Hydrogen Sorption and Rehydrogenation Properties of NaMgH3
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Formation and Analysis of the NaMgH3 Perovskite-Type Hydride
3.2. Analysis of Hydrogen Storage Capacity
3.2.1. Thermal Analysis Performed by In-Situ XRD, DSC and TGA-MS
NaMgH3 (2 h Milled)
NaMgH3 (5 h Milled)
NaMgH3 (15 h Milled)
3.3. Rehydrogenation (In-Situ XRD)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sherif, S.A.; Goswami, D.Y.; Stefanakos, E.K.; Steinfeld, A. Handbook of Hydrogen Energy; CRC Press: Boca Raton, FL, USA, 2014; pp. 17–18. [Google Scholar]
- Lin, R.H.; Zhao, Y.Y.; Wu, B.D. Toward a hydrogen society: Hydrogen and smart grid integration. Int. J. Hydrogen Energy 2020, 45, 20164–20175. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Nazir, H.; Louis, C.; Jose, S.; Prakash, J.; Muthuswamy, N.; Buan, M.E.M.; Flox, C.; Chavan, S.; Shi, X.; Kauranen, P.; et al. Is the H2 economy realizable in the foreseeable future? Part I: H2 production methods. Int. J. Hydrogen Energy 2020, 45, 13777–13788. [Google Scholar] [CrossRef]
- Fonseca, J.D.; Camargo, M.; Commenge, J.M.; Falk, L.; Gil, I.D. Trends in design of distributed energy systems using hydrogen as energy vector: A systematic literature review. Int. J. Hydrogen Energy 2019, 44, 9486–9504. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, P.; Niu, M.; Maddy, J. The survey of key technologies in hydrogen energy storage. Int. J. Hydrogen Energy 2016, 41, 14535–14552. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 2015, 40, 11094–11111. [Google Scholar] [CrossRef]
- Rusman, N.A.A.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126. [Google Scholar] [CrossRef]
- Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [Google Scholar] [CrossRef]
- Bouamrane, A.; Soulié, J.P.; Bastide, J.P. Standard enthalpies of formation of KCaH3-xFx with x = 1, 1.5, 2, 2.5. Thermochim. Acta 2001, 375, 81–84. [Google Scholar] [CrossRef]
- Bouhadda, Y.; Boudouma, Y.; Fennineche, N.E.; Bentabet, A. Ab initio calculations study of the electronic, optical and thermodynamic properties of NaMgH3, for hydrogen storage. J. Phys. Chem. Solids 2010, 71, 1264–1268. [Google Scholar] [CrossRef]
- Bouhadda, Y.; Bououdina, M.; Fenineche, N.; Boudouma, Y. Elastic properties of perovskite-type hydride NaMgH3 for hydrogen storage. Int. J. Hydrogen Energy 2013, 38, 1484–1489. [Google Scholar] [CrossRef]
- Ikeda, K.; Kogure, Y.; Nakamori, Y.; Orimo, S. Formation region and hydrogen storage abilities of perovskite-type hydrides. Prog. Solid State Chem. 2007, 35, 329–337. [Google Scholar] [CrossRef]
- Zaluski, L.; Zaluska, A.; Ström-Olsen, J.O. Nanocrystalline metal hydrides. J. Alloys Compd. 1997, 253–254, 70–79. [Google Scholar] [CrossRef]
- Zaluska, A.; Zaluski, L.; Ström-Olsen, J.O. Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 2001, 72, 157–165. [Google Scholar] [CrossRef]
- Amica, G. Preparación, Estudio y Optimización de Amiduros de Litio y Magnesio para Almacenamiento de Hidrógeno; Universidad Nacional de Cuyo: Mendoza, Argentina, 2018. [Google Scholar]
- Wu, H.; Zhou, W.; Udovic, T.J.; Rush, J.J.; Yildirim, T. Crystal chemistry of perovskite-type hydride NaMgH3: Implications for hydrogen storage. Chem. Mater. 2008, 20, 2335–2342. [Google Scholar] [CrossRef]
- Rönnebro, E.; Noréus, D.; Kadir, K.; Reiser, A.; Bogdanovic, B. Investigation of the perovskite related structures of NaMgH3, NaMgF3 and Na3AlH6. J. Alloys Compd. 2000, 299, 101–106. [Google Scholar] [CrossRef]
