conducted with a neural network binary classifier rather, as opposed to our case
(see Section 3.1), with mean and standard deviations in localized kernels. Moreover, in
both [28,29], the AE was not trained with anomalies as systematic noise (no perturbation
dataset) or localized kernel loss terms, as in our case (see Section 3.1). To the best of our
knowledge, our explored approach to OOD detection on X-ray-based images, with an
unsupervised training, a perturbation dataset with highly structural noise, and localized
loss kernels, was not explored earlier.

3. Materials and Methods

In this section, the models and datasets utilized are described. First, the proposed OOD
detector is described, consisting of an autoencoder trained unsupervised and a residual
analysis model based on the X-ray imaging noise distribution. Second, the binary classifier
trained–supervised (a convolutional neural network) is described. Finally, the datasets, real
experimental as well as synthetic, are described in detail.
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3.1. OOD Detector Model

The first part of the OOD detector model is the autoencoder (AE) model utilized
for modeling the accepted X-ray intensity variations in the X-ray images. The AE model
architecture is outlined in Figure 1. The input image (I) is first encoded by the encoder
blocks (Ei) into the latent space z and then decoded by the decoder blocks (Di) into its
reconstruction image (R). The encoder blocks (Ei) each consist of two 2D convolution layers,
separated by a dropout layer, and are followed by a single down-scaling 2D convolution
layer with a stride of two pixels. The down-scaling was conducted with the strided
convolution layer [49] instead of a max or average pooling layer since it improved the
performance for this specific architecture. The number of convolution filters in each
convolution layer was 18 for convolution layers in block 1 and 24 for layers in block 2.

E1 E2 z D2 D1I R

Figure 1. Overview of the AE model with encoder (Ei) and decoder (Di) blocks. Adapted from [37]
with permission from ASME.

The latent space z, preceded by a 2D convolution layer with a filter depth of one, has a
ReLU (rectified linear unit) activation with a value bound to the interval [0, 1]. In addition,
sparsity of the latent space is promoted with a L1 regularizer, which was implemented by
adding a loss term Lreg = 0.01 ·∑ |z(E(x))|. The L1 scaling was kept small, in order to keep
the importance of the regularization low compared to the other loss terms (specified below).

The decoder (D) is made symmetric to the encoder, with the same number of convolu-
tion filters as the encoder. Each decoder block consists of a dropout layer (dropout fraction
0.12), a transposed 2D convolution layer with a stride of two pixels (up-sampling), and
two 2D convolution layers. The reconstructed image (R) is preceded by a single filter 2D
convolution layer.

Overall, all convolution layers have small kernels of size 3 × 3 as well as, unless
otherwise noted, ReLU activations. Moreover, to make the model intrinsically bound to
the reconstruction of an as-limited input variation as possible (ideally only the accepted
patches), it was kept small, with a total of about 41,000 trainable parameters and a small
z-space.

The input image patch size was fixed at 192× 192 px2. The resulting z-space dimension
was 42× 42 and the reconstructed image (R) region (aperture) was 156× 156 px2.

The AE model architecture is almost identical to the one derived in [37]. The differences
are that this current model has two 2D convolutions in series in each block and only two
blocks in the encoder/decoder, instead of one 2D convolution in each block and three
blocks in the encoder/decoder, as in [37].

Some of the X-ray image intensity variation in the accepted/okay weld patches are
very similar to the intensity variation (e.g., in shape and size) in the not accepted/defect-
containing weld patches. Industrial X-ray image interpretation is not trivial (partly due to
the radiographic noise level). Therefore, the AE model could typically easily be undesirably
trained to reconstruct unseen defect-containing patches to a high precision.

It was shown in [37] that this problem could be mitigated by setting up the model and
training simultaneously to identify a compressed z-space high information density data
representation (representation learner), as well as a denoising filter. In the denoising part,
noise consisting of real and synthetic material defect indications was added during training
and forced to not be reconstructed by the AE model. The hypothesis was that these two
approaches would yield a highly compact AE model, optimized only for reconstructing
images similar to the accepted weld patches. Therefore, the model was trained on both
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accepted patches {xok} and patches affected by perturbations {δper}, where δper is a
perturbation transferred from ground truth and synthetic defects (described in Section 3.3).

