
����������
�������

Citation: Li, H.; Barui, S.; Mukherjee,

S.; Chattopadhyay, K. Least Squares

Twin Support Vector Machines to

Classify End-Point Phosphorus

Content in BOF Steelmaking. Metals

2022, 12, 268. https://doi.org/

10.3390/met12020268

Academic Editor: Pasquale Cavaliere

Received: 31 December 2021

Accepted: 28 January 2022

Published: 31 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Least Squares Twin Support Vector Machines to Classify
End-Point Phosphorus Content in BOF Steelmaking
Heng Li 1 , Sandip Barui 2 , Sankha Mukherjee 3 and Kinnor Chattopadhyay 1,*

1 Department of Materials Science and Engineering, University of Toronto, 184 College Street,
Toronto, ON M5S 3E4, Canada; adali.li@mail.utoronto.ca

2 Quantitative Methods and Operations Management Area, Indian Institute of Management Kozhikode,
Kozhikode 673570, India; sandipbarui@iimk.ac.in

3 Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India; sankha@metal.iitkgp.ac.in

* Correspondence: kinnor.chattopadhyay@utoronto.ca; Tel.: +1-(416)-978-6267

Abstract: End-point phosphorus content in steel in a basic oxygen furnace (BOF) acts as an indicator of
the quality of manufactured steel. An undesirable amount of phosphorus is removed from the steel by
the process of dephosphorization. The degree of phosphorus removal is captured numerically by the
‘partition ratio’, given by the ratio of %wt phosphorus in slag and %wt phosphorus in steel. Due to the
presence of multitudes of process variables, often, it is challenging to predict the partition ratio based
on operating conditions. Herein, a robust data-driven classification technique of least squares twin
support vector machines (LSTSVM) is applied to classify the ‘partition ratio’ to two categories (‘High’
and ‘Low’) steels indicating a greater or lesser degree of phosphorus removal, respectively. LSTSVM
is a simpler, more robust, and faster alternative to the twin support vector machines (TWSVM)
with respect to non-parallel hyperplanes-based binary classifications. The relationship between the
‘partition ratio’ and the chemical composition of slag and tapping temperatures is studied based on
approximately 16,000 heats from two BOF plants. In our case, a relatively higher model accuracy is
achieved, and LSTSVM performed 1.5–167 times faster than other applied algorithms.

Keywords: machine learning; K-means clustering; K-fold cross-validation; logistic regression; Monte
Carlo simulation; dephosphorization; partition ratio

1. Introduction

Production of high-quality steel using the basic oxygen furnace (BOF) requires a deep
understanding of numerous complex chemical reactions and accurate end-point control [1].
In BOF, oxygen is blown into the liquid metal, which leads to a conversion of molten pig
iron and scraps into liquid steel. Pig iron contains different types of impurities such as
carbon, sulfur, manganese, and phosphorous. A high content of phosphorous in the final
product leads to poor mechanical properties such as low ductility and increased brittleness,
thus, increasing the probability of cracking during deformation and welding [2]. The
process of removing phosphorous from pig iron to obtain high-quality steel in BOF is
known as dephosphorization. In recent years, the phosphorous content in iron ores has
increased significantly, making the dephosphorization process more critical [3]. Research
has shown that for a given basicity and carbon content, the presence of iron oxide has
a greater effect on dephosphorization compared to dissolved oxygen in steel [4]. The
partition ratio between slag and steel quantifies the ability of phosphorous holding onto

the slag, given by, Lp =
(%P)slag
[%P]steel

, which indicates the extent of phosphorous removal in the
finished steel. Therefore, the extent of dephosphorization can be measured by Lp.

Over the years, industries have tried to develop analytical tools to control phospho-
rous to maintain the quality of products, and many thermodynamics-based mathemat-
ical models were developed. In 1974, Balajiva and Vajragupta studied the influences
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of different chemical compositions of slag on phosphorous removal [5]. The temper-
ature of BOF was kept constant while %CaO, %FeO, and %P2O5 were considered as
the controlling factors. Their results showed that an increase in CaO and FeO contents
increased the extent of dephosphorization. Suito and Inoue discovered that the phos-
phorous content in slag is reduced when MnO is added to the slag [6]. Later in 2006,
Suito and Inoue conducted experiments to study the behavior of phosphorous transfer
from CaO-FetO-P2O5(-SiO2) slags to CaO particles. Based on the results, they devel-
oped an equation for the phosphorous partition at the metal-slag interface, given by
log
{

