
����������
�������

Citation: Cavaliere, P.; Perrone, A.;

Silvello, A.; Stagnoli, P.; Duarte, P.

Integration of Open Slag Bath

Furnace with Direct Reduction

Reactors for New-Generation

Steelmaking. Metals 2022, 12, 203.

https://doi.org/10.3390/met12020203

Academic Editor: Alexander McLean

Received: 4 January 2022

Accepted: 20 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Integration of Open Slag Bath Furnace with Direct Reduction
Reactors for New-Generation Steelmaking
Pasquale Cavaliere 1,* , Angelo Perrone 1, Alessio Silvello 2 , Paolo Stagnoli 3 and Pablo Duarte 4

1 Department of Innovation Engineering, University of Salento, Via per Arnesano, 73100 Lecce, Italy;
angelo.perrone@unisalento.it

2 Thermal Spray Center CPT, Universitat de Barcelona, 08007 Barcelona, Spain; asilvello@cptub.eu
3 TENOVA S.p.A., Via Gerenzano 58, 21053 Castellanza, Italy; paolo.stagnoli@tenova.com
4 TENOVA HYL, San Nicolás de los Garz 66450, Mexico; pablo.duarte@tenova.com
* Correspondence: pasquale.cavaliere@unisalento.it

Abstract: The present paper illustrates an innovative steel processing route developed by employing
hydrogen direct reduced pellets and an open slag bath furnace. The paper illustrates the direct
reduction reactor employing hydrogen as reductant on an industrial scale. The solution allows for
the production of steel from blast furnace pellets transformed in the direct reduction reactor. The
reduced pellets are then melted in open slag bath furnaces, allowing carburization for further refining.
The proposed solution is clean for the decarbonization of the steel industry. The kinetic, chemical
and thermodynamic issues are detailed with particular attention paid to the slag conditions. The
proposed solution is also supported by the economic evaluation compared to traditional routes.
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1. Introduction

The direct reduction of iron oxide technologies is considered the best available tech-
nique able to greatly reduce the carbon dioxide emissions of steel plants [1]. Mainly, this is
obtained by employing natural gas instead of coke or coal [2]. Many approaches have been
followed in the development of these solutions; a summary of them is shown in Figure 1.
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Figure 1. Main developed direct reduction processes.

Today, direct reduction processes account for over 70% of the total production of direct
reduced iron (DRI) and hot briquetted iron (HBI) based on natural gas being used as the
main reducing agent. The natural gas is converted to the reducing agents, mainly carbon
monoxide and hydrogen, acting as reducing sources of iron oxides. The main industrially
diffused technologies are Midrex and HYL-Energiron [3]. The energy consumption of the
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whole process is essentially dependent on metallurgical, chemical and physical properties
of the raw materials [4]. This is amplified in the direct reduction processes because all the
transformations act at the solid state. Taking into account the further operations of steel
making, ash and sulfur quantities influence the electric arc furnace (EAF) operations [5], so
natural gas needs pre-heating in order to be more active for sulfur removal. As a matter of
fact, high-quality ores are required for the DRI-EAF steelmaking route [6]. Obviously, the
direct reduction reactors are largely located in those regions characterized by large natural
gas production or by NG (natural gas) low price availability. A more recently developed
solution is the employment of hydrogen instead of natural gas for the reduction of iron
ores. The hydrogen direct reduction of iron ores produces mainly iron and water vapor but
also CO2 [7,8]. This vapor is optimal for employment in high-temperature electrolyzers
for further hydrogen production. Now, more than 90% of hydrogen is produced via fossil
sources through various technologies generating carbon dioxide that needs to be treated,
captured and stored [9]. In this way, the best means of producing iron with the lowest
impact on the environment is the production of hydrogen through electrolysis [10,11]. By
employing hydrogen produced via green energy sources as the reducing agent, carbon
dioxide emissions can be reduced by 300 kg/t.

The integration of open slag bath furnaces (OSBFs) with direct reduction reactors
is an innovative and interesting solution for emission reduction, energy saving and cost
reduction. It is believed (and sometimes demonstrated in the literature) that OSBFs are very
useful in treating those materials difficult to be melted and processed with an electric arc
furnace. So, the OSBF is highly versatile for steel processing in a wide range of potential raw
materials to be employed in the direct reduction reactors. In order to precisely describe the
OSBFs, it is fundamental to underline those differences with respect to the submerged-arc
furnaces. In this case, the furnace electrodes are submerged in the pre-reduced iron and
carbon mixture. Electrodes provide the power in the order of 20 MW to the furnace, and
the burden resistance allows for the transformation of power into heat in order to melt the
material. As a consequence of the difference in the density of the slag and of the metals,
the first flows toward the electrodes while the second flows to the bottom of the furnace
(Figure 2).
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In the present paper, we present an innovative solution for steelmaking production
based on hydrogen-assisted direct reduced iron and subsequent melting and refining
in open slag bath furnaces. All the presented results belong to industrial experiences
performed on real-scale plants.
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2. Experimental Procedure

The employed direct reduction plant was an HYL (TENOVA) reactor (TENOVA
Castellanza, Italy) with a production capacity of 900,000 t/year. The employed reducing
gas was hydrogen produced via high-temperature water electrolysis; the water vapor from
the DR (direct reduction) reactor is employed for electrolysis.