The total loss consisted of five different terms, in accordance with the results in [37].
The terms included the previously noted latent space regularization term Lreg, and four
loss terms related to the reconstruction differences, here defined as

∆ok = xok −D(E(xok)),

∆per = xok −D(E(M(xok, δper)),
(1)

where D and E are the decoder and encoder of the AE model. The masking operations M is
defined via the defect mask set Def consisting of those pixels part of the defect/anomaly, as

xper := M(xok, δper) = xok + W � δper, (2)

where W ∈ {0, 1}k2
s is the binary vector indicating whether a pixel is part of a defect

indication or not, (l, m) ∈ Def , and � is the element-wise multiplication. Hence, the
perturbation is only applied to the appropriate defect shape.

The first reconstruction difference loss term is given by the average square deviations
of the reconstruction errors, for patch p, over pixels l, m as

Lok =
1
n ∑

p
‖∆ok‖2

2 =
1
n ∑

p,l,m
∆ok(l, m)2, (3)

and analogous for the second loss term Lper.
It is a well-known problem that AE models trained only with the above squared

Euclidean loss tend to create reconstructions that are smooth and fail to reconstruct high-
frequency content in the image. For natural image patches, utilizing a perceptual loss
based on a pre-trained deep neural networks substantially improves the reconstruction’s
quality [50], but this option was unavailable for our X-ray images as pretraining requires
huge amounts of available training data. Therefore, in [37], we added a hand-crafted loss to
the standard squared Euclidean terms in order to make the overall objective harder. In [37]
it was shown that results improved with a kernel max norm loss (Lkern),

Lkern,ok =
1
n ∑

p
max

l,m


[

1
k2

s
∑

i,j=l,m±ks/2
∆ok(i, j)

]2
, (4)

and analogous for Lkern,per. The total loss L was thus given as

L = Lok + Lper + Lkern,ok + Lkern,per + Lreg. (5)

The autoencoder is required to map perturbed data xper to clean data xok in addition
to the standard autoencoder task of faithfully reconstructing clean inputs xok. This is (in
spirit) similar to denoising autoencoders [51], where Gaussian noise (i.i.d. for each pixel,
with small variance) is added to clean data xok to obtain the perturbed autoencoder input
xper. In contrast to standard denoising autoencoders, our perturbations are large-scale and
highly structured. One way to connect our loss Lper with denoising autoencoders is based
on importance sampling, i.e.,

Lper =
1
n ∑

p
Exper∼N (xok ,σ2

n)

[
P(xper|xok)

N (xper; xok, σ2
nI)
· LDAE(xper, xok)

]
, (6)

where

LDAE(x′, x) =
∥∥x−D(E(x′))

∥∥2
2. (7)
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Here, N (x; xok, σ2
nI) is the p.d.f. of a Gaussian with mean xok and covariance matrix

σ2
nI. P(xper|xok) is the probability of obtaining xper from xok, which is induced by our

specific algorithm for introducing perturbation (defects). We do not need to calculate
P(xper|xok) explicitly. As the derivation of denoising autoencoders [51] and its connection
with score matching [52] requires purely local noise perturbations, we prefer to under-
stand Lper based on large-magnitude perturbations as reweighted variants of the regular
denoising autoencoder objectives (6). While standard denoising autoencoders are trained
to be oblivious to small-scale random perturbations, the introduction of Lper (and the corre-
sponding kernel-based loss Lkern,per) has the practical effect of the autoencoder explicitly
ignoring certain large-scale corruptions of the input signal.

The AE model was implemented in Python 3.8 utilizing the TensorFlow library [53]
version 2.8 (Google Brain Team, Mountain View, CA, USA). The experiments ran on an
Ubuntu installation with a Nvidia Geforce RTX 2070 graphics processing unit (Nvidia
Corporation, Santa Clara, CA, USA). The model was trained to convergence utilizing the
Adam [54] optimization algorithm.

Residual Image Analysis

The proposed OOD detector, conceptually a one-class classifier (where the input is
similar to the accepted dataset (xok) or not) requires the residual image to be analyzed
after the AE is applied. The residual image (the AE reconstructed image subtracted from
the input image) distribution consists of reconstruction errors and X-ray imaging noise.
The proposed OOD detector concept is based on the principle that input similar to the
accepted dataset (xok) should yield reconstruction errors that are much smaller than the
X-ray imaging noise; and input dissimilar (OOD data) to the accepted dataset should
yield reconstruction errors larger than the X-ray imaging noise. The proposed residual
image analysis is based on using a simple mathematical model for the X-ray imaging noise
distribution and to detect large reconstruction errors as deviations from that model.

