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Abstract: High-strength aluminum alloys are widely used in industry. Hydrogen embrittlement
greatly reduces the performance and service safety of aluminum alloys. The hydrogen traps in alumi-
num profoundly affect the hydrogen embrittlement of aluminum. Here, we took a coinci-dence-site
lattice (CSL) symmetrically tilted grain boundary (STGB) Σ5(120)[001] as an example to carry out
molecular dynamics (MD) simulations of hydrogen diffusion in aluminum at dif-ferent temperatures,
and to obtain results and rules consistent with the experiment. At 700 K, three groups of MD
simulations with concentrations of 0.5, 2.5 and 5 atomic % hydrogen (at. % H) were carried out for
STGB models at different angles. By analyzing the simulation results and the MSD curves of hydrogen
atoms, we found that, in the low hydrogen concentration of STGB models, the grain boundaries
captured hydrogen atoms and hindered their movement. In high-hydrogen-concentration models,
the diffusion rate of hydrogen atoms was not affected by the grain boundaries. The analysis of the
simulation results showed that the diffusion of hydro-gen atoms at the grain boundary is anisotropic.

Keywords: MD simulation; hydrogen embrittlement; symmetrically tilt grain boundary; hydrogen
diffusion

1. Introduction

Hydrogen is one of the important factors that causes the performance degradation
of metal parts, reducing service life and endangering service safety [1–3]. High-strength
aluminum alloys are widely used in aerospace and other fields due to their high strength–
mass ratio. The hydrogen embrittlement of aluminum alloys has a great impact on the
development of industry, which is specifically manifested in the reduction in the mechanical
properties of the material and the fracture of aluminum alloy parts. The hydrogen embrit-
tlement of aluminum alloys and the hydrogen embrittlement mechanism have received
extensive attention from scholars.

The diffusion of hydrogen in metals is an important issue in the study of the hydrogen
embrittlement of metals. According to the diffusion mechanism, Fick’s law can be used to
describe the diffusion of hydrogen in metals [4,5]:

∂C(z, t)
∂t

= D
∂2C(z, t)

∂z2 (1)

where C(z, t) is the concentration and D is the diffusion rate. In an ideal environment,
diffusion is the transfer of material molecules from the region with a high concentration to
the region with a low concentration in the process of irregular movement [6,7]. However,
hydrogen atoms are affected by hydrogen traps and will aggregate during the diffusion
process. The accumulated hydrogen atoms will cause the local pressure to increase and
become the source of cracks after the formation of hydrogen molecules, which will lead to
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hydrogen-induced material damage [8–10]. The defects of metal microstructures such as va-
cancies, dislocations, microcracks, and grain boundaries, which could all pin hydrogen, are
called hydrogen traps. The number and density of hydrogen traps will affect the diffusion
of hydrogen and profoundly affect the hydrogen embrittlement of metal materials [11–13].
An analysis of the influence of microstructure defects in aluminum alloys on hydrogen
diffusion is of great significance to the study of the hydrogen embrittlement mechanism of
aluminum alloys.

As a common hydrogen trap, the grain boundary had a larger effect on the hydrogen
embrittlement sensitivity of the metal [14,15]. In the study of the grain boundary on hydro-
gen embrittlement, the same material with different grain sizes had a different hydrogen
embrittlement, and the different grain sizes indicated that the grain boundary density was
different. Fuchigami et al. [16] studied martensite steel, Takasawa et al. [17] researched
high-intensity low-alloy (HSLA) steel and Yazdipour et al. [18] studied pipeline steels; all
of these authors showed that refining grains and increasing the density of grain boundary
could improve the hydrogen embrittlement resistance of materials. The simulation of
Pedersen et al. [19] on the low concentration hydrogen diffusion of aluminum showed
that the diffusion rate of hydrogen atoms at the grain boundary was lower than that in the
crystal, and the trapping of hydrogen atoms at the grain boundaries hindered the diffusion
of hydrogen atoms.