(%P)
[%P]

}
= 0.072{(%CaO) + 0.3(%MgO)}+ 2.5 log(%Fetotal) +

11570
T − 10.52, where T

represents the equilibrium temperature [7]. Assis and Tayeb used 100% direct reduced
iron (DRI) in an electric arc furnace (EAF) to investigate the phosphorous equilibrium
in different slags [8]. The study has shown that the presence of alumina in slag signifi-
cantly reduces the phosphorous partition coefficients due to the inactivity of iron oxide. In
addition, an equation was developed by Tayeb et al. to describe the relation between phos-
phorous partition coefficients, slag temperature, and composition, given by, log

(
Lp

T·Fe2.5

)
=

0.073[(%CaO) + 0.148(%MgO) + 0.96(%P2O5) + 0.144(%SiO2) + 0.22(%Al2O3)]+
11570

T −
0.46± 0.1. Although simulation of the dynamic reactions is important and effective in
many cases of end-point predictions, there are still many uncertainties in the BOF pro-
cess that are not being captured in even state-of-the-art thermodynamic models owing to
the overwhelming numbers of chemical reactions taking place in the process. Therefore,
data-driven models are more likely to capture the true non-linear, complex, and stochastic
nature of the relationships that exist among the relevant variables in a BOF process.

There are many advantages of using data-driven models over thermodynamic models,
and the former one unites and simplifies many complex interactions between factors. A
data-driven model learns from large data and evaluates the affecting factors while using
none or limited domain knowledge. This factor becomes increasingly handy when the
underlying reactions operate at conditions far away from equilibrium. In addition, val-
idation of results is also crucial in building a reliable model used for prediction, and a
machine learning (ML) model is a great choice for the situation. ML includes all algorithms
that allow the computer to learn from often large data sets and then makes intellectual
decisions based on the feedback. The algorithms are built upon the data themselves as
it updates and learns from the training data. Recently, multiple linear regression (MLR)
model was used to analyze dephosphorization data from the BOF of two steelmakers with
different slag basicity and temperatures [9]. Results showed that by reducing the tapping
temperature, the phosphorous distribution can be better controlled during steel making.
Similarly, Drain et al. developed partition relations between minor slag constituents and
dephosphorization of steel and validated those by fitting against a large industrial data
set [3]. Their investigation highlighted several important factors; for example, Al2O3 was
found to have a positive relation with a phosphorous partition at high oxygen potentials
and vice versa. Bae et al. explored a range of ML models such as artificial neural network
(ANN) and support vector regression (SVR) for the end-point prediction of phosphorous
content using a three-year span production data [10]. The 10-fold validation results showed
that ANN and SVR perform much better in providing accurate predictions than other
algorithms such as extreme gradient boosting (XGBoost) and K-nearest neighbor (KNN).
Wang et al. discussed about a multi-level recursive regression model to predict end-point
phosphorus [11]. He and Zhang employed principal component analysis combined with a
back-propagation neural network on data obtained from a BOF process [12]. Further, Gao
et al. introduced an ensemble algorithm combining k-nearest neighbor-based weighted
twin support vector regression and Lévy flight whale optimization algorithm [13]. Duo and
Zhang implemented a novel multiclass classifier decision tree twin support vector machine
based on kernel clustering algorithm [14]. More recently, Phull et al. studied a decision
tree-based twin support vector machine to assess the performance of a dephosphorization
process using end-point phosphorus content in two BOF steelmaking plants [15]. Indeed,
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these works imply significant and successful applications of machine learning models
for the end-point predictions in BOF. However, either most of these models project and
explore dephosphorization as a regression problem [10,11], or not many machine learning
models are applied specifically to the dephosphorization process, but rather used to study
other measurable components of a BOF process [13,14]. As a result, a detailed investi-
gation is required to further explore the potential of machine learning classifiers (rather
than regressors), e.g., support vector machines (SVMs) or other variants of SVM to study
the non-linear complex relationships among variables in a BOF process, specifically for
dephosphorization.