The dominating noise in a generalized X-ray imaging setup will, for the relevant im-
aged objects (e.g., metal welds), typically be Gaussian-spatially correlated with a standard
deviation depending on the signal level. The correlation between pixels, the point spread
function, is typically Gaussian or Lorentzian, see, e.g., [55] for the analog film and [56] for
the digital detector case. However, in this work, the residual image is approximated to
consist of an ideal single distribution Gaussian noise with standard deviation independent
of the signal level in the image. In doing so, we also assume that the reconstruction errors
are negligible compared to this noise. Conceptually, it should be possible to relax all of
these simplifications.

The residual image analysis approach in this work was inspired by [24]. Essentially,
the residual image distribution for the test image is compared with the training residual
image distribution. The comparison is done with a sample mean and standard deviation
over localized square kernels (ks × ks px2), given formally as,

〈I〉k,l =
1
k2

s
∑

i=k±ks/2,j=l±ks/2
Ii,j, (8)

σ(I)k,l =

√
1
k2

s
∑

i=k±ks/2,j=l±ks/2
(Ii,j − 〈I〉k,l)2. (9)

A kernel region is defined as containing an anomaly when 〈I〉 or σ(I) is above a
threshold value determined from the training dataset. The threshold value will depend
on the current noise levels in the image and has a sound connection to the X-ray imaging
setup. Moreover, note that the residual analysis kernels are similar to the localized kernel
losses in Equation (4). In addition, the operation can be executed fast on graphics that are
processing units. A kernel size of ks = 9 pixels was utilized and selected via an ad hoc
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hyperparameter optimization. The stride (shift when sliding the kernels over the image)
was fixed at 1 px.

3.2. Binary Classifier Model Trained with Supervised-Learning

A conventional deep learning convolutional neural network (CNN) binary classifier
was derived and trained–supervised for comparison with the AE model. The model was
trained on the same patch sizes as the AE model with the patch-level classification objective,
i.e., to classify the patch as containing only weld okay or not.

The network architecture consisted of four convolution blocks separated by downsiz-
ing max pooling layers, followed by a max pooling layer and a block consisting of fully
connected layers. Each convolution block consisted of a twice-repeated sub-block made
of a drop out layer (drop out fraction 0.1) and a 2D convolution layer. The number of
convolution filters, counted from the input and forward were 24, 30, 34, and 40; in total,
there were eight 2D convolution layers in all of the convolution blocks. The convolution
blocks were followed by the fully connected block consisting of three fully connected layers
with 60, 50, and 1 unit each. The final layer had a sigmoid activation and all other layers
had ReLU activations. Small convolution kernels (size: 3× 3) were utilized, and the model
had a total of about 220,000 trainable parameters. The model is similar to many other
CNN models used for binary classification within the application field of industrial X-ray
image analysis, e.g., the model in [21], but with less parameters and less complexities than
that one.

The model was trained with a cross-entropy loss, with the same optimization algo-
rithm, and implemented in the same library as the AE model.

3.3. Datasets

The dataset utilized in [37] was extended in this work with synthetic data. All other
dataset preprocessing steps and splits in training and test datasets are the same as in [37]; the
paragraphs on the real experimental data of the dataset closely follow our previous work.

The real experimental data portion of the dataset consists of a total of 34 X-ray images
of fusion welds selected from the public GDXray dataset [57].The 34 welds represented a
subset, where double wall exposures as well as welds without the ground truth given in
the original dataset (flaw indications according to ISO 6520 and ISO 5817) were excluded
for simplicity. Each weld image and analog film digitized at a 40.3µm resolution, had
a size of about 4500 × 1000 px2. There were regions with accepted quality, as well as
regions with fusion welding defects, such as, e.g., cracks and porosities. About 10 of the
selected weld images had pixel-level ground truth, which indicated whether or not the
pixel belonged to a defect indication. The remaining welds were manually segmented
with the lead of the existing flaw indications with respect to ISO 6520 and ISO 5817; with
the aim to facilitate the automatic selection of the 192× 192 px2 patches containing (or
not containing) defect/anomaly indication pixels, rather than creating highly accurate
pixel-level ground truth.

