Components of the Shear Modulus and Their Dependence on Temperature and Plastic Deformation of a Metallic Glass
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Shear Modulus Components of Predeformed Samples in the Initial and Relaxed States
3.2. Separation of Non-Relaxation Components of the Shear Modulus
3.3. Separation of the Relaxation Component and Its Dependence on Plastic Deformation
3.4. Dependence of the Shear Modulus Components on the Defect Concentration and Plastic Deformation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Li, R.; Hua, N.; Zhang, T. Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. J. Mater. Res. 2011, 26, 2072. [Google Scholar] [CrossRef]
- Wang, J.; Kaban, I.; Levytskyi, V.; Li, R.; Han, J.; Stoica, M.; Gumeniuk, R.; Nielsch, K. Ultra-high strength Co–Ta–B bulk metallic glasses: Glass formation, thermal stability and crystallization. J. Alloy. Compd. 2021, 860, 158398. [Google Scholar] [CrossRef]
- Ding, J.; Cheng, Y.Q.; Ma, E. On the origin of elastic strain limit of bulk metallic glasses. Appl. Phys. Lett. 2014, 104, 011912. [Google Scholar] [CrossRef]
- Qu, R.T.; Liu, Z.Q.; Wang, R.F.; Zhang, Z.F. Yield strength and yield strain of metallic glasses and their correlations with glass transition temperature. J. Alloy. Compd. 2015, 637, 44. [Google Scholar] [CrossRef]
- Khonik, V.A.; Zelenskiy, V.A. High-temperature ductility and superplasticity of metallic glasses. Phys. Met. Metall. 1989, 67, 196. [Google Scholar]
- Nieh, T.G.; Wadsworth, J. Homogeneous deformation of bulk metallic glasses. Scr. Mater. 2006, 54, 387. [Google Scholar] [CrossRef]
- Zhang, Y. Inhomogeneous deformation in metallic glasses. Mater. Sci. Technol. 2008, 24, 379. [Google Scholar] [CrossRef]
- Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R. 2013, 74, 71. [Google Scholar] [CrossRef]
- Spaepen, F. A Microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977, 25, 407. [Google Scholar] [CrossRef]
- Argon, A.S. Plastic deformation in metallic glasses. Acta Metall. 1979, 27, 47. [Google Scholar] [CrossRef]
- Khonik, V.A.; Spivak, L.V. On the nature of low temperature internal friction peaks in metallic glasses. Acta Mater. 1996, 44, 367. [Google Scholar] [CrossRef]
- Vinogradov, A.; Seleznev, M.; Yasnikov, I. Dislocation characteristics of shear bands in metallic glasses. Acta Mater. 2017, 130, 138. [Google Scholar] [CrossRef]
- Seleznev, M.; Vinogradov, A. Shear bands topology in the deformed bulk metallic glasses. Metals 2020, 10, 374. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.S. Glassy metals. Rep. Prog. Phys. 1980, 43, 353. [Google Scholar] [CrossRef]
- Khonik, V.A.; Kitagawa, K.; Mikhailov, A.V.; Vinogradov, A.Y. The role of structural relaxation in the plastic flow of metallic glasses. J. Appl. Phys. 1998, 83, 5724. [Google Scholar] [CrossRef]
- Dyre, J.C. The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 2006, 78, 953. [Google Scholar] [CrossRef] [Green Version]
- Makarov, A.S.; Konchakov, R.A.; Mitrofanov, Y.P.; Kretova, M.A.; Kobelev, N.P.; Khonik, V.A. A simple kinetic parameter indicating the origin of the relaxations induced by point(-like) defects in metallic crystals and glasses. J. Phys. Condens. Matter. 2020, 32, 495701. [Google Scholar] [CrossRef] [PubMed]
- Makarov, A.S.; Afonin, G.V.; Qiao, J.C.; Glezer, A.M.; Kobelev, N.P.; Khonik, V.A. Determination of the thermodynamic potentials of metallic glasses and their relation to the defect structure. J. Phys. Condens. Matter. 2021, 33, 435701. [Google Scholar] [CrossRef] [PubMed]
- Makarov, A.; Afonin, G.; Zakharov, K.; Vasiliev, A.; Qiao, J.; Kobelev, N.; Khonik, V. Boson heat capacity peak and its evolution with the enthalpy state and defect concentration in a high entropy bulk metallic glass. Intermetallics 2022, 141, 107422. [Google Scholar] [CrossRef]
- Granato, A.V. Interstitialcy model for condensed matter states of face-centered-cubic metals. Phys. Rev. Lett. 1992, 68, 974. [Google Scholar] [CrossRef]
- Granato, A.V. Interstitialcy theory of simple condensed matter. Eur. J. Phys. B 2014, 87, 18. [Google Scholar] [CrossRef]