In this article, following the work of Phull et al., ML models are developed using twin
support vector machine (TWSVM) and least square twin support vector machine (LSTSVM)
for the end-point phosphorous prediction [15]. These models are applied to BOF plant
data of two steelmakers in North America. Phosphorous partition is quantified, and the
measure is used to classify steel samples based on the chemical composition of slag. The
partition values are labeled as Classes 1 and 2 by implementing the K-means clustering
algorithm [16,17]. The degree of phosphorous removal is represented through the partition
labels. The goal is to implement ML algorithms to predict the partition labeling based on
the chemical composition of slag as well as the tapping temperature. TWSVM and LSTSVM
are the two ML methods incorporated in the training and testing process. In general, the
SVM algorithm determines the best hyperplane as the decision boundary, separating the
data into classes. Unlike SVM, TWSVM determines two non-parallel hyperplanes, each
fitting one class of data [18,19]. In addition, the computation cost is much less than that of
SVM because TWSVM solves a pair of much simplified quadratic programming problems
(QPPs). Therefore, for a complex situation such as the phosphorous end-point prediction,
TWSVM is preferred over general SVM. LSTSVM is a more appropriate algorithm than
TWSVM for data sets with unbalanced classes, as it chooses a different parameter for
each class [20,21]. LSTSVM and TWSVM are also preferred over regular SVM when it
comes to the large scale and high complexity of QPPs. Consequently, using the mentioned
classification algorithms, gradation of the extent of phosphorus removal can be obtained,
which can be used to classify a final batch of BOF output to have superior or inferior quality
of steel.

2. Theory and Methodology

The purpose of this work is to estimate the extent of phosphorus partition in BOF
depending on the chemical composition of slag. Herein, the extent of phosphorous partition
(denoted as lp) is quantified as follows:

lp = ln
(

PercentWeightofPinSlag
PercentWeightofPinSteel

)
= ln Lp (1)

A higher value of lp indicates a lower content of phosphorous in steel, which indicates
a higher efficiency of the dephosphorization process. TWSVM and LSTSVM with different
optimization functions were applied in the characterization of lp values for the highest
accuracy and to optimize the dephosphorization process. lp values were initially grouped
into two classes using the K-means clustering technique. According to the definition of lp,
the class with a higher average lp value is expected to have undergone a greater extent of P
removal and vice versa. Therefore, TWSVM and LSTSVM were implemented to classify
lp labels based on the chemical composition of slag and tapping temperatures. All the
calculations were performed using the R software v 4.0.4 [22].

2.1. Descriptive Statistics of the Data

Data were collected from two plants (plants I and II) with different average tap-
ping temperatures. The tapping temperatures for plant I was between 1620 and 1650 ◦C,
whereas for plant II this range was slightly higher (between 1660 and 1700 ◦C). For plant
I, 13,853 observations were considered, and each observation had 9 different chemical
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feature measurements. In plant II, 3084 sets of observations were collected with 7 dif-
ferent chemical features of the slag. The general distribution of the data is displayed in
Tables 1 and 2 below.

Table 1. General statistics of the chemical composition of slag in plant I.

Variables Mean Standard Deviation Minimum Maximum

Temperature ◦C 1648.82 19.14 1500.00 1749.00

CaO 42.43 3.62 20.00 55.90

MgO 9.23 1.37 3.75 16.46

SiO2 12.89 1.74 5.40 23.30

Fetotal 18.22 3.53 7.70 36.00

MnO 4.80 0.70 2.28 11.98

Al2O3 1.80 0.48 0.59 7.79

TiO2 1.13 0.28 0.17 2.21

V2O5 2.13 0.49 0.25 3.95

Table 2. General statistics of the chemical composition of slag in plant II.

Variables Mean Standard Deviation Minimum Maximum

Temperature ◦C 1679.10 27.11 1579.00 1777.00
CaO 53.45 2.30 42.33 64.06
MgO 0.99 0.34 0.30 3.18
SiO2 13.52 1.44 8.16 18.74

Fetotal 19.34 2.06 13.71 29.72
MnO 0.62 0.18 0.24 2.50
Al2O3 0.94 0.25 0.46 4.09

Figure 1 represents histograms displaying the data distribution of the two plants based
on lp values after the removal of outliers. These histograms show that lp values for plant I
are distributed symmetrically that for plant II is skewed. This observation could be due to
a relatively higher proportion of heats involved in a greater extent of dephosphorization in
plant II than in plant I.

Figure 1. Frequency distributions of lp values from (a) plant I and (b) plant II after removing outliers.