The weld dataset was divided into the following: training weld okay, training per-
turbed defects, test weld okay, and test defects. The test defect dataset was further divided
by manual subjective characterization into three different contrast levels. See Figure 2 for
the example patches. In addition, the test and training datasets were held separately on the
weld image level. For the low contrast defects, it was not certain that a human operator
would have a true positive rate close to 1 and a false positive rate close to 0. Moreover,
it should be noted that the dataset is rather small for the application of deep learning;
however, it is public and well-documented, making it a good candidate for this study.
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(a) (b) (c) (d) (e)

Figure 2. Examples of patches in the training and test datasets: (a) is weld okay, accepted weld,
(b,c) are high contrast defects, (d) is a mid-contrast defect, and (e) is a low contrast defect. Adapted
from [37] with permission from ASME.

As described in the method section, patches with defect/anomaly indications were
utilized during the AE model training to introduce perturbed weld okay patches. These
perturbed defect patches were created in two steps. First, the pixel-level ground truth
was utilized to separate the pixels marked as part of defects belonging to separate defect
regions (segmentation), using a crude two-connectivity-based algorithm. For each region,
the average intensity, over a 1 px border around it, was subtracted. Second, during training,
random combinations of such patches and the weld okay dataset were added according to
Equation (2). Some examples of the resulting perturbed patches are shown in Figure 3. The
approach to add indications such as this into X-ray images is similar to the one utilized
in [21].

(a) (b) (c) (d)
Figure 3. Examples of perturbed defect patches in the training dataset; (a) real defect, (b) okay weld,
(c) okay plus real defect patch, and (d) okay weld plus a synthetic natural image-based defect patch;
(a–c) are adapted from [37] with permission from ASME.

For each of the above-mentioned datasets, patches of size 192× 192 px2 were selected
from the large input images by random translation and rotation (0–360◦) operations. Stan-
dard deep learning data augmentation was also conducted by duplicating the patches into
samples at additional 90◦, 180◦, and 270◦ angles as well as flipping up/down and left/right.
The final dataset sizes, including augmentations, were the following: training weld okay,
164,724; training perturbed defects, 70,230; test weld okay, 3480; test defect, high (3396),
mid- (2898), and low contrast (1830). Some parts of the patches were resampled and, thus,
are not independent; however, there was no overlap between the test and train sets.

In addition, synthetic datasets were derived—one for extending the perturbed dataset
during the AE model training and one for the training of the supervised–trained classifier
as well as testing both of the models. These synthetic datasets were not presented in [37].

Ideally, the perturbed dataset should include all possible intensity variations other
than the ones present in the accepted (okay weld) dataset. The hypothesis is that this will
delimit the reconstruction capabilities of the AE model very close to only the accepted
dataset. The synthetic perturbations do not have to be too similar to real weld defects, as
they are ideally covered by real experimental data; moreover, unrealistic perturbations
far from the training distribution are acceptable. We derived such a large perturbation
dataset by random sampling regions from another unrelated dataset with visual images.
The visual images utilized came from a highly unrelated publicly available dataset with
natural images (6899 images with sizes at the order of 200× 200 px2) of planes, motorbikes,
flowers, and similar [58].
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The derivation details of the synthetic perturbation dataset will be given since the
idea behind the dataset is rather unconventional within the non-destructive evaluation
application field. The perturbations are assumed to be irregularly shaped regions, with
the size of each region smaller than the whole image patch. The intensity variation within
each region was taken from the above-mentioned visual natural images by sampling such
irregularly shaped regions from the natural image dataset. In detail, the shape distribution
of the regions was derived by the following sampling rules: A random number of regions
was sampled from the uniform random distribution U(1, 4), each with a randomly sized
U(10, 8000) number of pixels by growing regions from a random seed position in the
natural images. Iteratively, each region was grown by taking a step of −1 px, 1 px, or 0 px
in either of the two dimensions. The shapes of the regions were partly controlled by an
elongation parameter randomly sampled over U(1, 40), where e increases the probability
of sampling 0 pixel steps in one of the dimensions, with probability given as e/(e + 2). The
regions were then masked and scaled in intensity (gray value) to 0.05–0.2, with the scale
parameter uniform randomly sampled for each region. Finally, the regions were smoothed
with Gaussian or Lorentzian point spread functions of random smoothness, the Lorentzian
scale parameter (half width at half maximum) U(0.15, 0.4)px, and the Gaussian standard
deviation U(2, 9)px. The lower limits of the smoothness parameters were approximated to
represent the point spread function of the X-ray imaging setup utilized for deriving the
real experimental X-ray images in the GD X-ray welds. Those perturbations, i.e., synthetic
natural image indications (SNI), were then added to the accepted weld patches with the
same procedures as for the real anomalies. An example can be seen in patch (d) in Figure 3.
The SNI dataset was sampled to a size of 112,000 samples.

