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Abstract: In recent years, to reduce cars costs, research has been conducted on dual-phase steels
with low manganese content (below 1.0%). This study investigated the influence of technological
parameters of heat treatment (heating temperature and cooling medium) on such steels’ structures
and mechanical properties. The ferrite-martensitic structures, specific for dual-phase steels, were
obtained by intercritical quenching: heating of samples (made of alloys with 0.511% Mn, respectively
0.529% Mn) to temperatures located between critical points Ac1 and Ac3, followed by cooling in water
without mechanical agitation and in water activated with ultrasounds at the frequency of 59 kHz.
Through metallographic analyses and tensile tests, it was possible to determine the volume fraction
of martensite, the ferrite microhardness, the ultimate tensile strength, the total elongation, and with
the obtained data, their variations with the heating temperature and the cooling medium were
established. Raising the heating temperature (between 760 ◦C and 820 ◦C) and using ultrasounds
at cooling increased the volume fraction of martensite and the ferrite microhardness. This fact
has increased the mechanical strength and reduced the deformability of the studied dual-phase
steels. Intercritical quenching in water activated with ultrasounds provided values of structural
characteristics and mechanical properties very close to those obtained by quenching in water without
mechanical agitation, but was accomplished using a higher-temperature heating. The results obtained
were compared with those determined in previous research, performed on dual-phase steel with
1.90% Mn.

Keywords: dual-phase steel; low manganese content; intercritical quenching; ultrasounds; ferrite;
martensite; mechanical properties

1. Introduction

The dual-phase steels are metallic materials increasingly used by the automotive
industry to make some structural car body components that can be damaged during an
accident. These steels’ structure is formed by a soft and ductile ferrite matrix in which
martensite (10 to 35%) and a small amount of residual austenite (1 to 2%) are homogeneously
dispersed. They have, in general, a percentage of carbon less than 0.12%, a content of
manganese between 1.0% and 3.5%, and elements such as V, Cr, Mo, Si, Nb, Ti are to be
found in chemical composition in proportions situated below 1%; in the recent years, to
reduce cars costs, research has been conducted on dual-phase steels in which the manganese
content was less than 1% (0.5 to 1% Mn) [1–14].

One of the technologies applied to produce these steels is intercritical quenching; the
structure obtained, for the given chemical composition, is the result of combined action
of the technological parameters of heat treatment (heating temperature, cooling rate etc.),
their influence on the structure is directly reflected on mechanical properties as well. The
heating temperature in the intercritical range (Ac1–Ac3) and the stability of austenite during
transformation through the martensitic mechanism influence the amount of austenite
obtained by heating and, finally, the volume fraction of martensite in the structure of the
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dual-phase steel. The cooling rate from temperatures in the intercritical range determines
the type of transformation products due to the cooling process. The transformation almost
entirely of austenite to martensite is possible by using a high cooling rate; such a cooling
rate allows obtaining a ferrite-martensite structure even in the case of steels with low
carbon and alloying elements. On the other hand, increasing the cooling rate leads to
higher internal stresses during the martensitic transformation and a higher density of
dislocations in ferrite, which greatly influences the mechanical properties of these steels. A
moderate cooling rate, whose value is limited only by the danger of achieving the pearlitic
transformation, leads to obtaining a significant volume fraction of “new ferrite”, with a low
number of interstitial atoms (C, N) in the crystal lattice (which increases the deformability
of this constituent) [1–5,11–22].

During quenching, the contact between the workpiece and the cooling medium is par-
ticularly significant since large temperature differences cause the calefaction phenomenon
(formation of a vapor film between the piece and the cooling medium), which changes
the cooling capacity of the medium. Remarkable results were obtained by applying the
ultrasonic oscillations to the medium where the quenching occurs. This destroys vapor
films, thereby ensuring a more prolonged contact between the workpiece and the cooling
medium. In this way, the cooling rate is increased, leading to a much stronger cooling, the
quenching with ultrasounds being more efficient than the classical one [3,23–28].

The dual-phase steels have been studied at the “Stefan cel Mare” University of Suceava
since 1992, and over the years research has been conducted on several categories of al-
loys [3,25,27]. In recent years, studies have been carried out on dual-phase steels with
low manganese content [26,28–30]; in this article results obtained for two such alloys
are presented.

2. Materials and Methods

The chemical compositions of the two studied alloys (denoted DP-A and DP-B) were
determined with a FOUNDRY-MASTER Xpert Spectrophotometer (Oxford Instruments
Analytical GmbH, Uedem, Germany). These are presented in Table 1. The initial struc-
tures of these alloys were composed of 85.30% ferrite and 14.70% pearlite for DP-A steel,
respectively 83.90% ferrite and 16.10% pearlite for DP-B steel [26,28,30].

