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Abstract: The high-temperature deformation behavior of metals and alloys undergoes complex
mechanisms depending on the deformation conditions. The microstructure and mechanical properties
after deformation are important factors that determine the strength and durability of the final product.
Therefore, many studies to predict the microstructure and mechanical properties have been conducted.
In this regard, numerous mathematical approaches for predicting microstructure and flow stress
have been proposed over the past half century. Accordingly, many advances have been made in the
field of material science. Nevertheless, there are limitations in the mathematical modeling method as
there is a complex relationship between the deformation conditions and the mechanical properties.
Therefore, in this study, flow stress prediction was performed by applying conventional constitutive
equation and artificial intelligence technology, which is known to be effective in modeling complex
relationships. As a result, it was confirmed that the flow stresses modeled by the artificial neural
network showed a higher accuracy than the flow stresses modeled by the conventional Arrhenius
hyperbolic sine equation.

Keywords: flow stress; Zener–Hollomon parameter; artificial neural network; hot deformation;
machine learning

1. Introduction

The deformation behavior of metals and alloys in the high-temperature forming
process is difficult to predict because they are affected by very complex mechanisms [1].
However, understanding and predicting microstructural changes are a major concern
in the field of materials science and engineering because microstructure control is an
important factor in improving the mechanical properties of final products. In general,
it is well known that the high-temperature deformation of metals is governed by work
hardening, dynamic recrystallization (DRX), and dynamic recovery (DRV) [2–4]. Work
hardening refers to a phenomenon in which stress increases as the dislocation density
inside a crystal grain increases. DRX refers to a phenomenon in which nuclei are rapidly
generated and grown in the deformed microstructure after the accumulated strain passes
the critical strain. In general, metals with low stacking fault energies are highly subject to
DRX [5]. DRV refers to the phenomenon of dissipation of dislocations accompanied by a
decrease in dislocation density and internal energy. Therefore, work hardening is the cause
of increasing stress during deformation, whereas DRX and DRV act as stress softening
mechanisms [3]. Understanding the above three mechanisms is an important factor for
predicting high-temperature deformation behavior, and many studies have been conducted
for this purpose [6–10].

Chen et al. [11] studied the deformation behavior of a nickel-based superalloy during
hot deformation to predict the volume fractions of DRX. Lin et al. [12] established the consti-
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tutive equation for 42CrMo steel based on the classical stress–dislocation relationship and
the kinematics of DRX. In addition, research results for predicting the deformation behavior
of metals using artificial intelligence (AI) have also been reported [13–15]. Iyer et al. [16]
demonstrated that microstructure can be generated from process conditions using an aux-
iliary classifier Wasserstein generative adversarial network (WGAN). Lee et al. [17] used
scanning electron microscope (SEM) and optical microscope (OM) images of various metal
surfaces for GAN algorithm learning to create realistic virtual microstructures, which can
be used to study the relationship between microstructures and physical properties. For flow
stress prediction, Shouwu et al. [18] reported that flow stress can be accurately predicted
through an artificial neural network (ANN) by comparing the accuracy of the ANN model
and the Arrhenius model. Liu et al. [19] and Sani et al. [20] also presented that the ANN
approach can obtain more accurate results than the Arrhenius model for predicting the
flow stress of Ti and Mg alloys. It was reported that the reason the ANN approach is
more effective is because the constitutive equation considers only the DRX phenomenon,
so the effects of twin formation and grain growth that occur in actual deformation are
excluded [20]. Therefore, it can be expected that the accuracy of ANN and constitutive
equations may vary depending on the kind of material. Therefore, many studies that
analyze the accuracy of ANN and constitutive equations for various materials are needed.

In this study, the high-temperature deformation characteristics of nickel alloy A230,
which is widely used in various industrial fields, were analyzed through an AI technique.
First, the deformation behaviors of the A230 at various temperatures and strain rates
were measured by the uniaxial compression test. Based on the measured data, flow stress
modeling was performed through a mathematical approach and a deep learning-based
ANN, separately. By comparing an accuracy of the above two models, it was confirmed that
ANN shows a more accurate performance for solving nonlinear and complex problems.

2. Experimental Methods
2.1. Material and Gleeble Test

Table 1 shows the chemical composition of the A230 material. The initial rod-shaped
specimen was fabricated into a diameter of 10 mm and a height of 12 mm for the com-
pression test. Uniaxial compression tests with various strain rates were performed using a
Gleeble 3800 (Dynamic System Inc., New York, NY, USA). The heating rate was set at 10 ◦C
per second and the holding time was set at 5 min. Other compression test conditions are
shown in Table 2.

Table 1. Chemical composition of the A230 material.

