The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion
Abstract
:1. Introduction
2. Method
2.1. Grain Boundary Model
2.2. Calculation of Hydrogen Diffusion
3. Results
3.1. Diffusion Rate of Hydrogen Atoms at Different Temperatures
3.2. Diffusion of Hydrogen Atoms in Different STGBs of Aluminum
4. Conclusions
- (1)
- Grain boundaries have a great influence on the diffusion rate of hydrogen atoms in aluminum. The diffusion rate of hydrogen in the model with a grain boundary is higher than that in the block model.
- (2)
- In the 0.5 at. % H STGB models, the grain boundaries capture hydrogen atoms and hinder the diffusion of hydrogen. In the 2.5 and 5 at. % H STGB models, the barrier effect of grain boundaries on hydrogen is weakened, and the overall hydrogen diffusion rate increases after the aggregation of hydrogen atoms at the grain boundaries.
- (3)
- In the STGB models with 2.5 and 5 at. % H, the anisotropy of diffusion rate is clearer after hydrogen atoms accumulated at the grain boundaries, which shows that the diffusion rate along the grain boundaries interface increases. MD simulation is a feasible and effective method for studying the effect of complex grain boundaries in hydrogen diffusion, which provides a new research idea for studying other microstructure defects and hydrogen diffusion in metals.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnson, W.H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Nature 1875, 11, 393. [Google Scholar] [CrossRef]
- Ozdirik, B.; Baert, K.; Depover, T.; Vereecken, J.; Verbeken, K.; Terryn, H.; De Graeve, I. Development of an electrochemical procedure for monitoring hydrogen sorption/desorption in steel. J. Electrochem. Soc. 2017, 164, 747–775. [Google Scholar] [CrossRef]
- Zafra, A.; Peral, L.B.; Belzunce, J.; Rodriguez, C. Effect of hydrogen on the tensile properties of 42CrMo4 steel quenched and tempered at different temperatures. Int. J. Hydrogen Energy 2018, 43, 9068–9082. [Google Scholar] [CrossRef]
- Urosevic, V.; Nikezic, D. Radon transport through concrete and determination of its diffusion coefficient. Radiat. Prot. Dosim. 2003, 104, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Savovic, S.; Djordjevich, A.; Tse, P.W.; Krstic, D. Radon diffusion in an anhydrous andesitic melt: A finite difference solution. J. Environ. Radioact. 2011, 102, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Risken, H. The Fokker-Planck Equation, 1st ed.; Springer: Berlin, Germany, 1984; pp. 276–373. [Google Scholar]
- Savovi, S.; Djordjevich, A. Investigation of mode coupling in graded index plastic optical fibers using the Langevin equation. J. Lightwave Technol. 2020, 38, 6644–6647. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, W.; Deng, Q.; Jiang, W.; Wang, Y.; Jiang, W. Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen. Int. J. Hydrogen Energy 2017, 42, 25102–25113. [Google Scholar] [CrossRef]
- Meng, G.; Sun, F.; Wang, S.; Shao, Y.; Tao, Z.; Wang, F. Effect of electrodeposition parameters on the hydrogen permeation during Cu–Sn alloy electrodeposition. Electrochim. Acta 2010, 55, 2238–2245. [Google Scholar] [CrossRef]
- Silverstein, R.; Eliezer, D.; Tal-Gutelmacher, E. Hydrogen trapping in alloys studied by thermal desorption spectrometry. J. Alloy. Compd. 2018, 747, 511–522. [Google Scholar] [CrossRef]
- Takagi, S.; Toji, Y.; Yoshino, M.; Hasegawa, K. Hydrogen embrittlement resistance evaluation of ultra high strength steel sheets for automobiles. ISIJ Int. 2012, 52, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Pressouyre, G.M.; Bernstein, I.M. A Quantitative Analysis of Hydrogen Trapping. Metall. Trans. A 1978, 9, 1571–1580. [Google Scholar] [CrossRef]
- Li, L.X.; Wang, Y.H.; Wang, W.J.; Liu, J.Y.; Xu, Z.Q.; Du, F.S. Mechanism and prediction of hydrogen embrittlement based on complex phase structure of chromium alloy steel. Mater. Sci. Eng. A 2021, 822, 141546. [Google Scholar] [CrossRef]
- Koyama, M.; Akiyama, E.; Sawaguchi, T.; Raabe, D.; Tsuzaki, K. Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel. Scr. Mater. 2012, 66, 459–462. [Google Scholar] [CrossRef]
- Louthan, M.R. Hydrogen embrittlement of metals: A primer for the failure analyst. J. Fail. Anal. Prev. 2008, 8, 289–307. [Google Scholar] [CrossRef] [Green Version]