However, the study of hydrogen diffusion at nickel grain boundaries by Harris et al.
showed that the difference in the H diffusion rate at the grain boundaries was related
to the concentration of hydrogen. The grain boundaries captured the hydrogen atoms
when the hydrogen concentration was low. When the hydrogen at the grain boundary
reached a certain concentration, the grain boundaries could be used as a channel for the
rapid diffusion of hydrogen atoms, and the diffusion rate of H increased [20]. Ichimura
et al. also proved this idea by investigating the hydrogen diffusion rate and solubility
of pure aluminum with different grain sizes via a high-temperature thermal desorption
experiment [21]. Brass et al. conducted an electrochemical diffusion experiment of different
grain sizes of nickel. The diffusion rate of hydrogen in nickel increased due to the diffusion
of high concentration of hydrogen on the grain boundaries [22]. The electrocatalytic
behavior of nickel with different grain sizes in alkaline media was studied by Doyle
et al. [23]; the higher diffusion rate of hydrogen at the grain boundaries was confirmed by
this study. Although the diffusion rate of hydrogen in the grain boundary can be measured
and calculated by clever experiments, there are many grain boundaries with different types
and angles. This is a huge project that measures the hydrogen diffusion rate at different
grain boundaries. These problems lead to the inability to test the diffusion rate of hydrogen
for each kind of grain boundaries.

Page et al. used molecular dynamics (MD) to simulate the diffusion of hydrogen
in nickel. The study carried out a plethora of calculations, where the diffusion rates of
hydrogen in the grain boundaries at various angles were calculated. The results showed that
the diffusion rate of hydrogen at the grain boundaries was higher than that in the crystals
in the environment of higher hydrogen concentration [24]. The workload was greatly
reduced by the MD simulation where the grain boundaries’ information was obtained. The
measurement of hydrogen diffusion through MD simulation also faced new challenges.
Due to the computational power of computer, the MD simulation system is usually small,
and the established model is usually different from the actual situation. The diffusion rate
may be affected by the size of the models.

In this study, the diffusion simulation of the hydrogen in STGB and bulk of aluminum
at different temperatures was carried out, and the accuracy of the models was judged by
comparison with experimental values. MD simulations of different hydrogen concentra-
tions were carried out in STGB models with different angles, and the influence of grain
boundaries on the hydrogen diffusion rate under different angles and different hydrogen
concentrations was discussed.
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2. Method
2.1. Grain Boundary Model

In this study, the MD simulation was carried out on the open-source software LAMMPS
developed by Sandia National Laboratory [25]. The models were built by commercial soft-
ware Materials Studio, and the visualization of the calculation results was realized on
the commercial software OVITO. STGBs of aluminum were constructed by establishing
standard bicrystal models [26]. The models adopted periodic boundaries in the calculation
process. The established bicrystal model contained two identical STGBs under periodic
boundary conditions, which were located in the middle and at the end of the model. The
two grains in the bicrystal model also needed to maintain their periodicity. In order to ex-
plore the effect of grain boundaries with different angles on hydrogen diffusion, we selected
7 coincidence-site lattice (CSL) grain boundaries with different tilt angles of aluminum as
the research object. These bicrystal models with STGBs took [001] crystal direction as the
rotation axis. Table 1 listed the CSL parameters, grain boundary planes and tilt angles of
the 7 STGBs.

Table 1. Model parameters of STGB along [001] tilt axis.

Parameters for CSL of STGB ∑37a
(160)

∑17a
(140)

∑5
(130)

∑29a
(250)

∑5
(120)

∑13a
(230)

∑25a
(340)

Tilt Angle (◦) 18.9 28.1 36.9 43.6 53.1 67.4 73.7

The models were calculated under periodic boundary conditions and the average
size of the model with STGB is 32 Å × 40 Å × 70 Å. The models became the correct
configuration by removing the overlapping aluminum atoms at the grain boundaries. On
average, there were 6000 aluminum atoms in each model. Hydrogen atoms with randomly
distributed positions were added to all STGB models of aluminum, and different numbers
of hydrogen atoms were added to enable concentrations of 0.5, 2.5 and 5 at. % H in
the model, respectively. One group of STGB models with 5 at. % hydrogen in different
misorientation angles is shown in Figure 1. For convenience of observation, aluminum
atoms and hydrogen atoms in all models were not displayed in accordance with the real
proportion.