Material Chemical Composition (wt%)

A230
Fe Mn Si Cr C Al Nb Co Ti Mo La B W Ni

3 0.5 0.4 22 0.1 0.3 0.5 5 0.1 2 0.02 0.02 14 Bal.

Table 2. Experimental parameters for the Gleeble test.

Conditions

Temperature (◦C) Strain Strain Rate (s−1)

900, 1000, 1100, 1200 ~0.9 0.001, 0.01, 0.1, 1

2.2. ANN Model

The ANN model is an AI algorithm, and it has shown an excellent performance when
solving nonlinear and complex problems [21–23]. Figure 1 shows the ANN structure used
in this study. The input layer has three nodes. Normalized temperatures, normalized strain
rates, and strains are input to each node. The reason for normalizing the temperature
and strain rate values is to ensure that each of the input data have the same sensitivity in
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deriving a result by making the numerical ranges of each data same. The output layer has
one node, and it corresponds to normalized stress values. Temperature and stress were
normalized through Equation (1) and the strain rate was normalized through Equation (2).
The results of normalization are presented in Table 3.

x′ = 0.1 + 0.8
(

X − Xmin
Xmax − Xmin

)
, (1)

.
ε
′
= 0.1 + 0.8

(
ln

.
ε − ln

.
εmin

ln
.
εmax − ln

.
εmin

)
. (2)

Figure 1. Architecture of the ANN used to predict the flow stress curves.

Table 3. Summary of normalized input and output data.

Data States
Input Output

Temperature Strain Rate Strain Stress

Range of
raw data 900–1200 ◦C 0.001–1 s−1 0.1–0.9 15–240 MPa

Range of
normalized data 0.1–0.9 0.1–0.9 0.1–0.9 0.1–0.9

In order to optimize the ANN model, training was performed by varying the number
of hidden layers from 4 to 12, and the number of each node from 3 to 13. For the ANN
model training, flow stresses in all compression conditions with strain between 0.02 and
0.8 collected in 0.001 increments were used. In total, 12,480 datasets were applied for ANN
training. In order to increase the convergence speed and stability of the model, batch
normalization was applied to each hidden layer, and the resulting value was activated
by the ReLU activation function. For training, the deep learning model package from
TensorFlow was used. AdamOptimizer with a learning rate of 5 × 10−5 was used for
optimizer. Training was performed 50,000 times with 64 mini-batch. A GEFORCE RTX
3090 GPU (NVIDIA, Santa Clara, CA, USA) was used for the training.
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3. Results and Discussion
3.1. Flow Stress of A230 Alloy

Figure 2 shows the measured flow stresses for the nickel alloy A230. It can be seen
that the flow stresses tended to decrease as the temperature increased and the strain rate
decreased, which are general high-temperature deformation characteristics. This is because
the mobility of the grain boundaries increases as the temperature increases [24,25]. The low
strain rate also caused stress reduction because it provided sufficient time for the growth
of DRX grains. At the initial stage of deformation, the flow stresses rapidly increased due
to the work hardening for all of the deformation conditions. After the strain reached the
critical strain, DRX occurred actively so that the flow stress was gradually reduced after
the peak stress (Figure 2d). As a result, a steady-state in which work hardening and stress
softening were balanced was observed. However, the steady state was not clearly observed
when the temperature was relatively low and the strain rate was relatively high. On the
other hand, when the temperature was high or the strain rate was low, secondary work
hardening in which the stress increased again after the steady state was observed.

Figure 2. A230 flow stress curves measured at (a) 900, (b) 1000, (c) 1100 and (d) 1200 ◦C.

3.2. Prediction of Flow Stress
3.2.1. Arrhenius Constitutive Equation Modeling

The following Arrhenius hyperbolic sine equation has been commonly used to model
the relationship between deformation conditions (temperature, strain rate) and flow
stresses [26].

Z =
.
εexp

(
Q
RT

)
= Csinh(ασ)n, (3)

where, Z,
.
ε, Q, R, T, and σ indicate the Zener–Hollomon parameter, strain rate, deformation

activation energy (KJ/mol), gas constant (8.314 J/mol K), Kelvin temperature, and flow
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stress, respectively. C, α, and n are material constants. In ranges with high or low stress
levels, the following two equations were applied for modeling [27].

Z =
.
εexp

(
Q
RT

)
= Aσn′ , (ασ < 0.8), (4)

Z =
.
εexp

(
Q
RT

)
= Bexp(βσ), (ασ > 1.2), (5)

where, A, B, n′, and β represent the material constants. In order to derive Equation (3),
which can represent the relationship between the deformation conditions and the flow
stress in all ranges, regardless of the stress level, n′ and β in Equations (4) and (5) should be
obtained. The derivation process is described in detail below.