Table 1. The chemical composition of the DP-A and DP-B steels.

Steel Chemical Elements (wt.%)

DP-A

C Mn Si P S Cr Mo
0.087 0.511 0.091 0.0036 0.0039 0.029 0.005

Ni Al Cu V W Fe -
0.049 0.003 0.082 0.003 0.003 balance -

DP-B

C Mn Si P S Cr Mo
0.101 0.529 0.091 0.0032 0.0037 0.036 0.005

Ni Al Cu V W Pb Fe
0.015 0.003 0.015 0.003 0.003 0.011 balance

To obtain, by intercritical quenching, a ferrite-martensite structure that falls within the
definition of dual-phase steels, it is necessary to know the critical points Ac1 and Ac3. The
values of these critical points of the two steels studied were determined by dilatometric
analyses performed with a DIL 402 Expedis-SUPREME Dilatometer (NETZSCH Gerätebau
GmbH, Uedem, Germany), they being: Ac1 = 724.00 ◦C and Ac3 = 899.40 ◦C for DP-A steel,
Ac1 = 725.10 ◦C and Ac3 = 898.90 ◦C for DP-B steel [31]. Then, samples from the two alloys
(DP-A and DP-B) were subjected to intercritical quenching, heat treatments that had the
following technological parameters [26,28,30]:

• the heating temperatures (TQ) were between 760 and 820 ◦C (760, 780, 800, and
820 ◦C), values established according to the position of the critical points Ac1 and Ac3;
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• the heating was conducted at constant values of the TQ temperature for 30 min
(in an electric laboratory furnace Nabertherm LT 40/11/P330, Nabertherm GmbH,
Uedem, Germany);

• the cooling was conducted in an LBS 2 bath (Falc Instruments S.R.L., Treviglio, Italy),
in two ways: in water with the temperature of 20 ◦C, without mechanical agitation
(denoted W) and in water with the temperature of 20 ◦C, activated with ultrasounds,
at the frequency of 59 kHz (denoted US59).

Next, on the quenched samples, by metallographic analyses, the volume fraction of
martensite and the ferrite microhardness were determined. The surfaces needed metallo-
graphic analyses (seven samples for each version of intercritical quenching) were obtained
by processing with Hot Mounting Press OPAL 410 and Grinding/Polishing Machine
SAPHIR 530 (ATM GmbH, Uedem, Germany). The ferrite-martensite structures were
highlighted by the following metallographic etchant: picric acid 4% solution in alcohol
(etching time—60 s) and then nital 2% (etching time—5 s). After the metallographic etchant,
the martensite appeared as “dark” regions on micrographics, and the ferrite beads as the
“white” regions. The analyses were performed with a LEXT OLS4100 Laser Microscope,
(Olympus Corporation, Tokyo Japan) and OLYMPUS Stream MOTION Image Analysis
Software, as well as a MicroHardness Tester DuraScan 70 (Emco Prüfmaschinen-Test
GmbH, Kuchl, Austria), the test load of the Vickers indenter being 0.098 N (0.01 kgf); the
ferrite microhardness was determined in compliance with EN ISO 6507-1:2018, “Metal-
lic materials—Vickers hardness test—Part 1: Test method”. Five micrographs and five
microhardness measurements were performed on each metallographic sample [26,28,30,32].

The mechanical properties obtained by the heat treatments presented above (ultimate
tensile strength and total elongation) were determined by tensile tests performed on
a QUASAR 600 universal testing machine (Cesare GALDABINI SpA, Treviglio, Italy),
following the provisions of EN ISO 6892-1:2019, “Metallic material—Tensile testing—Part
1: Method of test at room temperature”; cylindrical specimens with a diameter of 5 mm
and initial length between markers (in the calibrated portion) 25 mm were used; batches
consisting of ten specimens for each heating temperature and quench medium. Tensile
tests were also conducted on ten specimens with the initial ferrite-pearlite structure [28,30].