2.2. Theory and Modeling

Our implementation has two components: (i) labeling of the lp values using K-means
clustering, and (ii) applying TWSVM and LSTSVM to modify the classification. The purpose
is to evaluate the performances of the two methods in classifying the extent of P removal
based on the chemical composition of slag. In traditional SVM classification, two classes of
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data are separated by a hyperplane, which maximizes the distance between data points
and the hyperplane. The hyperplane is determined by solving complex QPPs, which is
time consuming for a medium or large data set. TWSVM, on the other hand, uses two
non-parallel hyperplanes that fit each of the data classes [18,19]. A set of simpler QPPs is
solved to determine the hyperplanes. This method is more efficient when compared to
regular SVM because the information from one class provides constraints to the other class,
which reduces the computation complexity of the algorithm by four times [20,21].

Different from TWSVM, LSTSVM is an improved classification ML algorithm with
even faster computational capabilities. LSTSVM solves two linear systems of equations
(as opposed to the quadratic ones) while minimizing computational costs. LSTSVM works
along a similar line as that of TWSVM in solving two non-parallel planes to fit each class
but is more time-efficient for complex data sets. LSTSVM allows for different penalty
parameters for different classes, thereby enhancing the speed of the algorithm [17]. A
diagrammatic representation of the three related models (SVM, TWSVM and LSTSVM) are
presented in Figure 2.

Figure 2. Hierarchy of three different classification methods.

2.2.1. K-Means Clustering

Data were separated into two classes labeled 1 and 2 using the K-means clustering
method based on the lp values [16,17].

2.2.2. Twin Support Vector Machines

After the data sets are separated into two classes based on their corresponding lp
values, the TWSVM algorithm, is applied by fitting two non-parallel hyperplanes into each
cluster of data. The two clusters can be represented by two matrices X1 ∈ Rm×k and
X2 ∈ Rn×k, where m and n are the number of data in each cluster, and k is the number of
variables in each set of data. The non-parallel hyperplanes corresponding to each matrix
are listed below:

xTw1 + b1 = 0 and xTw2 + b2 = 0

where w1 and w2 are normal vectors to the hyperplanes, and b1 and b2 are the corresponding
bias terms [12]. The hyperplanes can be computed by solving the following objective
functions:

min(w1, b1, ξ)
1
2
||X1w1 + e1b1||2 + c1e2

Tξ

subjectedto − (X2w1 + e2b1) + ξ ≥ e2, ξ ≥ 0

and
min(w2, b2, ξ)

1
2
||X2w2 + e2b2||2 + c2e1

Tξ

subjectedto(X1w2 + e1b2) + η ≥ e1, η ≥ 0

where η and ξ are slack variables, and c1 and c2 are penalty parameters. Further, e1 and e2
are two vectors of suitable dimensions with values of all 1s. To find a solution, Lagrange
multipliers are introduced to simplify the problem [18]. Testing data samples will be
assigned to each group according to the perpendicular distance from each data to the
hyperplane, and the decision function is expressed as:

Class i = min
∣∣∣xTwi + bi

∣∣∣ for i = 1, 2.
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2.2.3. Least Squares Twin Support Vector Machines

LSTSVM generates two non-parallel hyperplanes by solving two linear systems
of equations, and the solutions are obtained through the following optimization prob-
lems [20,21]:

min(w1, b1, ξ)
1
2
||X1w1 + eb1||2 +

c1

2
ξTξ

subjectedto − (X2w1 + eb1) + ξ = e

and
min(w2, b2, η)

1
2
||X2w2 + eb2||2 +

c2

2
ηTη

subjectedto (X1w2 + eb2) + η = e.

The assignment of data sample will take place as follows:

Class i = argmin(j = 1, 2)

∣∣∣wT
j x + bj

∣∣∣
||wj ||

2.3. Model Validation and Performance Measures

The models’ tuning parameters were adjusted by comparing the accuracy of the
test results against the true clustering results. To maintain a margin large enough when
the distribution overlaps, a penalty parameter c was introduced to regularize the cost
function. A large penalty parameter leads to a smaller margin and larger training accuracy,
while a small penalty parameter results in a smaller training accuracy. A larger margin
prevents overfitting, and thus, the parameters were tuned based on the margin and accuracy
trade-off.

Both models randomly selected 80% of the total data from each data set (i.e., plant I
and plant II) for training and the other 20% for testing. The accuracy of the classification
methods was calculated through the classification table and is given by [16,17]:

ClassificationRate =
TruePositives + TrueNagatives

TotalSampleSize
(2)

Classification rates were measured for 100 random dynamic train-test splits to demon-
strate the consistency of the accuracy of the model by normalizing over random noises
that may occur. The average over these 100 runs is presented as the accuracy of a model.
Along with the average, standard deviation, minimum and maximum over all 100 runs
were estimated to further ascertain the accuracy, robustness, and consistency of the binary
classification techniques.