• Calculation of n′ and β

The value of α, which is the material constant in Equation (3), is obtained by dividing
β by n′. Therefore, the following equations were derived by taking the natural logarithm of
both sides of Equations (4) and (5) to calculate n′ and β.

ln
.
ε +

Q
RT

= ln A + n′ ln σ, (6)

ln
.
ε +

Q
RT

= ln B + βσ. (7)

n′ and β are obtained by finding the slope values of the linear fitting lines of the ln
σ vs. ln

.
ε and σ vs. ln

.
ε graphs, respectively (Figure 3). Each n′ and β value according to

temperature is averaged and used. As a result, one n′ and β value are calculated for each
strain. After that, the value of α for each strain is obtained by α = β/n′.

Figure 3. Calculation of the value of (a) n′ by plotting ln σ vs. ln
.
ε and (b) β by plotting σ vs. ln

.
ε. All

values correspond to strain 0.8.

• Calculation for n and Tp

By taking the natural logarithm of Equation (3), the following equation is obtained.

ln
.
ε = ln C + n[ln sinh(ασ)] − Q

RT
. (8)

If the strain rate is constant, Equation (8) can be expressed, as below, by partial
differentiation.
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Q = R · ∂ ln
.
ε

∂ ln[sinh(ασ)]

∣∣∣∣
T
· ∂ ln[sinh(ασ)]

∂(1/T)

∣∣∣∣ .
ε

. (9)

Figure 4 shows the linear relationship between ln[sinh(ασ)] vs. ln
.
ε, and ln[sinh(ασ)]

vs. 1000/T at strain 0.8. The value of n was obtained by averaging the slope of the linear
fitting line in Figure 4a. On the other hand, in the case of Figure 4b, the Tp values according
to the strain rate were used for further calculation (not averaged). This is because the strain
rate dependent Tp values are more effective for predicting the flow stress [26].

Figure 4. Calculation of the value of (a) n by plotting ln[sinh(ασ)] vs. ln
.
ε and (b) Tp by plotting

ln[sinh(ασ)] vs. 1000/T. All values correspond to strain 0.8.

• Calculation for Q, C and Z

By substituting the previously derived n and Tp into the equation below, the activation
energy (Q) according to strain is calculated.

Q = RnTp
∣∣ .
ε
. (10)

In addition, the material constant C value from Equation (3) can be obtained by
substituting the above Q value into the following equation. The calculated Q and C values
are shown in Figure 5.

ln[sinh(ασ)] =
ln

.
ε

n
+

Q
nRT

− ln C
n

. (11)

Figure 5. Calculated material constants of (a) deformation activation energy and (b) ln C.
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• Flow stress prediction

By substituting the previously calculated material constants into Equation (3), the
Zener–Hollomon parameters according to all temperatures, strain rates, and strains are
calculated. Then, the flow stresses are calculated by substituting the Z and C values into
the equation below, and the results are shown in Figure 6.

σ =
1
α

ln


(

Z
C

) 1
n
+

[(
Z
C

) 2
n
+ 1

] 1
2

, (12)

Figure 6. Experimental and predicted flow stress curves using the Arrhenius constitutive model for
(a) 900, (b) 1000, (c) 1100, and (d) 1200 ◦C.

As can be seen from the figure, the predicted flow stresses were similar to the measured
flow stresses. However, it was observed that the difference between the predicted and
measured value increased at a strain rate 0.1 s−1 under all temperature conditions. In
particular, as the strain increased, the difference gradually increased. The maximum
difference was calculated to be 36.14 MPa at a temperature of 900 ◦C, a strain rate of 0.1 s−1,
and a strain of 0.8.

3.2.2. Result of ANN Model

As demonstrated in Section 3.2.1, the mathematical modeling of flow stresses derived
based on the Arrhenius constitutive equation showed limitations in the flow stress pre-
diction performance at high strain rates. To overcome these shortcomings, a flow stress
modeling using the ANN model was applied in this study. Table 4 shows the prediction
results according to a total of 54 cases in which the number of layers and nodes were
different. For an accurate comparison, the absolute error (AE) and average absolute relative
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error (AARE) for data points of strain from 0.1 to 0.8 with increment 0.1 at all deformation
conditions are calculated as follows [28].

AE =
1
n ∑n

i = 1|Ei − Pi|, (13)

AARE =
1
n

n

∑
i = 1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣ × 100, (14)

where, Ei, Pi, and n indicate measured stress, predicted stress, and the number of data
points, respectively.

Table 4. Results of the ANN prediction according to the number of layers and nodes.