The results obtained for the two dual-phase steels with low manganese content (DP-
A and DP-B) were compared with those determined from previous research [3,23,25],
performed on a steel with 1.90% Mn (0.09% C, 1.90% Mn, 0.06% Si, 0.10% Cr, 0.09% Ni,
0.03% Mo, 0.012% Al, 0.15% Cu, 0.019% P, 0.011% S), alloy noted DPS1.90Mn in this article.
Compared to the DP-A and DP-B alloys, the higher manganese content determined a lower
position of the critical points Ac1 and Ac3 (Ac1 = 703 ◦C, Ac3 = 839 ◦C). For this reason,
the intercritical quenching of DPS1.9Mn steel (in water with a temperature of 20 ◦C) was
performed from temperatures between 740 and 820 ◦C.

3. Results and Discussions
3.1. Influence of Intercritical Quenching on the Structure of DP-A and DP-B Steels

Since the values of the mechanical characteristics of dual-phase steel depend on
the structure [1–5,10–12,19,21], first, the influence of the technological parameters of the
intercritical quenching (heating temperature and cooling medium) on the volume fraction of
martensite (VM) and the ferrite microhardness (HV0.01) was analyzed; the results obtained
for the two dual-phase studied are presented in Tables 2 and 3, Figures 1 and 2, [26,28,30].

Table 2. Volume fraction of martensite and ferrite microhardness for DP-A steel (average values).

TQ (◦C) 760 780 800 820

Cooling Medium W US59 W US59 W US59 W US59
VM (%) 20.19 23.74 23.83 28.15 29.41 32.96 36.98 40.71
HV0.01 170.43 181.51 182.37 188.11 188.54 191.94 192.11 193.46
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Table 3. Volume fraction of martensite and ferrite microhardness for DP-B steel (average values).

TQ (◦C) 760 780 800 820

Cooling medium W US59 W US59 W US59 W US59
VM (%) 22.10 25.24 25.51 28.98 30.40 33.82 38.13 42.21
HV0.01 184.77 194.12 194.63 198.55 199.28 202.25 202.53 203.67
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Figure 2. Variation of ferrite microhardness with heating temperature and cooling medium: (a) DP-A
steel; (b) DP-B steel.

Raising the TQ temperature in the intercritical range (Ac1–Ac3) has caused an increase
in the amount of austenite obtained by heating, a phase which, by quenching in water
without mechanical agitation (W) and in water activated with ultrasounds (US59), has
turned into martensite. Thus, the rise in heating temperature (TQ) has led to an increase
in the volume fraction of martensite (VM) in structures of the DP-A and DP-B steels
(Tables 2 and 3, Figure 1).

Also, for same heating temperatures, the use of ultrasounds in cooling has led to
increasing the volume fraction of martensite (VM), Tables 2 and 3, Figure 1; for example, in
the DP-A steel samples, for TQ = 760 ◦C, VM increased with 3.55 percent (from 20.19% to
23.74%), and in the samples of DP-B steel, for TQ = 820 ◦C, VM increased with 4.08 percent
(from 38.13% to 42.21%). The ultrasonic quenching medium eliminates one of the most
dangerous phases of the cooling (calefaction), enhances heat exchange between product
and cooling medium, and reduce the quenching deformations; on the other hand, the
additional energy intake increases the volume fraction of martensite formed at quenching
and reduces the amount of residual austenite [3,23–28].

The mechanical properties of dual-phase steel (in particular those of strength) are
also influenced by the carbon content of martensite (CM), not only by the amount of this
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phase (VM) [2,5,10–12,26,31,32]. The carbon content of martensite (CM) can be determined
by X-ray diffraction analysis, or it can be calculated with different equations, one of them
being proposed by G.R. Speich and R.L. Miller [2,28,33]:

CM = Co +
ρF
ρM

·
(

100
VM

− 1
)
· (Co − CF) (1)

In which: CM is the carbon content of the martensite; Co—the carbon content of
the steel; CF—the carbon content of the ferrite, (CF = 0.002%); VM—the volume frac-
tion of martensite; ρF—the density of the ferrite; ρM—the density of the martensite,
(ρF/ρM = 1.025) [2,28,34]; using this equation, values of the carbon content of martensite
(CM) ranged from 0.431% for VM = 20.19% (TQ = 760 ◦C/W) and 0.213% for VM = 40.71%
(TQ = 820 ◦C/US59), to the DP-A steel and from 0.458% for VM = 22.10% (TQ = 760 ◦C/W) and
0.239% for VM = 42.21% (TQ = 820 ◦C/US59), to the DP-B steel [28].