The system is designed in order to reduce blast furnace (BF)-grade pellets, and the
composition of the employed raw material is listed in Table 1.

Table 1. BF-grade pellets employed in the present study.

Raw Materials Analyses (% by Mass)

Fe2O3 93.09 min
FeO 0.1 max
MnO 0.22 max
SiO2 1.93 max

Al2O3 1.76 max
S 0.012 max
P 0.01 max

TiO2 0.55 max
CaO 1.72 -
MgO 0.39 -
Na2O 0.08 -
V2O5 0.07 -
K2O 0.08 -

The employed OSBF furnace was produced by TENOVA Pyromet (Figure 3).
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The main characteristics were: internal shell diameter 20 m; +/−110 MVA AC furnace;
75 MW peak power input; 3 single phase transformers; 6 feed bins and 12 feed chutes; MgO
conductive lining; 1700 mm Soderberg Electrode (TENOVA, Castellanza, Italy) (Figure 4).
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Figure 4. Soderberg electrodes.

Autofurn™ furnace control system. The gas cleaning is performed through Wet gas
scrubbing plant, twin venturi plant design. Chemical energy contained in off-gas is used as
an energy source for the DRI reactor.

Figure 5 shows the TENOVA-HYL hydrogen-based direct reduction plant employed
in the present study.
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Due to the high volatility of hydrogen, the pressure employed into the reactor chamber
is fundamental for the whole process efficiency. As a matter of fact, the reactor described in
Figure 5 has an operating pressure of 6–8 bar, reducing iron ores at a temperature of around
1050 ◦C. The high pressure of this configuration solves the problem of the gas volatility
leading to a remarkable increase in the process efficiency with respect to room pressure
configurations. In addition, the described configuration allows for the employment of
different reducing gases with different percentages of hydrogen additions. This allows
for high flexibility in the use of many energy sources. The iron ore dimensions are in the
range 3.2–18 mm. As shown in Figure 5, the plant is equipped with a carbon capture and
storage/utilization device in the case of natural gas addition to the hydrogen reducing
agent. The schematic of the carbon dioxide removal and utilization is shown in Figure 6.
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In this configuration, carbon dioxide is captured at a rate of 45% and total emissions
to the atmosphere reach 30%. The remaining carbon finishes in the direct reduced iron.
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Figure 7 shows the comparison of carbon fluxes in the plant schematized in Figure 5
with the equivalent MIDREX plant.
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3. Results and Discussion

The main unit operations of the process comprise DR-shaft, reformer, top gas scrubber,
product gas compressors, and heat exchangers. The reformer allows for the treatment
of the natural gas giving the energy required for the syngas production. The top gas
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scrubber allows one to reduce the water vapor inside the reactor in order to control the
temperature during the reducing operations. As a matter of fact, temperature and pressure
inside the reactor can be easily controlled. NG can be injected at different process stages:
NG as input to the reforming gas, as energy input for heating the reformer or reduction
gas heater as well as directly to the bustle gas before entering the shaft furnace. In this
configuration, hydrogen is injected into the natural gas before the treatment in the reformer.
Once hydrogen is employed instead of natural gas, the reformer is replaced by a gas heater
that is a combination of a gas burner, mixer, and heat exchanger model (this is the main
solution designed for the Midrex plants). The energy supplied to the heater can also be
provided by NG. Both the modelled configurations are based on the same assumptions
in order to have comparable results; these are the same solid input material compositions
and amounts as well as the same basic assumptions for the DR shaft (e.g., reduction
degree, carburization behavior, temperature distribution, and so on), top gas scrubber
(temperatures and pressure levels) and gas burner (excess air). In these configurations,
about 30% of the NG can be replaced by hydrogen without any process changes. Once
hydrogen is added to the natural gas, carbon monoxide decreases in the reducing flow.
In fact, if natural gas is employed, carbon monoxide and hydrogen are produced in the
reformer; so, as the hydrogen addition is increased, less carbon monoxide is employed as
reducing gas. Only a small and constant amount of NG is added for the enrichment of the
bustle gas before entering the shaft. In the case of hydrogen directly injected in the reactor,
it needs to be previously heated as indicated before. The second schematic belongs to a
design for an input of about 95% hydrogen. In this case, natural gas is employed just to
retain the desired temperature levels and the carburation of the direct reduced iron. In fact,
if only hydrogen is employed, higher recirculating gas flows are necessary to retain the
required process temperatures.

Natural gas that is employed during the reforming operations, the enrichment for iron
carburization or the gas heating represents the main carbon source in the natural gas-based
direct reduction technology. In this configuration, the main carbon output is measured in
the reformer off-gas. About 124 kg C/t DRI, which is equivalent to about 453 kgCO2/tDRI,
is emitted in this section. In comparison, the carbon output of the DR-H2 process is almost
equally distributed between the DRI and stack emissions (released by using the top gas as
combustion gas for the heater), representing 17 and 11 kg C/tDRI, respectively. The main
carbon source in this case is also NG, which is required for maintaining the carbon content
of the DRI (Rechberger et al., 2020).

As mentioned, the TENOVA plant can work with different concentrations of hydrogen
in the feeding gas. The plant data as a function of the feeding gas composition are listed in
Table 2.

Table 2. DRI (direct reduced iron) properties and plant characteristics as a function of the gas
composition (MTZ is the metallization percentage).