- Fuchigami, H.; Minami, H.; Nagumo, M. Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure. Philos. Mag. Lett. 2006, 86, 21–29. [Google Scholar] [CrossRef]
- Takasawa, K.; Wada, Y.; Ishigaki, R.; Kayano, R. Effects of grain size on hydrogen environment embrittlement of high strength low alloy steel in 45 MPa gaseous hydrogen. J. Jpn. Inst. Met. 2011, 74, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Yazdipour, N.; Dunne, D.P.; Pereloma, E.V. Effect of Grain Size on the Hydrogen Diffusion Process in Steel Using Cellular Automaton Approach. Mater. Sci. Forum 2012, 706, 1568–1573. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, A.; Jónsson, H. Simulations of hydrogen diffusion at grain boundaries in aluminum. Acta Mater. 2009, 57, 4036–4045. [Google Scholar] [CrossRef]
- Harris, T.M.; Latanision, M. Grain boundary diffusion of hydrogen in nickel. Metall. Trans. A 1991, 22, 351–355. [Google Scholar] [CrossRef]
- Ichimura, M.; Sasajima, Y. Diffusivity and Solubility of Hydrogen in Grain-Refined Aluminum. Mater. Trans. JIM 1993, 34, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Brass, A.M.; Chanfreau, A. Accelerated diffusion of hydrogen along grain boundaries in nickel. Acta Mater. 1996, 44, 3823–3831. [Google Scholar] [CrossRef]
- Doyle, D.M.; Palumbo, G.; Aust, K.T.; El-Sherik, A.M.; Erb, U. The influence of intercrystalline defects on hydrogen activity and transport in nickel. Acta Metall. Mater. 1995, 43, 3027–3033. [Google Scholar] [CrossRef]
- Page, D.E.; Varela, K.F.; Johnson, O.K.; Fullwood, D.T.; Homer, E.R. Measuring simulated hydrogen diffusion in symACmetric tilt nickel grain boundaries and examining the relevance of the Borisov relationship for individual boundary diffusion. Acta Mater. 2021, 212, 116882. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hickman, J.; Mishin, Y. Extra variable in grain boundary description. Phys. Rev. Mater. 2017, 1, 010601. [Google Scholar] [CrossRef]
- Zhou, X.W.; Ward, D.K.; Foster, M.E. A bond-order potential for the Al-Cu-H ternary system. New J. Chem. 2018, 42, 5215–5228. [Google Scholar] [CrossRef]
- Nos’E, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [Green Version]
- Outlaw, R.A.; Peterson, D.T.; Schmidt, F.A. Diffusion of hydrogen in pure large grain aluminum. Scr. Metall. 1982, 16, 287–292. [Google Scholar] [CrossRef]
- Hashimoto, E.; Kino, T. Hydrogen diffusion in aluminium at high temperatures. J. Phys. F Met. Phys. 1983, 13, 1157. [Google Scholar] [CrossRef]
- Saitoh, H.; Iijima, Y.; Tanaka, H. Hydrogen diffusivity in aluminium measured by a glow discharge permeation method. Acta Metall. Mater. 1994, 42, 2493–2498. [Google Scholar] [CrossRef]
- Eichenauer, W.; Hattenbach, K.; Pebler, A. The solubility of hydrogen in solid and liquid aluminum. Z. Metallk. 1961, 52, 682–684. [Google Scholar]
- Ishikawa, T.; McLellan, R.B. The diffusivity of hydrogen in aluminum. Acta Metall. 1986, 34, 1091–1095. [Google Scholar] [CrossRef]
Parameters for CSL of STGB | ∑37a (160) | ∑17a (140) | ∑5 (130) | ∑29a (250) | ∑5 (120) | ∑13a (230) | ∑25a (340) |
---|---|---|---|---|---|---|---|
Tilt Angle (°) | 18.9 | 28.1 | 36.9 | 43.6 | 53.1 | 67.4 | 73.7 |
Temperature (K) | Slope of Bulk Model (Å2/ps) | Error | R2 | Slope of GB Model (Å2/ps) | Error | R2 |
---|---|---|---|---|---|---|
400 | 5.53 × 10−3 | 1.47 × 10−5 | 0.941 | 1.09 × 10−2 | 2.21 × 10−5 | 0.966 |
500 | 4.94 × 10−2 | 7.90 × 10−5 | 0.980 | 6.80 × 10−2 | 8.57 × 10−5 | 0.987 |
600 | 0.249 | 2.60 × 10−4 | 0.991 | 0.362 | 2.54 × 10−4 | 0.996 |
700 | 0.750 | 4.39 × 10−4 | 0.997 | 1.04 | 1.85 × 10−4 | 0.976 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, H.; Li, L.; Liu, J.; Zhao, P.; Xu, Z. The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion. Metals 2022, 12, 345. https://doi.org/10.3390/met12020345
Wang Y, Wang H, Li L, Liu J, Zhao P, Xu Z. The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion. Metals. 2022; 12(2):345. https://doi.org/10.3390/met12020345
Chicago/Turabian StyleWang, Yuhao, Haijun Wang, Lingxiao Li, Jiyan Liu, Pei Zhao, and Zhiqiang Xu. 2022. "The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion" Metals 12, no. 2: 345. https://doi.org/10.3390/met12020345
APA StyleWang, Y., Wang, H., Li, L., Liu, J., Zhao, P., & Xu, Z. (2022). The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion. Metals, 12(2), 345. https://doi.org/10.3390/met12020345