The martensite obtained by quenching from 760 ◦C in water without mechanical
agitation (W) was in the form of small islands, situated mainly at the boundaries of the
ferrite grains (Figure 3), most of them being located in regions which, in initial structure,
was pearlite; this, by heating over the critical point Ac1, was transformed into austen-
ite, from which, through quenching, martensite resulted. This transformation mecha-
nism led to a volume fraction of martensite (VM) of approx. 14.70% in the case of DP-A
steel, respectively 16.10% in the case of DP-B steel, percentages that constitute the equiv-
alent of the amount of pearlite from the initial structures. The difference of martensite
from 5.49% up to 20.19% for DP-A steel, respectively 6.0% up to 22.10% for DP-B steel
(Tables 2 and 3), resulted from austenite obtained by the allotropic transformation of
the ferrite; the ultrasonic quenching medium increased the cooling rate, which led to
an increase in the volume fraction of martensite (VM) obtained in this way. Raising the
heating temperature (TQ) between 760 and 820 ◦C caused an increase in the amount of
austenite that was formed by the allotropic transformation of the ferrite, which led to
the rise in the volume fraction of martensite that resulted from quenching, both in water
without mechanical agitation (W), and in water activated with ultrasounds (US59). At
the same time, with the rising of the volume fraction of martensite in structures (and de-
creasing the amount of ferrite), an increase in the size of the martensite islands is observed
(Figures 3 and 4). Furthermore, a tendency of their connection and the formation of a
network around the ferrite grains are marked [26,28].
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The tensile tests applied to the intercritical quenched specimens led to the results in
Tables 4 and 5, Figures 5–10; for the specimens with the initial structure (ferrite-pearlite
structure), the tensile tests determined to the following average values of the ultimate
tensile strength (Rm) and total elongation (A5): Rm = 556.12 MPa and A5 = 26.14% for DP-A
steel, respectively Rm = 560.65 MPa and A5 = 25.93% for DP-B steel [28,30]. The ferrite-
martensite structures obtained by intercritical quenching ensured (for both studied alloys)
higher ultimate tensile strengths and smaller total elongations than those determined in
the specimens with ferrite-pearlite structures.

Table 4. Ultimate tensile strength and total elongation for DP-A steel (average values).

TQ (◦C) 760 780 800 820

Cooling medium W US59 W US59 W US59 W US59
Rm (MPa) 631.32 658.86 661.49 682.24 684.38 700.78 701.97 708.34

A5 (%) 24.46 22.67 22.01 20.73 20.08 19.23 19.04 18.67

Table 5. Ultimate tensile strength and total elongation for DP-B steel (average values).

TQ (◦C) 760 780 800 820

Cooling medium W US59 W US59 W US59 W US59
Rm (MPa) 637.92 669.43 672.75 695.51 698.62 714.92 718.37 727.66

A5 (%) 23.29 21.38 20.95 19.84 19.29 18.68 18.59 18.23
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The increase in the volume fraction of martensite (VM) and ferrite microhardness
(HV0.01) due to the rise in quenching temperature (TQ) has led to an increase of the ultimate
tensile strength (Rm) and the decrease of the total elongation (A5) of the
two dual-phase steels studied (Tables 4 and 5, Figures 5 and 6).
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Also, for same heating temperatures, cooling in water activated with ultrasounds
(US59) has determined to increase the strength characteristics (Rm) and decrease deforma-
bility (A5), compared to the values obtained at quenching in water without mechanical
agitation (W); this effect was also generated by the increase in the volume fraction of
martensite (VM) and ferrite microhardness (HV0.01), Tables 4 and 5, Figures 5 and 6. For
example, to the specimens made of DP-A steel, for TQ = 760 ◦C, the ultimate tensile strength
(Rm) increased with 27.54 MPa, from 631.32 MPa to 658.86 MPa, and the total elongation
(A5) decreased with 1.79 percent, from 24.46% to 22.67%; to the specimens made of DP-B
steel, for TQ = 800 ◦C, the ultimate tensile strength (Rm) increased with 16.30 MPa, from
698.62 MPa to 714.92 MPa, and the total elongation (A5) decreased with 0.61 percent, from
19.29% to 18.68% [28].
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In dual-phase steels, the variation of the volume fraction of martensite (VM) has
two contradictory effects on the mechanical characteristics: on the one hand, for ex-
ample, the strength properties increase with increasing the volume fraction of marten-
site (VM), and on the other hand, the carbon content of martensite (CM) decreases; and
hence, its strength decreases with an increase in the volume fraction of martensite (VM)
[5,10–12,28,33,34]. The variation of the mechanical characteristics of the two steels (Rm,
A5) depending on the volume fraction of martensite in the structure (VM) is not linear
(Figures 7 and 8), being influenced by the carbon content of martensite (CM). For VM
between 20.19% (CM = 0.431%) and approx. 28% (CM = 0.311%), to the DP-A steel and for
VM between 22.10% (CM = 0.458%) and approx. 30% (CM = 0.337%), to the DP-B steel, the
variation of Rm and A5 is more intense, than for VM between 28% (CM = 0.311%) and 40.71%
(CM = 0.213%), respectively between 30% (CM = 0.337%) and 42.21% (CM = 0.239%) [28].