100% NG 55% H2 73% H2

Product Hot DRI Cold DRI Hot DRI Cold DRI Cold DRI

DRI quality 94% MTZ, 3.5% C 94% MTZ, 3.5% C 94% MTZ, 2.5% C 94% MTZ, 1.3% C 94% MTZ, 1.0% C
NG consumption (GJ/tDRI) 9.96 9.58 3.97 3.9 2.27
H2 consumption (GJ/tDRI) - - 4.86 4.85 5.99

Total energy (GJ/tDRI) 9.96 9.58 8.83 8.75 8.26
Electricity consumption (kWh/tDRI) 73 73 60 63 60
Oxygen consumption (Nm3/tDRI) 58 57 - - -

H2/CO ratio in the reactor 50/12 50/12 70/5 70/5 75/4

By increasing the hydrogen content in the gas mixture, the total energy required for
the process decreases. So, high levels of electricity saving are recorded.

By employing this DRI reactor products as feedstock materials in the BF or in the
EAF, a strong reduction in the carbon dioxide emissions can be underlined. The results
compared to the traditional BF-BOF route are described in Figure 8.
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The HDRI (Hydrogen DRI) data refer to a gas mix with 70% H2 and 30% NG. All the
data take into account direct and indirect emissions with the assumption of 0.5 kgCO2/kWh.
The HDRI-EAF route has a carbon dioxide emissions level of 25% with respect to the
traditional BF-BOF route. Hydrogen ironmaking is then considered the future of this very
broad field [12].

When talking about the conversion of steel production from the traditional BF-BOF
route toward the DRI-based one, it is fundamental to focus on the raw material use,
availability and efficiency. First of all, by employing electric arc furnaces, the greenest way
is the steel recycling. Irrespective of this, many recent reports show that the concentration
of tramp elements in scrap is increasing and incompatible with many high-quality steel
grades, so dilution with virgin iron (HBI, DRI, Hot Metal, Pig Iron) is needed. An example
is given in Table 3 with special attention on copper concentration.

Table 3. EAF (electric arc furnace) data with different charge mixes for various liquid steel qualities.

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

Cu content range (liquid steel) ppm <500 700–1000 1000–1500 1500–2000 2500–3000
Cu content target (liquid steel) ppm 450 850 1250 1750 2750

Design charge mix Cu content Grade 1 Grade 2 Grade 3 Grade 4 Grade 5
Bushelling % 1000 ppm 12 7 18 25 0

Obsolete scrap % 3500 ppm 5 18 13 19 50
Obsolete scrap, heavy melting % 4000 ppm 1 1 1 1 1

Collected scrap % 4500 ppm 0 0 9 14 15
Internal return % 1500 ppm 4 4 4 4 4

HBI % 0 48 41 25 8 0
Pig iron % 0 30 30 30 30 30

EAF output data Grade 1 Grade 2 Grade 3 Grade 4 Grade 5
Tap to tap min 46 46 46 46 46

Electricity consumption kWh/t 404 398 387 377 368
Electrode consumption kg/t 1.18 1.16 1.14 1.11 1.1
Oxygen consumption Nm3/t 39.2 38.8 36.9 35.1 35.6
Carbon consumption kg/t 12 12 12 12 12

NG consumption Nm3/t 2.5 2.5 2.4 2.3 2.3
Lime kg/t 33.8 32.5 28.8 28.8 28.1

Dolomite kg/t 13.8 15.6 15.6 15 12.5
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All the data belong to a new-generation electric arc furnace with the following char-
acteristics: type, full-platform AC furnace with EBT and shell diameter of 8900 mm; tap
size, 240 t; yearly productivity, 2.2 Mt; transformer rating, 240 MVA; injection system,
17,000 Nm3/f of oxygen.

Now, recent studies show that the forecast for the availability of DR-grade pellets is
very flat. The ideal chemical composition for DR-grade pellets has Fe > 67%, SiO2 + Al2O3
+ TiO2 < 3% and p < 0.03%. The estimated seaborne DR-grade pellet demand and exports
are shown in Figure 9 [13].
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So, the availability of DR-grade pellets is limited with respect to global steel production.
So, the main obstacles to the direct conversion of steel production are mainly represented
by the availability of raw materials that meet the grade requirements. In fact, successful
and productive operation of a DR-EAF line requires using high-grade pellets (gangue less
than 5%, possibly basic). In addition, some limitations are indicated for fitting the DR-EAF
route in integrated plants. By considering the power grid, 250–300 t EAFs (matching the
tapping size of large converters to fit the existing CCM) fit transformers of 200–260 MVA,
which has massive impacts on the power grid for flicker generation. The integration of
BF and EAF is not so simple; the typical cycle times of BF and EAF do not match. EAF
typically requires 45–55 min and weekly maintenance stops for refractory repair/relining.
With regard to the installation, a 300 t EAF requires a building having at least 26 mt high
crane rails and sufficient lifting capacity to lift the complete shell (about 550 t considering
complete shell + lifting jig). Finally, by considering the plant logistic, the hot charge of DRI
in EAF implies that the DR module is close by, which is typically difficult if the EAF is to be
installed in an existing BOF shop to feed the existing downstream equipment.