In order to ensure the accuracy of hydrogen diffusion in the constructed bicrystal
model, and consider the difference of hydrogen diffusion in the model with different tilt
angles, one group of corresponding single-grain bulk models without grain boundaries
were constructed as the control groups for each STGB model. The rotation axes of the grains
in the control models were the same as those in the bicrystal model, and the tilt angle was
the same as that of a single grain in the bicrystal model. The control groups also ensured
the periodicity of aluminum grains and added the same proportion of hydrogen atoms.
The models of the control groups are shown in Figure 2. All simulations of hydrogen
diffusion in STGBs were carried out in LAMMPS, including the simulations of control
groups. The bond sequence potential (BOP), developed by Zhou to describe the Al-Cu-H
system, was used as the interaction between Al-H atoms [27], the Nosé–Hoover thermostat
and Isothermal–isobaric (NPT) ensemble barostat were used in the whole simulation
process [28,29]. The step of MD simulation was 0.001 ps. Before simulation, models required
a relaxation of 20 ps to ensure that the whole model reached the required temperature and
the temperature fluctuation range was within 10 K. All models were simulated for 1200 ps
after relaxation to observe the diffusion process of hydrogen atoms and obtained the mean
square displacement (MSD) of hydrogen atoms in the MD simulations.
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Figure 1. STGB models with 5 at. % H in aluminum.

2.2. Calculation of Hydrogen Diffusion

In molecular dynamics, the average of the squares of atomic displacements was called
the mean square displacement (MSD). The MSD was used to measure the average moving
distance of the atom. The relationship between the MSD and time can reflect the diffusion
intensity of the atom. The atomic diffusion rate was calculated by counting the average
displacement of atoms in the system. The MSD of hydrogen atoms was calculated using
Formula (2):

MSD =

〈∣∣∣→ri (t)−
→
ri (0)

∣∣∣2〉 (2)

where
→
ri (0) is the three-dimensional position vector of the ith hydrogen atom at time 0,

and
→
ri (t) is the three-dimensional position vector of the ith hydrogen atom at time t. In

all simulations in this study, MSD data were recorded every 100 steps. For the hydrogen
diffusion rate, according to the Einstein formula of diffusion rate, the diffusion rate D in
the system can be calculated by MSD. The relationship between diffusion rate and MSD is
as follows:

D = lim
t→∞

1
6t

〈∣∣∣→ri (t)−
→
ri (0)

∣∣∣2〉 = lim
t→∞

MSD
6t

(3)
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3. Results
3.1. Diffusion Rate of Hydrogen Atoms at Different Temperatures

We simulated the diffusion of hydrogen atoms at different temperatures and chose
Σ5(120)[001] STGB models with 5 at. % H as the research object. The STGB models and
their corresponding bulk models were simulated at temperatures of 400 K, 500 K, 600 K
and 700 K, respectively, to explore the effect of temperature on hydrogen diffusion in
aluminum grain boundaries and the bulk of aluminum. The simulation time of all models
after relaxation was 1200 ps. The MSD of hydrogen atoms in the models at different
temperatures is shown in Figure 3a,b, respectively. In the figure, the “STGB model” was
the MSD of hydrogen atom diffusion in the symmetrically tilted aluminum grain boundary
model, and “Bulk model” was the aluminum single-grain bulk model. Each straight line
corresponding to an MSD curve was a linear fitting carried out on the data analysis software
Origin using the least square method. Table 2 shows the slope value of the linear-fitting
straight line of MSD curves of hydrogen atoms at different temperatures, as well as the
goodness of fit (R2) and error of linear fitting for each curve. The linear fitting of hydrogen
diffusion means that the displacement curves at different temperatures in Table 2 have
small error values and a high goodness of fit, indicating that the hydrogen diffusion MSD
curve in the simulation had a strong linear relationship, and the slope obtained by fitting
from the MSD curve had a high reliability. It can be seen from the data in Table 2 that the
slope of the hydrogen diffusion MSD curve varies greatly at different temperatures, and
the slope value obtained by the linear fitting of MSD in the STGB model was always greater
than that in a single grain bulk model, which showed that the diffusion rate of hydrogen



Metals 2022, 12, 345 6 of 14

atoms in STGB models was higher than that in bulk models, and grain boundaries have an
effect on the rate of hydrogen diffusion.
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Figure 3. MSD curves of hydrogen atoms in Σ5(120)[001] STGB models and bulk models with 5 at. %
H at different temperatures. (a) MSD curves of hydrogen atoms at 400 K and 500 K; (b) MSD curves
of hydrogen atoms at 600 K and 700 K.

Table 2. Linear fitting slope value of MSD curve in Σ5(120)[001] STGB model and bulk model.