Unlike the nonlinear variation of the mechanical characteristics according to the
volume fraction of martensite (VM), their evolution (Rm, A5) according to the ferrite micro-
hardness (HV0.01) is almost linear (Figures 9 and 10) [28].

The data in Tables 2–5 show (for both steels studied) that the additional energy intake
assured by the ultrasounds with the frequency of 59 kHz determined obtaining of values
for the volume fraction of martensite (VM), ferrite microhardness (HV0.01), ultimate tensile
strength (Rm), and total elongation (A5) is very close to those obtained by quenching in water
(W), but with heating at a higher TQ temperature. For example, the results achieved by
quenching TQ = 760 ◦C/US59 are very close to those obtained by quenching TQ = 780 ◦C/W,
and the results from quenching TQ = 780 ◦C/US59 are very close to those from quenching
TQ = 800 ◦C/W [28].

The slightly higher carbon and manganese content of DP-B steel (compared to DP-A
steel) determined (for both cooling mediums used) the obtaining of slightly higher values
of the volume fraction of martensite in the structure and the ferrite microhardness, with
effect on the ultimate tensile strength and total elongation (Tables 2–5).

Comparing the results obtained for the DP1.90Mn steel (Table 6) with those determined
for DP-A and DP-B steels (Tables 2–5), significant differences were observed between the
data sets, differences determined, in particular, by the very different manganese content of
the two categories of steels [3,25,27,30].

Table 6. Volume fraction of martensite and mechanical properties for the DP1.90Mn steel
(average values).

TQ (◦C) 740 760 780 800 820

VM, (%) 25.10 42.51 57.10 68.32 78.10
Rm (MPa) 883 957 1018 1086 1135

A5 (%) 16.68 15.18 14.04 12.99 12.06

In DP1.9Mn steel, the position of the critical points Ac1 and Ac3 led to the obtaining,
by intercritical heating, of a higher amount of austenite, which determined the formation,
on quenching, of a higher volume fraction of martensite. Thus, for the temperature range
760–820 ◦C, the volume fraction of martensite in the structure was higher by percentages
between 22.32 and 41.12%. Because of this, the values of ultimate tensile strength and total
elongation at DP-A and DP-B steels were much different from those of DPS1.90Mn steel
(Figures 11 and 12); the total elongation was higher with percentages between 9.28 and 6.98
and the ultimate tensile strength was lower with values between 325.68 and 433.03 MPa.
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4. Conclusions

The increase, due to the rise in intercritical quenching temperature, of the volume
fraction of martensite and ferrite microhardness in the structures has led to an increase
of the ultimate tensile strength and the decrease of the total elongation of the dual-phase
steels with low manganese content studied.

For the same heating temperatures, the use of the ultrasounds at cooling has led, also,
to an increase in the volume fraction of martensite and ferrite microhardness in structures,
resulting in a rise in the mechanical strength and a decrease in the deformability of the steels,
because the ultrasounds at quenching eliminate the calefaction, enhance heat exchange
between specimens and cooling medium, and provide an additional energy intake of the
martensitic transformation.

The martensite obtained by quenching from temperatures close to the critical point
Ac1 (for both cooling mediums used) was in the form of small islands, situated mainly at
the boundaries of the ferrite grains. At the same time, with the rising of the volume fraction
of martensite in structures, an increase in the size of these islands is observed; furthermore,
a tendency of their connection and the formation of a network around the ferrite grains
are marked.

The additional energy intake from the quenching in water activated with ultrasounds,
led to mechanical properties values, very close to those obtained by quenching in water
without mechanical agitation, but conducted using a higher temperature heating.

The slightly higher carbon and manganese content of one of the studied steels has
determined (for both cooling mediums used) the obtaining of slightly higher values of the
volume fraction of martensite in the structure and the ferrite microhardness, with effect on
the ultimate tensile strength and total elongation.
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The dual-phase steels with low manganese content (with 0.511 Mn, respectively
0.529% Mn) had mechanical characteristics (Rm, A5) much different from those obtained
for steel with 1.90% Mn (“classic” dual-phase steel).
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