Optimize the Mechanical Properties of Al0.6CoCrFeNi High-Entropy Alloys by Thermo-Mechanical Processing
Abstract
:1. Introduction
2. Experiments
3. Results
3.1. Phase Identification
3.2. Microstructure Evolution
3.3. EBSD Characterizations
3.4. Mechanical Properties
4. Discussions
4.1. Twins and Deformation Mechanisms of FCC and BCC Phases
4.2. Strengthening Mechanisms
4.2.1. Intrinsic Strength
4.2.2. Solid-Solution Strengthening
4.2.3. Dislocation Hardening
4.2.4. Grain-Boundary Strengthening
4.2.5. Secondary-Phase Hardening
4.2.6. The Total Nanohardness of Al0.6CoCrFeNi in Different States
4.2.7. Precipitation-Strengthening Calculations Assuming the Shearing Mechanism
5. Conclusions
- (1)
- The as-cast Al0.6CoCrFeNi HEA was composed of FCC matrix, B2, and minor BCC phases. The B2 phase changed its morphology from needle-like to droplet-shaped when annealed at T ≥ 900 °C. The disordered BCC phase disappeared upon annealing. The observed microstructure agrees with the CALPHAD calculation.
- (2)
- The EBSD maps illustrated that cold rolling introduced deformation twins. Recovery and partial recrystallization took place in the 900 °C/1 h annealed variant because low-angle grain boundaries remained. The 1100 °C/2 h annealed variant was fully recrystallized. This was demonstrated by the predominance of high-angle grain boundaries and the formation of annealing twins.
- (3)
- Nanoindentation hardness tests showed that (1) annealing heat treatments did not affect the nanoindentation hardness of the B2 phase but obviously decreased the hardness of the FCC phase to a more significant extent; and (2) the nanoindentation hardness of BCC/B2 phase is significantly greater than that of the FCC phase.
- (4)
- The yield stress of the cold-rolled Al0.6CoCrFeNi HEA gradually decreased with increased annealing time at a fixed temperature and increased annealing temperature. Annealing at 1000 °C for 1 h yields an optimal balance of yield stress (886 MPa) and elongation (21%).
- (5)
- Simple models were used to predict the contributions to the yield stress of the FCC and B2/BCC dual-phase Al0.6CoCrFeNi HEA from the solid solution, from dislocation generation and interactions, from grain boundaries and other phase boundaries, and from precipitations and other dispersed phases. A decent agreement was obtained between model prediction and experiment.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Micheal, J.-W.Y.; Gao, C.; Liaw, P.K.; Zhang, Y. High Entropy Alloys Fundamentals and Application; Springer International Publishing: New York City, NY, USA, 2016. [Google Scholar]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Zhu, C.; Lu, Z.; Nieh, T. Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 2013, 61, 2993–3001. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Jiang, B.; Li, C.; Hao, J.; Li, X.; Dong, C.; Nieh, T. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Mater. 2018, 147, 213–225. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiao, J.; Ma, S.; Gao, M.; Yang, H.; Chen, M.; Zhang, A. A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater. Des. 2016, 96, 10–15. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Yang, B.; Xie, X.; Brechtl, J.; Dahmen, K.A.; Liaw, P.K. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 2017, 119, 33–45. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Chuang, M.-H.; Tsai, M.-H.; Wang, W.-R.; Lin, S.-J.; Yeh, J.-W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317. [Google Scholar] [CrossRef]