- Reardon, H.; Mazur, N.; Gregory, D.H. Facile synthesis of nanosized sodium magnesium hydride, NaMgH3. Prog. Nat. Sci. Mater. Int. 2013, 23, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, K.; Kato, S.; Shinzato, Y.; Okuda, N.; Nakamori, Y.; Kitano, A.; Yukawa, H.; Morinaga, M.; Orimo, S. Thermodynamical stability and electronic structure of a perovskite-type hydride, NaMgH3. J. Alloys Compd. 2007, 446–447, 162–165. [Google Scholar] [CrossRef]
- Fornari, M.; Subedi, A.; Singh, D.J. Structure and dynamics of perovskite hydrides AMg H3 (A = Na, K, Rb) in relation to the corresponding fluorides: A first-principles study. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 214118. [Google Scholar] [CrossRef]
- Li, D.; Zhang, T.; Yang, S.; Tao, Z.; Chen, J. Ab initio investigation of structures, electronic and thermodynamic properties for Li–Mg–H ternary system. J. Alloys Compd. 2011, 509, 8228–8234. [Google Scholar] [CrossRef]
- Pottmaier, D.; Pinatel, E.R.; Vitillo, J.G.; Garroni, S.; Orlova, M.; Baró, M.D.; Vaughan, G.B.M.; Fichtner, M.; Lohstroh, W.; Baricco, M. Structure and thermodynamic properties of the NaMgH3 perovskite: A comprehensive study. Chem. Mater. 2011, 23, 2317–2326. [Google Scholar] [CrossRef]
- Reshak, A.H. NaMgH3 a perovskite-type hydride as advanced hydrogen storage systems: Electronic structure features. Int. J. Hydrogen Energy 2015, 40, 16383–16390. [Google Scholar] [CrossRef]
- Tao, S.; Wang, Z.M.; Li, J.J.; Deng, J.Q.; Zhou, H.; Yao, Q.R. Improved Dehydriding Properties of NaMgH3 Perovskite Hydride by Addition of Graphitic Carbon Nitride. Mater. Sci. Forum 2016, 852, 502–508. [Google Scholar] [CrossRef]
- Komiya, K.; Morisaku, N.; Rong, R.; Takahashi, Y.; Shinzato, Y.; Yukawa, H.; Morinaga, M. Synthesis and decomposition of perovskite-type hydrides, MMgH3 (M = Na, K, Rb). J. Alloys Compd. 2008, 453, 157–160. [Google Scholar] [CrossRef]
- Sheppard, D.A.; Paskevicius, M.; Buckley, C.E. Thermodynamics of hydrogen desorption from NaMgH3 and its application as a solar heat storage medium. Chem. Mater. 2011, 23, 4298–4300. [Google Scholar] [CrossRef]
- Klaveness, A.; Swang, O.; Fjellvag, H. Formation enthalpies of NaMgH3 and KMgH3: A computational study. Europhys. Lett. 2006, 76, 285. [Google Scholar] [CrossRef]
- Hydrogen and Fuel Cell Technologies Office. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed on 15 December 2021).
- Wang, Z.; Tao, S.; Deng, J.; Zhou, H.; Yao, Q. Significant improvement in the dehydriding properties of perovskite hydrides, NaMgH3, by doping with K2TiF6. Int. J. Hydrogen Energy 2017, 42, 8554–8559. [Google Scholar] [CrossRef]
- Chaudhary, A.L.; Paskevicius, M.; Sheppard, D.A.; Buckley, C.E. Thermodynamic destabilisation of MgH2 and NaMgH3 using Group IV elements Si, Ge or Sn. J. Alloys Compd. 2015, 623, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Coronado, R.; Sánchez-Benítez, J.; Retuerto, M.; Fernández-Díaz, M.T.; Alonso, J.A. High-pressure synthesis of Na1−xLixMgH3 perovskite hydrides. J. Alloys Compd. 2012, 522, 101–105. [Google Scholar] [CrossRef]
- Ikeda, K.; Nakamori, Y.; Orimo, S. Formation ability of the perovskite-type structure in LixNa1−xMgH3 (x = 0, 0.5 and 1.0). Acta Mater. 2005, 53, 3453–3457. [Google Scholar] [CrossRef]