• To demonstrate the model performances, we compared results from TWSVM and
LSTSVM against the logistic regression model. Logistic regression is a statistical
method of regressing where the probability (P) of the response variable belonging to a
group is estimated based on feature variables by using likelihood-based estimation [23].
If Y is the response variable (lp in our analysis) and Y can belong to either group ‘0’ or
‘1’ (Class 1 or Class 2 in our analysis), then

P(Y = 1) =
[
1 + e−(β0+β1x1+β2x2+···+βpxp)

]−1
(3)

where p represents the number of features, and β0, β1 . . . , βp are the regression coef-
ficients [24]. This regression technique can be converted to a classification method by
choosing an appropriate threshold value δ ∈ [0, 1]. If ˆP(Y = 1) > δ then Y takes the value
‘1’, else Y takes ‘0’, where ˆP(Y = 1) is the estimated value of P(Y = 1) using (3). After
fitting the logistic regression model on 80% training data from plants I and II, confusion
matrices were constructed on the 20% test data in the same way mentioned in (2). A grid
search was performed over δ in the interval [0,1] with an increment of 0.05, and the one
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that returned the highest accuracy (classification rate) was chosen. To average out noises
and establish consistency, the process was repeated 100 times for each threshold value, and
their mean accuracies were observed.

• Besides the ML algorithms used in recent years, there have been many regression
models (based on thermodynamic or empirical concepts) that predicts the lp values
from other chemical compositions of slag. In 2019, Barui et al. selected 25 existing
regression models and tested their performances against their own data-driven linear
regression model using RMSE and R2 values [25]. In this article, we compared our
classification models (TWSVM and LSTSVM) against those 25 regression models that
were applied to plant I and plant II data for classification. Interested readers may
refer to Barui et al. for the detailed list of these 25 predictive model equations. We
considered the same numbering system of the 25 equations (namely, (M1)–(M25)) as
adopted by Barui et al. Not all equations could be used for comparisons for both
plants’ data due to the lack of complete information. Of those 25 models, 13 were
available for comparisons for the plant I data, while 24 were used for the plant II data.
For each heat, lp values were predicted (l̂p) based on the chemical composition of slag
and tapping temperature using the equations among (M1)–(M25), whichever were
applicable. On the other hand, by using K-means clustering, we obtained the two
clusters (Classes 1 and 2) and their respective lp averages, say lp1 and lp2. A particular
heat was classified to Class i by the following assignment rule:

Class i = argmin (j = 1, 2)
{

dist
(

l̂p, lpj

)}
Once the assignments were over for all heats, the accuracies of the predictive model

equations were measured by the classification rate as mentioned in (2).

3. Results
3.1. Labeling of lp and Statistics of the Classes

The frequency, mean, standard deviation, minimum, and maximum for each cluster of
lp values, namely, Classes 1 and 2, after the application of the K-means clustering method,
are presented in Tables 3 and 4 for both the plants. For plant I, data from 6097 heats are
found to belong to Class 1 and 7756 to Class 2, whereas for plant II there are 1035 data
points belonging to Class 1 and 2046 assigned to Class 2. In addition, the standard devi-
ations are of similar magnitudes. For both plants, Class 1 represents the class with ‘Low’
degree of phosphorus removal, whereas Class 2 represents the one with a ‘High’ degree
of dephosphorization. The bifurcation is evident on observing the mean, minimum and
maximum lp values. The range of the lp values spans between 2.50 and 7.06, implying a
high level of dispersion across heats.

Table 3. Descriptive statistics of lp values for Classes 1 and 2 for plant I.

Frequency
(%) Mean Standard

Deviation Minimum Maximum

Class 1 (L) 6097 (44.01%) 4.04 0.19 2.50 4.27
Class 2 (H) 7756 (55.99%) 4.52 0.18 4.28 7.06

Table 4. Descriptive statistics of lp values for Classes 1 and 2 for plant II.