- Hemphill, M.; Yuan, T.; Wang, G.; Yeh, J.; Tsai, C.; Chuang, A.; Liaw, P. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 2012, 60, 5723–5734. [Google Scholar] [CrossRef]
- von Rohr, F.; Winiarski, M.; Tao, J.; Klimczuk, T.; Cava, R.J. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor. Proc. Natl. Acad. Sci. USA 2016, 113, E7144–E7150. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.C.; Zhang, C.; Gao, P.; Zhang, F.; Ouyang, L.Z.; Widom, M.; Hawk, J.A. Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 2017, 21, 238–251. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Ma, L.; Wang, L.; Nie, Z.; Wang, F.; Xue, Y.; Zhou, J.; Cao, T.; Wang, Y.; Ren, Y. Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction. Acta Mater. 2017, 128, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.R.; Lee, K.S.; Lee, J.S.; Kim, J.Y.; Chang, H.J.; Na, Y.S. Dual-phase high-entropy alloys for high-temperature structural applications. J. Alloys Compd. 2017, 728, 1235–1238. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755. [Google Scholar] [CrossRef] [Green Version]
- He, J.Y.; Wang, H.; Huang, H.L.; Xu, X.D.; Chen, M.W.; Wu, Y.; Liu, X.J.; Nieh, T.G.; An, K.; Lu, Z.P. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016, 102, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, H.Y.; Miyamoto, H.; Cho, K.; Nagase, T. Formation of ultrafine-grained microstructure in Al0.3CoCrFeNi high entropy alloys with grain boundary precipitates. Mater. Lett. 2017, 199, 120–123. [Google Scholar] [CrossRef]
- Klimova, M.; Stepanov, N.; Shaysultanov, D.; Chernichenko, R.; Yurchenko, N.; Sanin, V.; Zherebtsov, S. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling. Materials 2018, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Li, C.; Feng, T.; Zhang, Y.; Sha, G.; Lewandowski, J.; Liaw, P.K. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 2017, 123, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.; Stanford, N.; Hodgson, P.; Fabijanic, D. Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy. Scr. Mater. 2017, 129, 30–34. [Google Scholar] [CrossRef]
- Joseph, J.; Stanford, N.; Hodgson, P.; Fabijanic, D.M. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys. J. Alloys Compd. 2017, 726, 885–895. [Google Scholar] [CrossRef]
- Kumar, N.; Ying, Q.; Nie, X.; Mishra, R.; Tang, Z.; Liaw, P.; Brennan, R.; Doherty, K.; Cho, K. High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy. Mater. Des. 2015, 86, 598–602. [Google Scholar] [CrossRef]
- Kao, Y.-F.; Chen, T.-J.; Chen, S.-K.; Yeh, J.-W. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 2009, 488, 57–64. [Google Scholar] [CrossRef]
- CompuTherm. 2018. Available online: http://www.computherm.com/ (accessed on 20 September 2021).
- Scheil, E. Commments on the layer crystal formation. Z. Für Met. 1942, 34, 70–72. [Google Scholar]
- Wang, W.-R.; Wang, W.-L.; Wang, S.-C.; Tsai, Y.-C.; Lai, C.-H.; Yeh, J.-W. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 2012, 26, 44–51. [Google Scholar] [CrossRef]
- Wang, W.-R.; Wang, W.-L.; Yeh, J.-W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 2014, 589, 143–152. [Google Scholar] [CrossRef]
- Li, Z.; Tasan, C.C.; Pradeep, K.G.; Raabe, D. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 2017, 131, 323–335. [Google Scholar] [CrossRef]