Taking into account all the described aspects, a good solution appears to be the
integration of direct reduction with large smelting furnaces. In this way, BF-grade pellets
could be reduced in the DR reactor by overcoming the problem of the availability of high-
quality DR-grade pellets. The reduced material is known as DRP (Direct Reduced Pellets).
Their refining in the large OSBF allows one to solve the electricity and logistic limitations of
the use of EAFs. Given that scientific and technical information is limited, in the following
we will give a detailed description of this large smelting furnace.

It is generally observed that the smelting is easier and efficient as the slag liquidus
temperature and viscosity are low. These two aspects favor the material separation and flow
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by lowering the smelting energy requirements. Submerged arc furnaces (SAF) processes
are self-regulating, and the material gains heat up to the optimal conditions to flow. All the
reducing reactions take place on the formed coke bed. The temperatures strongly vary in
different zones, going from 1700 ◦C at the electrode tip to 500 ◦C in the upper part of the
burden. This is very important because the temperature distribution governs the process
efficiency. In this context, the electrode regulation is fundamental for both the furnace
productivity and the electrode life in service.

Other factors governing the temperature distributions are the current density, the slag
composition and the electrode to metal distance. As a matter of fact, as the basicity of the
slag increases, its melting point increases and consequently the reaction zone temperature
increases. Both temperature and basicity are fundamental for the evolution of the reduction
reaction kinetics. In general, an increase in temperature and basicity leads to reduction
increase and to reduction rate decrease [14].

The power input can be controlled by varying the electrode position; this allows one
to vary the arc resistance and thereby control the arc current. As the temperature increases,
the reduction degree increases if enough coke is provided for the CO formation. The carbon
also improves the bath conductivity by increasing the process efficiency.

The main difference between OSBF and SAF is that, in the first one, the electrodes
are positioned at the top of the furnace, so they are not submerged in the burden. This
arc configuration is known as brush arc or open arc. This arc is produced by varying the
position of the electrode tip (Figure 10).
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This technology offers some key advantages. The mixture inside the furnace does not
influence the electrical current because the electrodes are not submerged. For this reason,
fines can be also easily melted. On the contrary, in SAF the burden permeability can be a
limit for the process. Given that an open slag bath is created, slag and metal separate very
quickly and easily. The feed mixture influences the process chemistry (that can be precisely
controlled) and then the process efficiency. Given that the electrodes are not submerged, it
is possible to fix the power input; so, the burden properties do not influence the process.
Therefore, as a general behavior, precise and improved furnace control is allowed. The
reduction kinetics can be easily governed by the DRI percentage injection.

Irrespective of this, by operating with an open arch, some limitations should be under-
lined. The open bath area results in high heat losses through the roof. This leads to energy
dispersion and rapid refractories deterioration that can be reduced by appropriate cooling.
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The material is fed to the furnace through the feed pipes. The feed piles that are
produced are consumed from the bottom of the furnace as well as from the bottoms of the
piles. The combination of large power input and arching on the more refractory slag allows
for superheating the iron (Figure 11).
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As the reaction temperature increases, higher carbon contents are revealed in the iron
through dissolution and because of the reduction of the iron melting point. This tends to
increase the iron yield, since launder and ladle sculling are minimized. The OSBF also
achieves the improvement of sulfur removal thanks to the employed higher slag basicity:

[S] +
(

O2−
)
=
(

S2−
)
+ [O] (1)

The main reaction taking place in the OSBF is obviously the reduction of iron oxide:

FeO + C→ Fe + CO (2)

Some iron oxide normally remains unreduced and passes to the slag. In addition,
depending on the oxygen potential of the slag, the other reduction reactions involving the
additional charge compounds are:

TiO2 + 2C→ Ti + 2CO (3)

TiO2 +
1
2

C→ TiO1.5 +
1
2

CO (4)

SiO2 + 2C→ Si + 2CO (5)

V2O3 + 3C→ 2V + 3CO (6)

MnO + C→ Mn + CO (7)

Cr2O3 + 3C→ 2Cr + 3CO (8)

P2O5 + 5C→ 2P + 5CO (9)

Obviously, the reduction efficiency depends on the oxygen activity and on the furnace
temperature.
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OSBF is a successful method to produce hot metal from DRI and provides the option
to modify slag chemistry, thereby giving greater operational flexibility. OSBF large bath
surface area results in a lower slag rise, which reduces the risk of slag foaming. OSBF
has a much longer campaign life, reducing the logistic requirements associated with an
EAF relining (crane, building, frequent downtime, etc.). Electrical consumption is similar
(10% in difference), but the operating costs using S

Metals 2022, 12, x FOR PEER REVIEW 14 of 27 
 

 

in difference), but the operating costs using Sȍderberg electrodes used on OSBF compared 

to graphite electrodes is lower, although variable. The OSBF off-gas stream has a high CO 

content that can be used as fuel for the DRI process gas heater. The BF pellets to be 

employed in the DRI-OSBF route allows one to reduce the raw material cost by 20% (from 

150 to 120 USD/t from DR-grade to BF-grade pellets). In addition, it is demonstrated that 

the HM produced by the new DRP-OSBF can be merged with the flow coming from the 

existing BFs. HM analysis and tapping temperature can be adjusted to optimize 

compatibility and minimize CO2 generation. 

The last results belonging to a 2.5 Mt/year DRI reactor integrated with OSBF and BOF 

show the CO2 emissions reduction indicated in Figure 12. 

 

Figure 12. CO2 emissions for different routes. 