The synthetic datasets for extending the training dataset for the supervised–trained
classifier and testing of both models were derived to have less variation than in the SNI case.
The purpose of the test data was to set up OOD data examples, with some variations. The
purpose of the training data, for the supervised–trained classifier, was to give a systematic
example of the potential dangers with supervised–trained classifiers and the OOD test data.
Six different types of synthetic defects and anomalies were derived (see Figure 4 for a few
examples) with names indicating their characteristics, i.e., a circular hollow inclusion with
an outer diameter of 36 px, an inner diameter of 18 px, and an amplitude of 0.2; dogbone
inclusion with a size of about 8× 30 px2 and an amplitude of 0.2; elongated inclusion with a
size of about 5× 25 px2 and an amplitude of 0.2; partial circle inclusion (SPC) with an outer
diameter of 36 px, inner diameter of 18 px, an amplitude of 0.1, and angle spread between
10 and 180◦; circular indication (SC) with a diameter randomly sampled U(20, 60)px and
an amplitude of −0.1; synthetic raster with a size of 50× 50 px2, and an amplitude of 0.2,
representing a highly exotic unexpected OOD data example, e.g., a machine element or
similar. All samples were randomly rotated (U(0◦, 360◦) and smoothed with a Gaussian
point spread function (σ = 9 px) prior to random placement into weld okay patches.

(a) (b) (c) (d) (e)
Figure 4. Examples of synthetic defect and anomaly indications inserted into weld okay patches:
(a) circular hollow inclusion, (b) dogbone inclusion, (c) elongated inclusion, (d) partial circle inclusion,
and (e) raster.
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The sample sizes of the synthetic datasets used for testing were 200 samples each
(circular hollow inclusion, dogbone inclusion, elongated inclusion, partial circle inclusion,
raster), and those for training 5000 samples (circular indication, partial circle inclusion).

An overview of the datasets used in the study is given in Table 1. During the training,
a random sample of perturbations is combined with a random sample of the augmented
train weld okay; this can also be seen as an augmentation operation, leading to a larger
effective size of the training dataset, i.e., at each training epoch a new combination of weld
okay and perturbation dataset combination is sampled.

Table 1. Overview of the different datasets utilized. For the experimental data, the original sample
count refers to the number of unique patches extracted with random translation and rotation from the
original full-sized image input; for the synthetic data, the original sample count refers to the number
of unique random realizations. See the text for details.

Dataset Original Sample Count Augmented Sample Count

Train weld okay 27,454 164,724
Train defects 11,705 70,230
Train synthetic natural image indications 112,000
Train synthetic, circular indication 5000
Train synthetic, partial circle inclusion 5000
Test weld okay 3480
Test defect, high contrast 3396
Test defect, mid-contrast 2898
Test defect, low contrast 1830
Test, synthetic, five different types 200

4. Results

Both of the two models have been trained several times on different training datasets,
and then evaluated on both real and synthetic test datasets. For each training setup, training
dataset combination, three independent models were trained and evaluated. The main
performance evaluator scalars will be the true positive rate (TPR), average and the spread
(max−min)/2) over the three models, at a fixed false positive rate (FPR). The results for
the supervised–trained binary classifier will be reported first and then followed by the
unsupervised–trained AE model.