- Askeland, D.R. The Science and Engineering of Materials; Springer International Publishing: New York City, NY, USA, 2003. [Google Scholar]
- Wu, Y.; Cai, Y.; Wang, T.; Si, J.; Zhu, J.; Wang, Y.; Hui, X. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 2014, 130, 277–280. [Google Scholar] [CrossRef]
- Juan, C.-C.; Tsai, M.-H.; Tsai, C.-W.; Hsu, W.-L.; Lin, C.-M.; Chen, S.-K.; Lin, S.-J.; Yeh, J.-W. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Mater. Lett. 2016, 184, 200–203. [Google Scholar] [CrossRef]
- Tang, Z.; Senkov, O.N.; Parish, C.; Zhang, C.; Zhang, F.; Santodonato, L.; Wang, G.; Zhao, G.; Yang, F.; Liaw, P.K. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater. Sci. Eng. A 2015, 647, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Lilensten, L.; Couzinié, J.-P.; Bourgon, J.; Perrière, L.; Dirras, G.; Prima, F.; Guillot, I. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater. Res. Lett. 2016, 5, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; He, J.; Huang, H.; Wang, H.; Lu, Z.; Liu, C.T. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 2015, 60, 1–8. [Google Scholar] [CrossRef]
- Chen, J.; Yao, Z.; Wang, X.; Lu, Y.; Wang, X.; Liu, Y.; Fan, X. Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 2018, 210, 136–145. [Google Scholar] [CrossRef]
- Shun, T.-T.; Du, Y.-C. Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J. Alloys Compd. 2009, 479, 157–160. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, J.; Wang, Z.; Yang, H.; Zhang, Y. Microstructural features and tensile behaviors of the Al0.5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing. Mater. Des. 2015, 88, 1057–1062. [Google Scholar] [CrossRef]
- Chen, L.; Wei, R.; Tang, K.; Zhang, J.; Jiang, F.; Sun, J. Ductile-brittle transition of carbon alloyed Fe40Mn40Co10Cr10 high entropy alloys. Mater. Lett. 2019, 236, 416–419. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, M.C.; Ma, S.G.; Yang, H.J.; Wang, Z.H.; Ziomek-Moroz, M.; Qiao, J.W. Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 high-entropy alloy. Mater. Sci. Eng. A 2015, 645, 163–169. [Google Scholar] [CrossRef]
- Wani, I.S.; Bhattacharjee, T.; Sheikh, S.; Lu, Y.P.; Chatterjee, S.; Bhattacharjee, P.P.; Guo, S.; Tsuji, N. Ultrafine-Grained AlCoCrFeNi2.1Eutectic High-Entropy Alloy. Mater. Res. Lett. 2016, 4, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Zhou, Y.; Zhang, L.; Du, X.; Li, B. A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties. Mater. Lett. 2018, 216, 144–146. [Google Scholar] [CrossRef]
- He, J.; Liu, W.; Wang, H.; Wu, Y.; Liu, X.; Nieh, T.; Lu, Z. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014, 62, 105–113. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D. The effect of grain size and grain orientation on deformation twinning in a Fe–22wt.% Mn–0.6wt.% C TWIP steel. Mater. Sci. Eng. A 2010, 527, 3552–3560. [Google Scholar] [CrossRef]
- Yang, H.K.; Zhang, Z.J.; Tian, Y.Z.; Zhang, Z.F. Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels. Mater. Sci. Eng. A 2017, 690, 146–157. [Google Scholar] [CrossRef]
- Grässel, L.K.O.; Frommeyer, G.; Meyer, L.W. High strength Fe-Mn-(Al, Si) TRIP TWIP steels development, properties, application. Int. J. Plast. 2000, 16, 1391–1409. [Google Scholar] [CrossRef]
- Wu, Z.; Parish, C.; Bei, H. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. J. Alloys Compd. 2015, 647, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-M.; Lin, Y.; Wu, F. EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy. J. Alloys Compd. 2017, 724, 198–207. [Google Scholar] [CrossRef]