Moreover, the costs related to the operations are reduced because of the long-term 

steady-state operations of OSBF that require refractories replacement each 5–7 years. On 

the contrary, shell maintenance and repairs in EAFs are required after every 100–120 heats 

(every 2 weeks). A detailed analysis of the whole process shows the significance of 

employing the raw materials listed in Table 4. 

  

derberg electrodes used on OSBF
compared to graphite electrodes is lower, although variable. The OSBF off-gas stream
has a high CO content that can be used as fuel for the DRI process gas heater. The BF
pellets to be employed in the DRI-OSBF route allows one to reduce the raw material cost
by 20% (from 150 to 120 USD/t from DR-grade to BF-grade pellets). In addition, it is
demonstrated that the HM produced by the new DRP-OSBF can be merged with the flow
coming from the existing BFs. HM analysis and tapping temperature can be adjusted to
optimize compatibility and minimize CO2 generation.

The last results belonging to a 2.5 Mt/year DRI reactor integrated with OSBF and BOF
show the CO2 emissions reduction indicated in Figure 12.

Metals 2022, 12, 203 12 of 24 
 

 

𝑇𝑖𝑂ଶ + 12𝐶 → 𝑇𝑖𝑂ଵ.ହ + 12𝐶𝑂 (4)

𝑆𝑖𝑂ଶ + 2𝐶 → 𝑆𝑖 + 2𝐶𝑂 (5)𝑉ଶ𝑂ଷ + 3𝐶 → 2𝑉 + 3𝐶𝑂 (6)𝑀𝑛𝑂 + 𝐶 → 𝑀𝑛 + 𝐶𝑂 (7)𝐶𝑟ଶ𝑂ଷ + 3𝐶 → 2𝐶𝑟 + 3𝐶𝑂 (8)𝑃ଶ𝑂ହ + 5𝐶 → 2𝑃 + 5𝐶𝑂 (9)

Obviously, the reduction efficiency depends on the oxygen activity and on the 
furnace temperature. 

OSBF is a successful method to produce hot metal from DRI and provides the option 
to modify slag chemistry, thereby giving greater operational flexibility. OSBF large bath 
surface area results in a lower slag rise, which reduces the risk of slag foaming. OSBF has 
a much longer campaign life, reducing the logistic requirements associated with an EAF 
relining (crane, building, frequent downtime, etc.). Electrical consumption is similar (10% 
in difference), but the operating costs using Sȍderberg electrodes used on OSBF compared 
to graphite electrodes is lower, although variable. The OSBF off-gas stream has a high CO 
content that can be used as fuel for the DRI process gas heater. The BF pellets to be 
employed in the DRI-OSBF route allows one to reduce the raw material cost by 20% (from 
150 to 120 USD/t from DR-grade to BF-grade pellets). In addition, it is demonstrated that 
the HM produced by the new DRP-OSBF can be merged with the flow coming from the 
existing BFs. HM analysis and tapping temperature can be adjusted to optimize 
compatibility and minimize CO2 generation. 

The last results belonging to a 2.5 Mt/year DRI reactor integrated with OSBF and BOF 
show the CO2 emissions reduction indicated in Figure 12. 

 
Figure 12. CO2 emissions for different routes. 

Moreover, the costs related to the operations are reduced because of the long-term 
steady-state operations of OSBF that require refractories replacement each 5–7 years. On 
the contrary, shell maintenance and repairs in EAFs are required after every 100–120 heats 

Figure 12. CO2 emissions for different routes.

Moreover, the costs related to the operations are reduced because of the long-term steady-
state operations of OSBF that require refractories replacement each 5–7 years. On the contrary,
shell maintenance and repairs in EAFs are required after every 100–120 heats (every 2 weeks).
A detailed analysis of the whole process shows the significance of employing the raw
materials listed in Table 4.

As mentioned above, the temperature control is fundamental. Important energy losses
can be recorded once new material is fed into the furnace, the power is needed to melt
the solid new material and it cannot be sufficient to retain the optimal temperature in
the already meld bath. This severe condition (that can lead to a reduction of 30% in the
power efficiency) is known as “overcharged condition”. Obviously, the charge flow must
be precisely controlled because, on the contrary, insufficient charge can lead to undesired
increases in the temperature with consequent damage in the refractories. This aspect must
be carefully considered, and the main factors affecting the furnace reduction reactions are
the fed material chemistry, the temperature profile in the furnace and the secondary melting
effects. By considering the material chemistry, it is fundamental to continuously monitor
the material flow and the composition; both of these factors influence the reaction evolution.
The effect of the fresh ores’ flow on the furnace chemistry can lead to the following three
different conditions: overcharging accompanied with a drop in the energy provided to the
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material in the furnace, undercharging accompanied with an increase in the energy and
furnace temperature, and balanced charging accompanied with an optimal melting of the
material with sufficient power and heating.

Table 4. Raw materials employed in the DRP-OSBF route.