The results for the supervised–trained patch-level binary classifier can be seen in
Table 2. With just the weld okay and defects (D) as the training data, it is evident that
for the synthetic indications (representing OOD data, see Figure 4) the TPR is low and,
especially for the synthetic inclusions, with a rather large spread. By adding synthetic
circular shaped indications (SC) to the training data, which is similar to the synthetic
circular hollow inclusion as well as parts of the synthetic raster anomaly, those two test
datasets are then better detected. Adding the synthetic partial circular inclusions (SPC)
to the training data, further improves the detection of the synthetic anomalies; however,
the elongated inclusion dataset, is still badly represented in the training data. Finally, by
adding the synthetic natural image indications to the training data, all anomalies obtain
high TPRs. The spread in the TPR results on the synthetic indications is overall lower
for the D + SNI training case, however, still considerable for the elongated and partial
circle anomalies.

Two use cases for the OOD detector, which are based on the unsupervised–trained
AE model combined with the residual analysis, have been explored; one where the AE
model is set up to model only accepted okay welds and one where it is set up to model
both accepted and the known defects and anomalies.
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Table 2. Results for the supervised–trained patch-level binary classifier. The TPR is given as the
average and the spread (max−min)/2) within parenthesis, at 0.1% FPR. For the training data, D is
for defects, SC is for synthetic circular indication, SPC is for synthetic partial circular inclusion, SNI is
for synthetic natural image indications.

TPR Average and Spread [%]

Training Data D D + SC D + SC + SPC D + SNI

Test Dataset

Defects high contrast 78 (3) 83 (3) 84 (4) 85 (2)
Defects mid-contrast 45 (7) 74 (4) 77 (7) 76 (4)
Defects low contrast 15 (10) 23 (3) 17 (2) 21 (2)

Synthetic circular hollow inclusion 46 (11) 69 (24) 100 (0) 100 (0)
Synthetic dogbone inclusion 45 (14) 48 (11) 97 (2) 97 (2)
Synthetic elongated inclusion 24 (7) 24 (3) 70 (8) 86 (7)

Synthetic partial circle inclusion 31 (6) 33 (9) 89 (6) 90 (6)
Synthetic raster 71 (27) 98 (3) 97 (5) 100 (0)

The results for the first use case will be reported first, see Table 3. It can clearly be
seen that training without a perturbation dataset considerably degrades the performance,
indicating that even though the model is set up as a compressed representation learner it is
capable of reconstructing also both real and synthetic defects at high precision. Adding the
real defects (denoted by D in the table) to the perturbation dataset clearly remedies part
of this, and the TPR is close to 80% for the high contrast defect test dataset. Adding the
synthetic natural image indications (SNI) to the perturbation dataset further drastically
improves the results. In both cases where a perturbation dataset is present the AE model
gives very high TPRs, with low spread, for the synthetic anomalies.

Table 3. Results for the unsupervised–trained autoencoder model, OOD detector. The TPR is given as
the average and the spread (max−min)/2) within parenthesis, at 0.1% FPR. Results are shown for
training with weld okay and different perturbation datasets, where D denotes the real defect dataset
and SNI is the synthetic natural image indications dataset.

TPR Average and Spread [%]

Perturbation Dataset None D SNI

Test Dataset

Defects high contrast 50 (2) 79 (9) 94 (3)
Defects mid-contrast 6 (5) 69 (17) 90 (3)
Defects low contrast 0 (1) 16 (6) 26 (7)

Synthetic circular hollow inclusion 12 (10) 100 (0) 100 (0)
Synthetic dogbone inclusion 10 (2) 100 (0) 100 (0)
Synthetic elongated inclusion 3 (1) 100 (0) 100 (0)

Synthetic partial circle inclusion 4 (3) 99 (1) 99 (1)
Synthetic raster 100 (0) 100 (0) 100 (0)

Representative examples of the reconstructions and residual images of the AE model
for the different test datasets of real defects and synthetic anomalies can be seen in
Figures 5–8. The kernel residual image analysis results, both average and standard de-
viation, at FPR 0.1% is also indicated. All of the AE models were trained with the SNI
perturbation dataset.
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(a) (b) (c)

I  = 0.337

(d)

 = 1.000

(e)

Figure 5. Results for the high contrast real defects test dataset; (a) is input, (b) is the residual image,
residual analysis kernel results are for average kernel in (c) and standard deviation in (d). Above the
patch is the maximum value indicated. Kernels above thresholds are indicated in (e) with blue (〈I〉
and σ), green (σ), and orange (〈I〉).