- Christian, J.W.; Mahajan, S. Deformation Twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Mahajan, S.; Pande, C.S.; Imam, M.A.; Rath, B.B. Formation of annealing twins in f.c.c. crystals. Acta Mater. 1997, 45, 2633–2638. [Google Scholar] [CrossRef]
- Rao, J.C.; Diao, H.Y.; Ocelík, V.; Vainchtein, D.; Zhang, C.; Kuo, C.; Tang, Z.; Guo, W.; Poplawsky, J.D.; Zhou, Y.; et al. Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal. Acta Mater. 2017, 131, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Bönisch, M.; Wu, Y.; Sehitoglu, H. Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature. Sci. Rep. 2018, 8, 10663. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Wen, H.; Hu, T.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J.; Schoenung, J.M. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar] [CrossRef]
- Wen, H.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J. Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 2013, 61, 2769–2782. [Google Scholar] [CrossRef]
- Schuh, C.; Nieh, T.; Iwasaki, H. The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 2003, 51, 431–443. [Google Scholar] [CrossRef]
- Toda-Caraballo, I. A general formulation for solid solution hardening effect in multicomponent alloys. Scr. Mater. 2017, 127, 113–117. [Google Scholar] [CrossRef]
- Toda-Caraballo, I.; Rivera-Díaz-Del-Castillo, P.E. Modelling solid solution hardening in high entropy alloys. Acta Mater. 2015, 85, 14–23. [Google Scholar] [CrossRef]
- Courtney, T.H. Mechanical Behavior of Materials. Mater. Today 2009, 12, 44. [Google Scholar]
- Meyers, M.A.; Chawla, K.K. Mechanical Behavior of Materials; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Lu, Y.; Gao, X.; Jiang, L.; Chen, Z.; Wang, T.; Jie, J.; Kang, H.; Zhang, Y.; Guo, S.; Ruan, H.; et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017, 124, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wu, Y.; He, J.; Nieh, T.; Lu, Z. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 2013, 68, 526–529. [Google Scholar] [CrossRef]
- Heo, N.H.; Heo, Y.-U.; Kwon, S.K.; Kim, N.J.; Kim, S.-J.; Lee, H.-C. Extended Hall–Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors. Met. Mater. Int. 2018, 24, 265–281. [Google Scholar] [CrossRef]
- Seidman, D.N.; Marquis, E.A.; Dunand, D.C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater. 2002, 50, 4021–4035. [Google Scholar] [CrossRef]
- Booth-Morrison, C.; Dunand, D.C.; Seidman, D.N. Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater. 2011, 59, 7029–7042. [Google Scholar] [CrossRef]
- Ardell, A.J. Precipitation hardening. Metall. Trans. A 1985, 10, 151–391. [Google Scholar] [CrossRef]
- Pollock, A.A.T. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall. Mater. 1992, 40, 1–30. [Google Scholar] [CrossRef]
Condition | Phase | As-Cast | 900 °C/1 h | 1000 °C/1 h | 1100 °C/1 h | 900 °C/2 h | 1000 °C/2 h | 1100 °C/2 h |
---|---|---|---|---|---|---|---|---|
Experiment (volume percent) | FCC | ~67 | ~73 | ~77 | ~79 | ~75 | ~77 | ~81 |
B2 | ~19 | ~17 | ~16 | ~21 | ~25 | ~22 | ~19 | |
BCC | ~14 | ~10 | ~7 | ~0 | ~0 | ~0 | ~0 | |
CALPHAD (mole percent) | FCC | 75 | 78 | 82 | 75 | 78 | 82 | |
B2 | 25 | 22 | 18 | 22 | 22 | 18 |
States | Phase | Al | Co | Cr | Fe | Ni |
---|---|---|---|---|---|---|