Raw Materials Analyses (% by Mass)

Iron Ore DRI

[Fe] 74.44
FeO 6.1
SiO2 11.75

Al2O3 0.57
MgO 1.03
CaO 0.51
TiO2 0.05
Mn 0.05
P 0.01
S 0.003

[C] 4.7
K2O 0.1

Na2O 0.1
LOI 0.47

Fluxes

Burnt lime Dolomite
Fe2O3 0.9 1.8
SiO2 3.4 1.9

Al2O3 1.7 1.9
MgO 1.2 35.4
CaO 92.7 59.1
H2O 0.5 0.5

Reductants

Coke Coal
FC 80.9 54.7

Volatiles 1.5 20.3
Ash 17 25

P 0.02 0.02
S 0.6 0.6

H2O 0.5 0.5

Ash

Fe2O3 7.3 7.9
SiO2 50.1 33.4

Al2O3 35.7 19.9
MgO 1.2 0.7
CaO 5.2 36
TiO2 0 0.9
K2O 0 0.9
P2O5 0.5 0.3

The precise correlation between these conditions and the charge feed rate is shown
in Figure 13 [15]. Essentially, if the power input is constant, once new material is fed
into the furnace, the energy provided to the melt decreases. In overcharged conditions,
the material tends to accumulate toward the electrodes by producing the bath shrinkage.
In these conditions, the temperature decreases and the reduction extent is consequently
delayed. The first indicator of this condition is that the percentage of titanium oxide under
reduction rapidly decreases. In addition, the equilibrium shifts toward more oxidizing
conditions and an increased percentage of iron oxide is revealed in the slag. In addition,
very different reacting conditions are experienced in the bath. Carbon accumulates by
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producing the refractoriness of the bath and the increase in its resistance. So, the slag control
is fundamental to the overall process. It is believed that the slag chemistry is governed by
the magnesium and calcium oxides as shown in Figure 14.
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The liquidus temperature is controlled by the CaO percentage irrespective of MgO/SiO2
ratio. By varying the CaO percentage from 20 to 14, the liquidus temperature decreases
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from 1600 to 1350 ◦C. The SiO2 percentage governs the spinel transformation and the
liquidus temperature (going from 1500 to 1350 ◦C if the percentage varies from 18 to 24%).
Taking into account the combined effect of CaO and MgO, it can be underlined that the slag
liquidus temperature varies from 1520 ◦C at 30% CaO and 0% MgO to the minimum of
1340 ◦C at 18% CaO and 12% MgO to a new increase at 1505 ◦C at 0% CaO and 30% MgO.

Many studies indicate that the ratio Ti3+/Ti4+ leads to the variation of the slag temper-
ature. The relationship between the ratio and the TiO2 content is shown in Figure 15.
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As can be seen from the figure below, the belt variation is due to the basicity of the
slag. This is a key factor for the present analyses. Generally, small variation in the basicity
of the slag leads to important differences in the liquidus temperature. The summary for
selected conditions is described in Figure 16.
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The most important reduction state variable is the slag basicity. Now, the liquidus
temperature is influenced by the contemporary effect of the slag basicity and oxidation
state of titanium; it can be concluded that the liquidus temperature in the case of slags
with high basicity (CaO/SiO2 = 1.4) decreased with increased reduction (higher Ti3+/Ti4+

ratios). As a consequence, in the case of low-basicity slags (CaO/SiO2 < 0.8), the liquidus
temperature decreases and the reduction increases. So, it is possible to modify the liquidus
temperature and the Ti3+/Ti4+ ratio by changing the basicity ratio. The furnace chemistry
is normally controlled by precisely controlling the material input and the electrode power.
During open slag bath furnace operations, product quality and productivity are governed
by the tuning of the power/feed ratio. First of all, the raw material composition sensitively
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influences the overall process. In addition, the feed rate leads to strong variations in the
energy consumption. Obviously, in the case of pre-reduced iron ores, the compositional
control is fundamental to the optimal evolution of the metal and slag transformations.

As a general trend, the integrated BF-BOF traditional route is not so sensitive to the
gangue elements percentage (SiO2, Al2O3 and TiO2) in comparison to the new developed
DR-EAF route. During BF transformations, the main percentage of the gangue compounds
are transferred to the slag (in the order of 150–300 kg/t) with a total basicity in the order of
1 and with very low iron content (around 1%). In this way, the silicon content in the liquid
metal transferred to the BOF falls in the range 0.2–0.7%. As a general trend, as the silicon
content in the BF decreases, energy demand decreases and the productivity increases [16].
Much research evidence (the most recent belonging to the blast furnace in Luleå) shows
that the minimum limit of SiO2 in BF pellets is around 2%.

Replacing sintered material with pellets has exceptional influences on the energy
consumption in the BF. In this configuration, the silica content in the pellets is not so
important for the BF route. On the other hand, in the case of the direct reduction route,
this content is very important because the process takes place at the solid state. In this
case, all the material is sent to the electric furnace, where the slag increases as the gangue
results higher.

The silicon in the hot metal and silica and other gangue elements in the DRI affect
the amount of slag formers that has to be added to the BOF or the EAF in order to reach
the MgO saturation of the slag, and the basicity is typically around 2 or more. The MgO
saturation varies with the temperature of the slag and composition as a function of the
different compounds, such as FeO, CaO, SiO2, P2O5, Al2O3, TiO2 and VO2. In this way, the
process must be controlled through lime addition, so, as the gangue content increases, the
lime percentage must be increased [17].

Pellet reduction is strongly influenced by the main properties, such as porosity, particle
size and chemical composition, of the phases present in the ore. This must be maximized in
order to reach high reducibility, productivity and high metallization degrees of the direct
reduced iron.

One of the technical limitations is that, as the metallization degree increases, iron
losses increase because of the gangue formation. The metallization obviously depends on
the tailing grade of the ores that can fall in the range 10–20%.