Frequency
(%) Mean Standard

Deviation Minimum Maximum

Class 1 (L) 1035 (33.59%) 4.24 0.26 2.76 4.53
Class 2 (H) 2046 (66.41%) 4.82 0.17 4.53 5.64
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3.2. Optimization and Performance

Lagrange multipliers were used to solve the hyperplane equations, which were ob-
tained from the Wolfe dual optimization functions [18]. Three methods, namely, a general-
purpose optimization based on the Nelder–Mead method, spectral projected gradient
(SPG), and quasi-Newton algorithms included in the wrapper function, were used for
optimization [26–28]. For the Nelder–Mead method, a simplex is used to search for the
optimal solution. The simplex changes its shape and traverses in space to move toward
the minimum. Targeting convex constrained problems, SPG is a hybrid method of spec-
tral nonmonotone concepts and classical projected gradient techniques. Quasi-Newton
optimization is another gradient-based method that searches for a function’s maxima
and minima. This method requires a gradient of the function to build on the second-
order information, which is the Hessian matrix. The quasi-Newton method works best for
medium-sized data but is not efficient for large data sets. From the results, the Nelder–Mead
method provided the most optimal performance at the lowest computational cost.

The classification rates of the TWSVM and LSTSVM models are provided in Table 5.
From Table 5, it is observed that the accuracy percentages reach almost 100% while classify-
ing lp by applying LSTSVM on plant II data when the penalty parameter c = 10. On the
contrary, the same penalty parameter value resulted in a classification rate of approximately
63% for the plant I data. The classification rate across different penalty parameter values
(c = 10, 50 and 100) by LSTSVM for the plant I data showed a similar trend (63.46–64.10%).
However, the classification rate by LSTSVM for plant II data is the lowest (75.46%) for
c = 50 and highest (99.90%) for c = 10. On average, TWSVM performs marginally bet-
ter (accuracy of 66.62%) as opposed to LSTSVM (accuracy of 64.10%) for plant I data,
whereas LSTSVM (accuracy of 99.90%) outperforms TWSVM (accuracy of 74.04%) when
applied to plant II data. Graphical representations of the classification rate are shown in
Figures 3 and 4 with the aid of bar plots. The standard deviations for both classification
models and various penalty parameters values are low in comparison to the respective
means signifying less variability across 100 runs. This suggests the insensitivity of accuracy
measures with respect to the split in training and test data.

Table 5. Model performances in terms of classification rate for plant I and plant II data.

TWSVM

Plant c Mean Standard Deviation Minimum Maximum

I - 0.6662 0.0082 0.6435 0.6835
II - 0.7404 0.0179 0.6932 0.7744

LSTSVM

Plant c Mean Standard Deviation Minimum Maximum

I 10 0.6346 0.0071 0.6146 0.6532
I 50 0.6372 0.0080 0.6193 0.6561
I 100 0.6410 0.0078 0.6207 0.6619

II 10 0.9990 0.0036 0.9789 1.0000
II 50 0.7546 0.0153 0.7143 0.8036
II 100 0.7643 0.0147 0.7305 0.8019
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Figure 3. Performance (in % accuracy) comparison between two algorithms: TWSVM and LSTSVM.

Figure 4. Performance (in % accuracy) comparison of LSTSVM for various penalty values.

The performance of the logistic regression-based classifications is given in Table 6. We
computed the mean, standard deviation, minimum and maximum of the classification rates
over 100 Monte Carlo runs of random 80–20% train-test split for every δ = 0.05, 0.10, . . . , 0.95.
For brevity, we just presented the values for δ = 0.05, 0.10, 0.50, 0.80 in Table 6. On the
other hand, Figure 5 shows the mean classification rates of the logistic regression model
for both plants I and II for every δ = 0.05, 0.10, . . . , 0.95. For δ = 0.30 and δ = 0.50, the
highest accuracies in terms of the classification rates were observed for plants I and II,
respectively (see Figure 5). LSTSVM provided with better accuracy (99.90%) as compared
to the logistic regression model (accuracy of 77.39%) for plant II data, whereas the latter has
a greater classification rate (accuracy of 74.31%) than both TWSVM (accuracy of 66.62%)
and LSTSVM (accuracy of 64.10%) for the plant I data.
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Table 6. Performance of the logistic regression-based classification for plants I and II.

Logistic Regression Classifier

Plant Threshold (δ) Mean Standard Deviation Minimum Maximum

I 0.05 0.4469 0.0089 0.4273 0.4630
I 0.10 0.4643 0.0089 0.4370 0.4857
I 0.50 0.7090 0.0071 0.6011 0.7279
I 0.80 0.6017 0.0092 0.5778 0.6254

II 0.05 0.4422 0.0226 0.3890 0.5089
II 0.10 0.5490 0.0216 0.4830 0.5948
II 0.50 0.7739 0.1450 0.3710 0.8023
II 0.80 0.7290 0.0167 0.6807 0.7715

Figure 5. Performance of the logistic regression model for different threshold values.