Case No.
Layers

No.
Nodes

AE
(MPa)

AARE
(%) Case No.

Layers
No.

Nodes
AE

(MPa)
AARE

(%)

1

4

3 5.0 9.0 28
8

9 1.6 2.3
2 5 2.9 4.6 29 11 1.6 2.0
3 7 2.5 4.2 30 13 1.7 2.6

4 9 2.3 3.6 31

9

3 5.1 9.1
5 11 1.3 2.4 32 5 2.7 5.9
6 13 1.5 2.5 33 7 1.9 3.9

7

5

3 5.7 10.0 34 9 1.4 2.1
8 5 2.7 5.2 35 11 1.4 2.4
9 7 1.9 3.1 36 13 1.6 3.2

10 9 2.0 4.0 37

10

3 5.2 10.1
11 11 1.3 2.9 38 5 3.7 7.1
12 13 2.2 5.0 39 7 2.0 3.5

13

6

3 3.1 5.8 40 9 1.6 3.2
14 5 3.4 7.3 41 11 1.5 2.6
15 7 1.8 3.6 42 13 1.1 2.6

16 9 1.8 2.9 43

11

3 4.1 6.3
17 11 1.2 2.0 44 5 2.8 4.5
18 13 1.2 2.0 45 7 2.1 3.4

19

7

3 4.5 11.7 46 9 1.9 3.2
20 5 3.3 5.2 47 11 2.0 4.6
21 7 2.8 4.3 48 13 1.2 2.1

22 9 1.6 2.8 49

12

3 5.1 10.4
23 11 2.0 3.4 50 5 2.8 4.2
24 13 1.9 3.5 51 7 2.5 4.4

25
8

3 3.0 4.7 52 9 2.6 5.3
26 5 3.0 5.3 53 11 2.8 5.2
27 7 2.3 3.4 54 13 9.6 15.4

To ease the comparison, graphs showing the accuracy according to the number of
hidden layers and nodes are shown in Figure 7. As can be seen from Figure 7a, no
significant tendency according to the number of hidden layers was observed. However,
when 12 hidden layers were used, both AARE and AE increased dramatically (it is noted
here that the lower accuracy was measured when one to three hidden layers were applied).
It is considered that this is because too many hidden layers cause an over-fitting problem.
Therefore, it is determined that the use of the six hidden layers is the optimal number of
layers based on the AE results. On the other hand, it can be seen that the number of nodes
greatly affects the prediction ability (Figure 7b). The lowest AARE and AE were measured
at the case of 11 nodes. Therefore, it can be concluded that the optimal ANN structure is
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to use 6 hidden layers with 11 nodes for modeling the relationship between deformation
conditions and flow stresses.

Figure 7. Graphs depicting the results of AARE and AE calculation according to (a) the number of
hidden layers and (b) the number of nodes.

Graphs comparing the predicted and measured flow stresses using the optimized
ANN model (6 layers with 11 nodes) are shown in Figure 8. As can be seen from the figure,
the predicted values were in good agreement with the measured values under the entire
strain condition. In addition, the accuracy reduction at a strain rate of 1 s−1, which was
the limitation of the Arrhenius constitutive equation, did not exist when the ANN model
was used.

Figure 9 shows the correlation between the measured and predicted values. In the
case of the Arrhenius constitutive equation model, the error increased near the stress of
300 MPa. On the other hand, the ANN model predicted stress accurately over the entire
stress range. The AE and AARE values for the entire evaluation data were calculated as 1.2
and 2.0 for the ANN model, and 2.3 and 3.3 for the Arrhenius constitutive equation model,
respectively. Therefore, it can be confirmed that the ANN model exhibited a more accurate
performance for predicting flow stresses.



Metals 2022, 12, 223 10 of 12

Figure 8. Experimental and predicted flow stress curves using the ANN model for (a) 900, (b) 1000,
(c) 1100, and (d) 1200 ◦C.

Figure 9. Correlation relationships between the measured and predicted values using the (a) Arrhe-
nius constitutive model and (b) ANN model.

4. Conclusions

In this study, the flow stress characteristics at high temperature deformation for the
A230 material were analyzed using mathematical modeling and AI technology. First, based
on the flow stresses measured by the Gleeble test, the flow stresses at various strain rates
and temperatures were modeled using the Arrhenius constitutive equation and the ANN
model. Based on the evaluation metrics, they were calculated as AE 1.2 and AARE 2.0
for the ANN model, and AE 2.3 and AARE 3.3 for the Arrhenius constitutive equation,
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respectively. Accordingly, it was confirmed that AI technology showed better results in
modeling the complex relationship between the process conditions and flow stresses.
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