Obviously, the slag formation in the EAF is largely influenced by the quality of the
scraps employed during the process. This leads to the formation of 70 kg of slag per ton of
steel in the case of using 100% of scraps in the EAF. For this reason, scraps must be well
treated before entering the EAF in order to reduce this inconvenience.

Given this, a reasonable amount of slag at the end of the DR-EAF process is around
150 kg/t of steel. This is common in the case of low-carbon steel production, where high
percentages of FeO can be revealed in the slag.

Again, the high percentage of slag leads to a reduced productivity as well as to in-
creased energy and lime consumption with unbeneficial effects on the process economy. By
using DRI from higher grade iron ore feed, slag/steel ratios in the order of 100–120 kg/t
are possible for high DRI percentage in the charge (over 80%) with corresponding improve-
ments on the abovementioned factors and the resulting economy.

In the new proposed solution, the DR reactor is a TENOVA HYL-type with a design
base of 900,000 t/a of DRP. The OSBF has a shell diameter of 16.500 mm equipped with
1700 mm Soderberg electrodes and a wet gas scrubbing plant. The output material shows
the composition listed in Table 5.

A deep analysis was conducted in order to evaluate the economic profitability of the
solution. First of all, Table 6 indicates the costs of the Hot DRI or Hot DRP to be employed
in the EAF and in the OSBF, respectively.
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Table 5. Furnace output in the DRP-OSBF route.

Furnace Output (% by the Mass)

Alloy

Fe 95.73
Si 0.2
C 4
P 0.012
S 0.05

Mn 0.05

Slag

FeO 1
SiO2 39.37

Al2O3 3.12
MgO 13.1
CaO 43.18

P 0.001
S 0.01

TiO2 0.17

Dust

Fe 50.67
SiO2 20.68

Al2O3 0.59
MgO 6.68
CaO 8.12

P 0.024
S 0.006
C 3.45

Table 6. Direct reduction costs.

Process (NG USD/GJ) DR-EAF DR-OSBF

Product
Characteristics Hot DRI Hot DRP

Metallization 94% 94%
Carbon 2% 5%

Temperature 600 ◦C 600 ◦C

Specific consumption
DR plant Unit/t Unit cost

(USD/Unit)

Specific
consumption
(Unit/t DRI)

Cost (USD/t
DRI)

Specific
consumption
(Unit/t DRP)

Cost (USD/t
DRP)

DRI pellets tonne 150 1.45 217.5 - -
BF pellets tonne 120 - - 1.4 168

NG Gcal 29.13 2.4 69.9 2.52 73.4
Cocking coal kg 0.140
Cocking cost kg 0.017

PCI kg 0.120
Electricity kWh 0.06 108 6.48 113 6.78
Oxygen Nm3 0.1 66 6.6 55 5.5
Water m3 0.02 1.4 0.03 1.4 0.03

Fluxes/binders USD 0.04
Labour USD/m-h 20 0.15 3 0.15 3

Refractories USD 0.5
Maintenance USD 1 3.3 3.3 3.3 3.3

Nitrogen Nm3 0.05 22 1.1 22 1.1
Other consumables USD 1 0.97 0.97 0.97 0.97

Credit CO2 tonne 30 −0.8 −24 −0.8 −24
Steel direct cost USD/t steel 284.9 238.1
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First of all, the costs related to the employment of BF pellets are markedly lower with
respect to the DRI ones. The costs related to the NG are slightly lower in the case of DRI
pellet reduction. A reduction of almost 20% in oxygen consumption is recorded in the case
of DRPs. The costs of DRP are 18% lower with respect to DRI ones. In Table 7, the costs
belonging to the EAF and OSBF routes are listed.

Table 7. Costs comparison between DRI-EAF and DRP-OSBF.

Process (USD/t HM) Hot DRI-EAF Hot DRP-OSBF

Specific Consumption Unit/t Unit Cost
(USD/Unit)

Specific
Consumption

(Unit/t LS)

Cost
(USD/t LS)

Specific
Consumption
(Unit/t HM)

Cost (USD/t
HM)

Return scrap charge kg 0 50 0 - -
Imported scrap charge kg 0.245 175 42.9 - -

DRI charge kg 0.285 930 265 - -
DRP charge kg 0.238 - - 1150 273.8
Electricity kWh 0.06 420 25.2 660 39.6
Graphite kg 0.13

Lime kg 0.08
Dolo-lime kg 0.03 32 0.96 10 0.3
Magnesite kg 0.49 5 2.45 1.4 0.69

Oxygen Nm3 0.1 35 3.5 - -
Electrodes (graphite) kg 5 1.1 5.5 - -

Electrodes (Soderberg) kg 0.43 - - 3 1.28
Refractories USD 4 1.3
Maintenance USD 5 1.2
Direct labour USD 4 2.7

Cost for slag disposal USD 18 0.18 3.2 - -
Credit granulated slag USD 22.2 - - −0.17 −3.77

Total LS cost USD/t 361.7 317.1

First of all, no scraps should be employed in the OSBF route. The electrode consump-
tion and the corresponding cost differences should be underlined.

Actually, the BOF route must be considered, the OSBF metal being very similar to cast
iron. The costs relative to the BOF operations for the DRP-OSBF material are listed in Table 8.

Table 8. Costs for the OSBF-BOF route.