As mentioned in Section 2.3, the performances based on the classification rates of our
proposed models were compared against the 25 regression equations discussed by Barui
et al. These 25 equations, along with their references, are also provided in Table S1. in the
supplementary materials of this paper. Figures 6 and 7 reveal that the highest accuracies
were attained by the equation (M15) (with an accuracy of 60.30%) for plant I and by the
equation (M14) (with an accuracy of 61.70%) for plant II. Nevertheless, the classification
rates were lesser than the TWSVM and LSTSVM models for all cases. Some equations (e.g.,
(M16), (M18), (M21), (M23), (M24) for plant I) were found to have equal classification rates
because they all have predicted either too high or too low lp values than the K-means cluster
averages. Hence, all observations were classified to just one cluster for those equations
resulting in skewed accuracies. From the results, it can be concluded that these regression
models do not perform as well as the proposed TWSVM and LSTSVM algorithms.
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Figure 6. Performance (% accuracy) comparison with the classification models in Barui et al. for
plant I.

Figure 7. Performance (% accuracy) comparison with the classification models in Barui et al. for
plant II.

The main advantage of applying LSTSVM over other fitted models is in terms of
computation or running time. As shown in Table 7, the average running times of logistic
regression, SVM with both polynomial and radial basis function (RBF) kernels, TWSVM,
and LSTSVM with their best-performing parameters are recorded. For each model, the test
is repeated 100 times with randomly selected data, and the total time is noted. Then the
total time is divided by 100 to show the time taken for each prediction. The run time of
each prediction improves significantly in LSTSVM compared with the other models. As
discussed before, the SVM models and their variants are tuned for the best combinations
of hyperparameters. It can be clearly seen from Table 7 that LSTSVM is approximately
167 times faster than SVM with RBF kernel for large data set (Plant I) and 18 times for small
data set (plant II). LSTSVM shows 1.5–24 times lesser computation times than TWSVM.
Figures 8 and 9 represent results from Table 7 graphically.
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Table 7. Average running time (in seconds) of the applied classification models per 100 runs for plant
I and plant II data.

Model Plant I Plant II

Logistic Regression 0.8577 0.1730
SVM Polynomial (2nd Degree) 6.6370 0.4793

SVM Radial Basis 8.3610 0.3090
TWSVM 1.2130 0.0175
LSTSVM 0.0500 0.0167

Figure 8. Computation time comparison of the applied classification models for plant I.

Figure 9. Computation time comparison of the applied classification models for plant II.

4. Discussion
4.1. Algorithm Performance

All data points were normalized before applying the algorithms for classification to
reduce both consumption of computational resources and aid comparability by bringing
all variables down at the same scale. Looking at the classification rates obtained from both
algorithms (Figure 4), LSTSVM produced an accuracy of almost 25% greater with c = 10
for plant II data than TWSVM, while TWSVM outperformed LSTSVM by a marginal 2% for
plant I data. Furthermore, on average, after applying both algorithms, the accuracy obtained
for plant I data by applying both algorithms is lower than plant II. Similar observations were
made by Phull et al. in their work where the same data sets were analyzed by a decision
tree-based TWSVM algorithm [15]. This discrepancy in accuracy could have the following
plausible explanation: Plant I has a larger data set (almost five times) in comparison to
plant II, and the lp distribution for plant II is more negatively skewed than that of plant
I. Data from 13,853 heats and 9 chemical features were observed for plant I, and only
3084 observations and 7 chemical features were considered from plant II for the study. Two
additional features, namely V2O5 and TiO2, were considered in the classification models
for the plant I data. Although large data sets generally result in smaller bias, however, they
may also exhibit higher variability and a noisy pattern, which can diminish the accuracy of
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the ML algorithms. As shown in Figure 1, the lp distribution for plant II is more skewed to
the left, whereas plant I is almost normally distributed. This condition indicates that the lp
values reside more on the higher range for plant II and are more symmetrically spread out
across all observations for plant I. Further, the initial clusters obtained by using the K-means
clustering algorithm to the data had a split ratio of 45–55% for plant I and 34–66% division
ratio for plant II. The ratio points toward the asymmetry in the data distribution for plant II.
Therefore, it is easier to separate the values into two classes for plant II, which could result
in a higher classification rate in the algorithm. From our study, it is fair to conclude that
LSTSVM outperforms TWSVM when the initial data clusters are disproportionate with
respect to the number of observations while performing almost similar to that of TWSVM
for proportionately distributed clusters.