- Khonik, V.A.; Kobelev, N.P. Metallic glasses: A new approach to the understanding of the defect structure and physical Properties. Metals 2019, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Afonin, G.V.; Mitrofanov, Y.P.; Kobelev, N.P.; Khonik, V.A. Shear modulus relaxation and thermal effects in a Zr65Cu15Ni10Al10 metallic glass after inhomogeneous plastic deformation. J. Exp. Theor. Phys. 2020, 131, 582. [Google Scholar] [CrossRef]
- Makarov, A.S.; Afonin, G.V.; Aronin, A.S.; Kobelev, N.P.; Khonik, V.A. Thermodynamic approach for the understanding of the kinetics of heat effects induced by structural relaxation of metallic glasses. J. Phys. Condens. Matter. 2022, 34, 125701. [Google Scholar] [CrossRef] [PubMed]
- Vasil’ev, A.N.; Gaĭdukov, Y.P. Electromagnetic excitation of sound in metals. Sov. Phys. Usp. 1983, 26, 952. [Google Scholar] [CrossRef]
- Gordon, C.A.; Granato, A.V. Equilibrium concentration of interstitials in aluminum just below the melting temperature. Mater Sci. Eng. A 2004, 370, 83. [Google Scholar] [CrossRef]
- Montanari, R.; Varone, A. Synergic role of self-interstitials and vacancies in indium melting. Metals 2015, 5, 1061. [Google Scholar] [CrossRef]
- Mitrofanov, Y.P.; Wang, D.P.; Makarov, A.S.; Wang, W.H.; Khonik, V.A. Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity. Sci. Rep. 2016, 6, 23026. [Google Scholar] [CrossRef] [PubMed]
- Mitrofanov, Y.P.; Kobelev, N.P.; Khonik, V.A. Different metastable equilibrium states in metallic glasses occurring far below and near the glass transition. J. Non-Cryst. Sol. 2018, 497, 48. [Google Scholar] [CrossRef]
- Kobelev, N.P.; Khonik, V.A. Theoretical analysis of the interconnection between the shear elasticity and heat effects in metallic glasses. J. Non-Cryst. Sol. 2015, 427, 184. [Google Scholar] [CrossRef]
- Makarov, A.S.; Mitrofanov, Y.P.; Afonin, G.V.; Kobelev, N.P.; Khonik, V.A. Shear susceptibility—A universal integral parameter relating the shear softening, heat effects, anharmonicity of interatomic interaction and “defect” structure of metallic glasses. Intermetallics 2017, 87, 1. [Google Scholar] [CrossRef]
- Makarov, A.S.; Afonin, G.V.; Mitrofanov, Y.P.; Konchakov, R.A.; Kobelev, N.P.; Qiao, J.C.; Khonik, V.A. Evolution of the activation energy spectrum and defect concentration upon structural relaxation of a metallic glass determined using calorimetry and shear modulus data. J. Alloy. Compd. 2018, 745, 378. [Google Scholar] [CrossRef]
- Afonin, G.V.; Mitrofanov, Y.P.; Makarov, A.S.; Kobelev, N.P.; Khonik, V.A. On the origin of heat effects and shear modulus changes upon structural relaxation and crystallization of metallic glasses. J. Non-Cryst. Sol. 2017, 475, 48. [Google Scholar] [CrossRef]
- Donati, C.; Douglas, J.F.; Kob, W.; Plimpton, S.J.; Poole, P.H.; Glotzer, S.C. Stringlike cooperative motion in a supercooled liquid. Phys. Rev. B 1998, 80, 2338. [Google Scholar] [CrossRef] [Green Version]
- Nordlund, K.; Ashkenazy, Y.; Averback, R.S.; Granato, A.V. Strings and interstitials in liquids, glasses and crystals. Europhys. Lett. 2005, 71, 625. [Google Scholar] [CrossRef] [Green Version]
- Konchakov, R.A.; Makarov, A.S.; Kobelev, N.P.; Glezer, A.M.; Wilde, G.; Khonik, V.A. Interstitial clustering in metallic systems as a source for the formation of the icosahedral matrix and defects in the glassy state. J. Phys. Condens. Matter. 2019, 31, 385703. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarov, A.; Kretova, M.; Afonin, G.; Kobelev, N.; Khonik, V. Components of the Shear Modulus and Their Dependence on Temperature and Plastic Deformation of a Metallic Glass. Metals 2022, 12, 1964. https://doi.org/10.3390/met12111964
Makarov A, Kretova M, Afonin G, Kobelev N, Khonik V. Components of the Shear Modulus and Their Dependence on Temperature and Plastic Deformation of a Metallic Glass. Metals. 2022; 12(11):1964. https://doi.org/10.3390/met12111964
Chicago/Turabian StyleMakarov, Andrei, Marina Kretova, Gennadii Afonin, Nikolai Kobelev, and Vitaly Khonik. 2022. "Components of the Shear Modulus and Their Dependence on Temperature and Plastic Deformation of a Metallic Glass" Metals 12, no. 11: 1964. https://doi.org/10.3390/met12111964
APA StyleMakarov, A., Kretova, M., Afonin, G., Kobelev, N., & Khonik, V. (2022). Components of the Shear Modulus and Their Dependence on Temperature and Plastic Deformation of a Metallic Glass. Metals, 12(11), 1964. https://doi.org/10.3390/met12111964