Process OSBF-BOF

Specific
Consumption Unit/t Unit Cost

(USD/Unit)

Specific
Consumption

(Unit/t LS)
Cost (USD/t LS)

Return scrap charge kg 0 50 0
Imported scrap charge kg 0.245 150 36.8

Hot metal-SAF kg 0.317 912 289.2
DRP charge kg 0.238 - -

Lime kg 0.08 60 5
Dolo-lime kg 0.03 40 1.2
Oxygen Nm3 0.1 55 5.5

Refractories USD 1.65
Other costs USD 2.5

Maintenance USD 3.3
Direct labour USD 2

Cost for slag disposal USD 18 0.13 2.34
Total LS cost USD/t 349.3

Given the low quality of raw materials, the problem of volatile trace elements is
crucial for the environment issues and for the final quality of liquid steel [18]. During the
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steelmaking processes, many heavy metals and metalloids are emitted into the environment.
Due to the high prices and low availability of high-grade ores, industries will go to employ
increased quantities of low-grade ores characterized by increased impurity percentages
(containing high Pb, Cd, Cr and As). These heavy metals and metalloids are highly toxic,
non-degradable and highly dangerous once released into the ground and water sources.
On the other hand, the volatile compounds are generally captured and treated in the
scrubbers [19].

The volatilization degree as a function of temperature (T) and of the volatilization
extent (α) can be expressed as follows:

dα

dt
= k(T) f (α) (10)

where k(T) is the volatilization rate constant in the unit s−1, and f (α) is the mechanism function.
The volatilization rate constant k(T) has an Arrhenius-type dependence from the temperature:

k(T) = A ∗ exp
(
− E

RT

)
(11)

where A is the pre-exponential factor (s−1), E is the apparent activation energy (kJ mol−1),
and R is the universal gas constant. In non-isothermal conditions, the heating rate can be
considered constant:

β =
dT
dt

= constant (12)

In this way, the volatilization degree can be expressed by:

dα

dt
=

A
β
∗ exp

(
− E

RT

)
∗ f (α) (13)

By integrating the differential form f (α), the reaction model can be obtained:

G(α) =
∫ α

0
f (α)−1dα =

A
β

∫ T

0
exp
(
− E

RT

)
dT (14)

Performing transformations and approximations including the Coats–Redfern integration:

ln
[

G(α)

T2

]
= ln

(
AR
βE

)
− E

RT
(15)

The parameters E, A and G(α) (or f (α)) are the kinetic triplet to be determined during
the kinetic analysis.

In general, activation energies higher than 40 kJ/mol indicate that the rate-controlling
step is the chemical reactions; on the other hand, for energy values lower than 20 kJ/mol,
the diffusion is the rate-controlling step.

Many experimental results show that the volatilization of elements such as S, Li, Sn
and Pb can be described through a diffusion model. In fact, the activation energy values of
Pb and S volatilization are 26.75 and 19.22 kJ/mol, respectively, while Li and Sn show a
lower value of 11.65 kJ/mol.

Now, during the overall process, the iron ore particles are cracked through many
different mechanisms, such as thermal gradients inside each particle, variations of swelling
rates due to the minerology of the ores, local pressures due to volatilization and diffusion
processes. This macroscopic thermal cracking takes place with iron oxide reduction and
with all the other chemical reactions. So, the volatile element behavior influences the overall
process. They can be directly volatilized due to the temperature increase or they can be
directly volatilized during the thermal cracking. The rate-controlling step for elemental
volatilization could be one of these two mechanisms.
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Obviously, each element acts in different way because of its intrinsic nature. As a matter
of fact, elements such as As, S, Li, Sn and Pb show continuous volatilization from room
temperature up to 1000 ◦C. As, Pb and S were volatilized in huge quantities after 500 ◦C;
this is in agreement with the clay decomposition and iron oxide transformation of hematite–
magnetite–wustite. On the other hand, Li and Sn start to volatilize at lower temperatures, in
the range 200–500 ◦C. Any other increase in temperature does not accelerate volatilization.

4. Conclusions

A new route for steel production has been described in the present paper. An HYL
TENOVA direct reduction reactor employing hydrogen as reducing gas was employed for
the reduction of blast-furnace-grade pellets. The reduced material was then melted in an
open slag bath furnace for further operations. The employment of hydrogen reduced the
energy consumption with respect to the natural gas direct reduction route. Through the
OSBF route, high carbon liquid metal is obtained with a remarkable difference with respect
to the direct reduction of iron ores. Then, the reduced blast furnace pellets can be processed
in the BOF by largely reducing the material costs and the energy consumption as well as
reducing the overall greenhouse emissions of the steelmaking process. This route allows
for steel production at competitive costs compared to the DRI-EAF route with very similar
total dangerous emission. It is believed to be an important solution, especially in those
situations where the raw material quality can be a problem for the DRI route.
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Abbreviations

BF blast furnace
BOF basic oxygen furnace
CCM continuous casting machine
CCS carbon capture and storage
DRI direct reduced iron
DRP direct reduced pellets
EBT eccentric bottom tapping
EAF electric arc furnaces
HM hot metal
HDRI hydrogen DRI
HBI hot briquetted iron
MTZ metallization
NG natural gas
OSBF open slag bath furnace
PCI pulverized coal injection
PG pressurized gas
SAF submerged arc furnace
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