- Ikeda, K.; Kogure, Y.; Nakamori, Y.; Orimo, S. Reversible hydriding and dehydriding reactions of perovskite-type hydride NaMgH3. Scr. Mater. 2005, 53, 319–322. [Google Scholar] [CrossRef]
- Tao, S.; Wang, Z.-m.; Wan, Z.-z.; Deng, J.-q.; Zhou, H.; Yao, Q. Enhancing the dehydriding properties of perovskite-type NaMgH3 by introducing potassium as dopant. Int. J. Hydrogen Energy 2017, 42, 3716–3722. [Google Scholar] [CrossRef]
- Hang, Z.; Hu, Z.; Xiao, X.; Jiang, R.; Zhang, M. Enhancing Hydrogen Storage Kinetics and Cycling Properties of NaMgH3 by 2D Transition Metal Carbide MXene Ti3C2. Processes 2021, 9, 1690. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Ren, Z.; Zhang, X.; Hu, J.; Huang, Z.; Lu, Y.; Gao, M.; Pan, H. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 2021, 14, 2302–2313. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhang, W.; Ren, Z.; Huang, Z.; Hu, J.; Gao, M.; Pan, H.; Liu, Y. Nano-synergy enables highly reversible storage of 9.2 wt% hydrogen at mild conditions with lithium borohydride. Nano Energy 2021, 83, 105839. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, X.; Li, H.-W.; Huang, Z.; Hu, J.; Gao, M.; Pan, H.; Liu, Y. Titanium Hydride Nanoplates Enable 5 wt% of Reversible Hydrogen Storage by Sodium Alanate below 80 °C. Research 2021, 2021, 9819176. [Google Scholar] [CrossRef]
- Bruker. Bruker DIFFRAC.SUITE EVA—XRD Software. Available online: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software/eva.html (accessed on 18 October 2020).
- Bruker. Bruker DIFFRAC.SUITE TOPAS—XRD Software, X-ray Diffraction—XRD Software. Available online: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software/topas.html (accessed on 18 October 2020).
- ICSD Inorganic Chemical Database Service. Available online: http://icsd.cds.rsc.org/search/basic.xhtml;jsessionid=82761CD648F766CC9CA76BDA84933E21?cdsrdr=3 (accessed on 18 October 2020).
Atmosphere | NaMgH3 (This Work) | ||||
---|---|---|---|---|---|
Mill time (h) | lattice parameters (Å) | Cell Volume (Å3) | |||
a | b | c | |||
Ar | 2 | 5.42 ± 0.01 | 7.76 ± 0.01 | 5.4 ± 0.01 | 230.19 ± 0.40 |
5 | 5.49 ± 0.01 | 7.76 ± 0.01 | 5.43 ± 0.01 | 230.96 ± 0.60 | |
15 | 5.49 ± 0.01 | 7.76 ± 0.01 | 5.43 ± 0.01 | 231.28 ± 0.40 | |
(Literature) [35] | |||||
Lattice Parameters (Å) | Cell Volume (Å3) | ||||
a | b | c | |||
5.46 (2) | 7.7 (4) | 5.4 (2) | 227.32 (4) |
Atmosphere | M. Time (h) | DSC | TGA | |||
---|---|---|---|---|---|---|
Ton (°C) | Tp1 (°C) | Tp2 (°C) | Tend (°C) | wt (%) H2 | ||
Ar | 2 | 287 | 370 | 383 | 408 | 5.8 |
5 | 286 | 369 | 385 | 407 | 4.8 | |
15 | 278 | 367 | 391 | 409 | 4.7 | |
Literature [14] | 20 | 391 | 436 | 5.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras, L.; Mayacela, M.; Bustillos, A.; Rentería, L.; Book, D. Hydrogen Sorption and Rehydrogenation Properties of NaMgH3. Metals 2022, 12, 205. https://doi.org/10.3390/met12020205
Contreras L, Mayacela M, Bustillos A, Rentería L, Book D. Hydrogen Sorption and Rehydrogenation Properties of NaMgH3. Metals. 2022; 12(2):205. https://doi.org/10.3390/met12020205
Chicago/Turabian StyleContreras, Luis, Margarita Mayacela, Alberto Bustillos, Leonardo Rentería, and David Book. 2022. "Hydrogen Sorption and Rehydrogenation Properties of NaMgH3" Metals 12, no. 2: 205. https://doi.org/10.3390/met12020205
APA StyleContreras, L., Mayacela, M., Bustillos, A., Rentería, L., & Book, D. (2022). Hydrogen Sorption and Rehydrogenation Properties of NaMgH3. Metals, 12(2), 205. https://doi.org/10.3390/met12020205