(a) (b) (c)

I  = 0.061

(d)

 = 1.000

(e)

Figure 6. Results for the mid-contrast real defects test dataset. (a) is input, (b) is the residual image,
residual analysis kernel results are for average kernel in (c) and standard deviation in (d). Above the
patch is the maximum value indicated. Kernels above thresholds are indicated in (e) with blue (〈I〉
and σ), green (σ), and orange (〈I〉).

(a) (b) (c)

I  = 0.086

(d)

 = 1.000

(e)

Figure 7. Results for the synthetic partial circle inclusion test dataset. (a) is input, (b) is the residual
image, residual analysis kernel results are for average kernel in (c) and standard deviation in (d).
Above the patch is the maximum value indicated. Kernels above thresholds are indicated in (e) with
blue (〈I〉 and σ), green (σ), and orange (〈I〉).

(a) (b) (c)

I  = 0.130

(d)

 = 1.000

(e)

Figure 8. Results for the exotic synthetic raster anomaly. (a) is input, (b) is the residual image, residual
analysis kernel results are for average kernel in (c) and standard deviation in (d). Above the patch is
the maximum value indicated. Kernels above thresholds are indicated in (e) with blue (〈I〉 and σ),
green (σ), and orange (〈I〉).

The residual image analysis results (〈I〉 and σ kernels) can also be indicated as his-
tograms to indicate the level of separation between the classes. The histograms for the
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high contrast real defects test dataset can be seen in Figure 9, AE model trained with
SNI perturbations.
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Figure 9. Residual image analysis results for the high contrast real defects test dataset. The 〈I〉
distribution is given in (a), the σ distribution in (b), and in (c) σ versus 〈I〉 is plotted. Observe that
the histograms have different scales than the scatter plot.

Curves over TPR and accuracy versus FPR, and precision versus TPR for the high and
mid-contrast real defect test datasets are shown in Figure 10. All AE models trained with
the SNI perturbation dataset.
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Figure 10. Receiver operating characteristics curve (a), accuracy versus false positives (b), and
precision versus true positives (c) for the high and mid-contrast real defects test datasets. All values
are in fractions.

The results of a sliding window analysis with the AE model trained with the SNI
perturbation dataset are shown in Figure 11. Note that the model is not intended for an
exact-as-possible segmentation, but rather it is intended to classify a patch-level, i.e., if it
is to contain only an accepted weld or not; it offers some rough localization of where it
did not.

A second OOD detector use case for the AE model, when it is trained to reconstruct
both the accepted welds as well as the defects dataset, was also explored. In this setting,
the AE model is trained to reconstruct also the defects as opposed to the first scenario or
use case, where the AE maps perturbed inputs to the clean counterpart. The typical use
case could be to utilize it as a pre-filtering OOD detection step before conducting, e.g., a
conventional two-class pixel-wise segmentation with, e.g., a UNet. The residual image
analysis results can be seen in Figure 12. No perturbation dataset was utilized, since the SNI
dataset was suspected to overlap too much with the real defects. In this case, ideally, the
kernel analysis scalars for the test defect dataset should overlap around a narrow peak close
to zero. We do not reach as good results as for the case in Figure 9, with only weld okay as
the training dataset, where instead the kernel scalars should be as separated as possible.
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However, even with this model, we can correctly detect (at 0.1% FPR) the synthetic raster
test anomaly as something unexpected (that a human should look into) as can be seen in
Figure 13.

(a)

(b)

(c)

Figure 11. AE model sliding window results for the test dataset. Trained with the SNI perturbation
dataset. (a) is the original input, (b) is the residuals, and (c) is the kernel analysis results thresholded
with thresholds resulting in an FPR at 0.1% on a patch level.

0.01 0.02 0.03
I

0

50

100

150

200

250

300

De
ns

ity
 [a

.u
.]

0.01 0.02 0.03 0.04
0

50

100

150

200

250

De
ns

ity
 [a

.u
.]