The performances of our proposed models (TWSVM and LSTSVM) were compared
against the logistic regression-based classifier and 25 well-established data-driven regres-
sion equations (adapted for classification) discussed by Barui et al. LSTSVM outperforms all
classification models considered for comparison for the plant II data [25]. On the contrary,
the logistic regression model performs best for the plant I data. The probable reasons for this
discrepancy have been discussed above. All three classification models, namely, TWSVM,
LSTSVM, and logistic regression-based classifier, perform better than the 25 predictive
models discussed in Barui et al.

Because LSTSVM solves two linear systems of equations while TWSVM solves a
pair of QPPs (though much simple in complexity than that of the regular SVM), LSTSVM
computes at a considerably faster speed than TWSVM does in the training process. The
superiority of LSTSVM over other applied algorithms is evident in Table 7. Therefore,
training models with very large data sets (big data) LSTSVM would be extremely time and
cost efficient.

This efficiency in computation can be a major advantage in an industrial setting.
It is also worth noting that the classification rate for plant II increases with lower cost
parameters, and this is because a lower cost results in a larger margin. A larger margin
sets a better possible separation between the two classes and thus performs better on
validation data.

4.2. Applications to the Steel Industry and Future Work

These ML algorithms can be applied to the steel manufacturing industry to tackle not
only dephosphorization but to efficiently maintain end-point control in the BOF process,
where the end-point phosphorous parameters could be predicted with a given chemical
composition of slag and tapping temperatures. In our current study, the lp value is separated
into two classes, in which Class 1 represents the group with a lower extent of phosphorus
partition and Class 2 represents a higher degree of phosphorous removal. The proposed
method is a reliable structure that takes in the values of the chemical composition of slag and
tapping temperature and computes the cluster its corresponding lp belongs to, allowing for
manufacturing improved finished product. In addition, the computational time of LSTSVM
is significantly reduced from that of traditional SVM and TWSVM, as shown in Table 7.
The reduced run time poses the advantage of the proposed algorithm, allowing easy use in
the industrial setting when they do not have access to high-end computational tools. With
more comprehensive data, we can adjust the initial labeling to be more precise by clustering
the lp values into classes. The goal of the dephosphorization process is to produce a grade
of steel that falls in the higher class for the process to be efficient. This improvement would
lead to a more accurate prediction of the lp value, and the ML models could predict the
final content with careful adjustment of the process parameters. Although TWSVM and
LSTSVM show promising results in their classification performance, LSTSVM would be a
better fit in a shop floor setting because of its faster speed and easier implementation by
computing linear systems of equations, especially when dealing with higher dimensional
real-time data.
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5. Concluding Remarks

Least squares twin support vector machines, a modified version of the twin support
vector machines, which itself is an extension of ordinary support vector machines, is
proposed in this paper for the binary classification of the phosphorus ‘partition’ ratio
denoted by lp. The classes, denoted by Class 1 and Class 2, represent the respective lower
and a higher degree of phosphorus removal in steel in the BOF steelmaking process. An
unsupervised ML algorithm of K-means clustering is implemented for the initial labeling of
each heat observation based on the lp values. LSTSVM is a fast and simple alternative to the
TWSVM, which solves two systems of linear equations as opposed to solving two systems
of quadratic programming problems. Data from two BOF plants (plant I and plant II) were
explored for studying the performance of the proposed algorithms. LSTSVM achieved an
accuracy of around 64% for plant I data and 99.9% for plant II data. On average, LSTSVM
outperformed TWSVM when the data distribution is skewed, as in the case of plant II. It is
further observed that increasing the number of features or data points does not necessarily
improve the accuracy of the suggested models. To further exemplify the performance of
LSTSVM, it was compared against the logistic regression model as well as already existing
25 data-driven predictive models. For the plant II data, LSTSVM delivered the highest
classification rate among all these classification models.

The rapidity of the algorithms could be used in actual industrial settings or BOF
shops generating real-time data for end-point phosphorus classification. By carefully
manipulating the chemical composition of slag and tapping temperature for a particular
heat in subsequent batches, a greater degree of phosphorus removal could be achieved
within a short span of time by channelizing the structure of the proposed classification
algorithm. Other efficient variations of the TWSVM could be studied in the context of
dephosphorization as a part of future works.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/met12020268/s1, Table S1: List of candidate models to predict
dephosphorization in steel.
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