As-cast | FCC | 12.7 | 25.9 | 24.6 | 23.8 | 13 |
BCC | 11.5 | 17.3 | 36.2 | 25.9 | 9.1 | |
B2 | 29.4 | 18.2 | 9.8 | 10.5 | 32.1 | |
900 °C/1 h | FCC | 7.4 | 24.0 | 25.8 | 25.9 | 17.3 |
BCC | 11.9 | 18.6 | 33.6 | 26.3 | 9.6 | |
B2 | 28.5 | 17.6 | 10.5 | 11.1 | 32.3 | |
900 °C/2 h | FCC | 7.3 | 24.6 | 26.8 | 26.8 | 14.5 |
B2 | 31.9 | 15.6 | 8.2 | 10.6 | 33.7 | |
1000 °C/1 h | FCC | 7.9 | 25.2 | 24.2 | 26.4 | 16.5 |
BCC | 12.8 | 18.1 | 32.5 | 26.8 | 9.8 | |
B2 | 30.2 | 18.1 | 10.3 | 11.9 | 29.5 | |
1000 °C/2 h | FCC | 6.7 | 26.4 | 25.7 | 25.5 | 15.8 |
B2 | 28.7 | 15.7 | 10.6 | 12.1 | 32.9 | |
1100 °C/1 h | FCC | 6.3 | 24.5 | 25.6 | 26.1 | 17.5 |
B2 | 28.9 | 20.1 | 8.2 | 11.4 | 31.4 | |
1100 °C/2 h | FCC | 7.9 | 24.1 | 25.1 | 26.0 | 16.9 |
B2 | 28.6 | 15.7 | 10.1 | 14.3 | 31.3 |
σ0 (MPa) | Solid-Solution Strengthening (MPa) | Dislocation Hardening (MPa) | Grain-Boundary Strengthening (MPa) | Precipitation Hardening (MPa) | |
---|---|---|---|---|---|
Equations | [37] | ||||
CR40 | 162 | 189 | 698 | 159 | 0 |
900 °C/1 h | 160 | 133 | 240 | 76 | 261 |
1100 °C/2 h | 158 | 5 | 8 | 85 | 61 |
Variables | Meaning | Values | Unit |
---|---|---|---|
M | Taylor factor | =3.06 for FCC crystal; =2.75 for BCC crystal | Dimensionless |
G | Shear modulus | =67 for FCC phase; =88 for BCC phase | GPa |
εs | Determined from elastic mismatch and atomic size mismatch | =0.0924 for FCC phase; =5.0599 for BCC phase | Dimensionless |
c | Atomic fraction of Al | =12.7, 7.4, and 7.9 for FCC in CR40, 900 °C/1 h, and 1100 °C/2 h; =11.5, 11.9 for BCC in CR40, 900 °C/1 h | Dimensionless |
α | Lattice parameter | =0.359 for FCC phase; =0.288 for BCC phase | nm |
b | Magnitude of the Burgers vector | =0.254 for FCC phase | nm |
ρ | Dislocation density | =1012 for FCC phase in CR40; =1010 in 900 °C/1 h; =108 in 1100 °C/2 h | 1/cm2 |
kg | Hall–Petch coefficient | =226 for FCC phase; =617 for BCC phase | |
kt | Quasi Hall–Petch coefficient | =226 | |
d | Average grain diameter | =20 for CR40; =14 for 900 °C/1 h; =7 for 1100 °C/2 h | μm |
λ | Average twin boundary spacing | =8 for CR40; =3 for 900 °C/1 h; =4 for 1100 °C/2 h | μm |
ν | Poison ratio | =0.28 | Dimensionless |
Mean radius of a circular cross-section in a random plane for spherical particles | =24.495 for 900 °C/1 h; =408.248 for 1100 °C/2 h | nm | |
Inter-precipitates spacing | =115.108 for 900 °C/1 h; =843.559 for 1100 °C/2 h | nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Tan, Y.; Qiao, J.; Hawk, J.A.; Zhang, Y.; Gao, M.; Liaw, P.K. Optimize the Mechanical Properties of Al0.6CoCrFeNi High-Entropy Alloys by Thermo-Mechanical Processing. Metals 2022, 12, 178. https://doi.org/10.3390/met12020178
Yang H, Tan Y, Qiao J, Hawk JA, Zhang Y, Gao M, Liaw PK. Optimize the Mechanical Properties of Al0.6CoCrFeNi High-Entropy Alloys by Thermo-Mechanical Processing. Metals. 2022; 12(2):178. https://doi.org/10.3390/met12020178
Chicago/Turabian StyleYang, Huijun, Yaqin Tan, Junwei Qiao, Jeffrey A. Hawk, Yong Zhang, Michael Gao, and Peter K. Liaw. 2022. "Optimize the Mechanical Properties of Al0.6CoCrFeNi High-Entropy Alloys by Thermo-Mechanical Processing" Metals 12, no. 2: 178. https://doi.org/10.3390/met12020178
APA StyleYang, H., Tan, Y., Qiao, J., Hawk, J. A., Zhang, Y., Gao, M., & Liaw, P. K. (2022). Optimize the Mechanical Properties of Al0.6CoCrFeNi High-Entropy Alloys by Thermo-Mechanical Processing. Metals, 12(2), 178. https://doi.org/10.3390/met12020178