0.02 0.00 0.02 0.04
I

0.02

0.00

0.02

0.04

0.06

(a) (b) (c)

Train Test, ok Test, defectTrain Test, ok Test, defectTrain Test, ok Test, defect

Figure 12. Kernel residual analysis results for the AE model trained on accepted welds as well as
those with defects, but without any perturbation dataset. The 〈I〉 distribution is given in (a), the σ

distribution in (b), and in (c) σ versus 〈I〉 is plotted.
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I  = 0.041
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 = 0.100

(e)

Figure 13. Results for the AE model trained on both accepted welds and those with defects, a
synthetic raster anomaly test sample. (a) is input, (b) is the residual image, the residual analysis
kernel results are for average kernel in (c) and standard deviation in (d). Above the patch is the
maximum value indicated. Kernels above thresholds are indicated in (e) with blue (〈I〉 and σ), green
(σ), and orange (〈I〉).
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5. Discussion and Conclusions

In this study, we explored if an autoencoder-based convolutional deep neural network
model could be utilized as an OOD detector algorithm within the application field of
industrial X-ray image-based data interpretation. Such an OOD detector could then be
interpreted as a quantitative estimation of the results’ confidence with respect to OOD data,
or unexpected input data.

The model was trained unsupervised, to model (as in the reconstruction) the accepted
training data, and forced to not reconstruct data dissimilar (called perturbation dataset)
to the training data. The training was similar to the training of denoising autoencoders,
with the perturbation dataset consisting of structural noise, similar to known and un-
known/unexpected material imperfections or other anomalies.

The algorithm was explored on a real experimental dataset of X-ray images of metal
fusion welds, with both defect-free accepted welds as well as welds with material defects.
In addition, datasets with synthetic hypothetical material defects and anomalies were
derived and used for training and testing.

On the real test data we achieved, at an image patch level, true positive rates were
around 90% and false positive rates were around 0.1%. With only the real defects in
the perturbation training dataset, the synthetic examples of unexpected input data were
detected at rates close to 100% with a low spread in the results. The best results were
achieved with the perturbation dataset consisting only of synthetic OOD data examples.
Indicating that the model could even be trained without real defect indications, only
requiring real data representing the accepted welds. However, this is not entirely true since
knowledge of the characteristics of potential material defects and anomalies (human input)
were implicitly utilized when deriving the synthetic data.

The potential dangers of using supervised learners (e.g., UNet-like segmentation
models) for interpreting industrial X-ray inspection images within quality critical appli-
cations was also exemplified. For this, a convolutional deep neural network model was
derived and trained–supervised to classify patches as representing an okay weld or not.
The network was trained on different datasets, with different similarities to the synthetic
test data, to indicate the behavior of the in-distribution versus out-of-distribution test data.
It was shown that the supervised–trained model (as expected) did show low average true
positive rates with a large spread between the uniquely trained models for the synthetic
test data not similar to the training data distribution.

Since (by nature) the unsupervised model is set up as a one-class classifier and the
supervised as a binary classifier, one should be careful not to draw too many conclusions
on the differences between the results for the two different models. However, the results
of the in-distribution test data can be compared, and our results indicate that the model
trained unsupervised was better or equal in performance compared to the model trained–
supervised—this is an important comparison to make since most of the earlier studies on
the same or similar datasets explored supervised–trained models.

In summary, we show that it is possible to train an autoencoder, unsupervised, with
structural noise representing OOD data, to achieve the performances in the in-distribution
test data that are higher than or similar to a model trained–supervised within the application
field of industrial X-ray image interpretation. The model trained unsupervised was shown
to excel over the model trained–supervised with respect to correctly detecting unexpected
OOD test data. The proposed OOD detector can potentially facilitate the safe operation
of computer-assisted data interpretation of industrial X-ray images within quality-critical
industries. A trustworthy OOD detector would facilitate safe efficient cooperation between
artificial intelligence and the human operator, where the AI could handle mundane data
analysis of data similar to training and leave the OOD flagged data to the human operator.

Further research on this subject is required. For example, in order to evaluate and
improve its suitability for industrial utilization, larger experimental datasets are required
with more inherent variations. Moreover, larger datasets of unexpected OOD data are
required in order to better understand how the performance of the unsupervised–trained



Metals 2022, 12, 1963 18 of 20

model (e.g., sharpness in classification borders, true positive rates, and false positive rates)
is affected by the perturbation dataset training approach.
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