Temperature
(K)

Slope of
Bulk Model

(Å2/ps)
Error R2

Slope of GB
Model
(Å2/ps)

Error R2

400 5.53 × 10−3 1.47 × 10−5 0.941 1.09 × 10−2 2.21 × 10−5 0.966
500 4.94 × 10−2 7.90 × 10−5 0.980 6.80 × 10−2 8.57 × 10−5 0.987
600 0.249 2.60 × 10−4 0.991 0.362 2.54 × 10−4 0.996
700 0.750 4.39 × 10−4 0.997 1.04 1.85 × 10−4 0.976

The diffusion rates D of hydrogen atoms in STGB models and bulk models at different
temperatures, calculated according to the slope fitting value of MSD curves, are shown
in Figure 4. The diffusion rate D, obtained by the Σ5(120)[001] STGB models and their
control groups and temperature, follow the Arrhenius relationship D = D0 exp(−Q/RT).
As can be seen from the figure, at different temperatures, the diffusion rates of hydrogen
atoms in the STGB models were always higher than those in the bulk models. With the
increase in temperature, the diffusion rates of hydrogen atoms in the models containing
grain boundaries were almost equal to those in the bulk models, which is consistent with
the law simulated by Page et al. [24].

Many scholars measured the hydrogen diffusion rate in aluminum through experi-
ments, but there were differences between the measured hydrogen diffusion rates. Some
experimental measurements of hydrogen diffusion in aluminum are also listed in Figure 4.
Comparing the MD simulation results with the experimental hydrogen diffusion results,
the diffusion rates measured by Outlaw, Hashimoto and Saitoh were similar to the sim-
ulation results [30–32], and there was a certain deviation between the measurement and
simulation results of Eichenauer and Ishikawa [33,34]. In the process of experimental
measurement, many factors such as the purity of aluminum, aluminum crystal micro
defects and experimental system errors affect the experimental results. To some extent, the
difference between the simulation results and the experimental measurements may also be
related to the selection of the potential function and the size of model. The small difference
in the potential function affects the interaction between Al-H atoms in the system, and
the diffusion rate of hydrogen atoms changes. The problem of model size also affects the
motion of hydrogen atoms. When comparing the experimental measurements, it can be
determined that the simulation results have a high accuracy.



Metals 2022, 12, 345 7 of 14

Metals 2022, 12, x FOR PEER REVIEW 7 of 14 
 

 

700 0.750 4.39 × 10−4 0.997 1.04 1.85 × 10−4 0.976 

The diffusion rates D of hydrogen atoms in STGB models and bulk models at differ-
ent temperatures, calculated according to the slope fitting value of MSD curves, are shown 
in Figure 4. The diffusion rate D, obtained by the Σ5(120)[001] STGB models and their 
control groups and temperature, follow the Arrhenius relationship 

)/exp(0 RTQDD −= . As can be seen from the figure, at different temperatures, the 
diffusion rates of hydrogen atoms in the STGB models were always higher than those in 
the bulk models. With the increase in temperature, the diffusion rates of hydrogen atoms 
in the models containing grain boundaries were almost equal to those in the bulk models, 
which is consistent with the law simulated by Page et al. [24]. 

 
Figure 4. Diffusion rates of hydrogen atoms at Σ5(120)[001] STGB models and bulk models with 5 
at. % H at different temperatures. 

Many scholars measured the hydrogen diffusion rate in aluminum through experi-
ments, but there were differences between the measured hydrogen diffusion rates. Some 
experimental measurements of hydrogen diffusion in aluminum are also listed in Figure 
4. Comparing the MD simulation results with the experimental hydrogen diffusion re-
sults, the diffusion rates measured by Outlaw, Hashimoto and Saitoh were similar to the 
simulation results [30–32], and there was a certain deviation between the measurement 
and simulation results of Eichenauer and Ishikawa [33,34]. In the process of experimental 
measurement, many factors such as the purity of aluminum, aluminum crystal micro de-
fects and experimental system errors affect the experimental results. To some extent, the 
difference between the simulation results and the experimental measurements may also 
be related to the selection of the potential function and the size of model. The small dif-
ference in the potential function affects the interaction between Al-H atoms in the system, 
and the diffusion rate of hydrogen atoms changes. The problem of model size also affects 
the motion of hydrogen atoms. When comparing the experimental measurements, it can 
be determined that the simulation results have a high accuracy. 

  

Figure 4. Diffusion rates of hydrogen atoms at Σ5(120)[001] STGB models and bulk models with
5 at. % H at different temperatures.

3.2. Diffusion of Hydrogen Atoms in Different STGBs of Aluminum

In order to explore the effects of different angles of STGB and different hydrogen
concentrations on hydrogen diffusion at the grain boundaries in aluminum, three groups
of STGB models and bulk models with different hydrogen concentrations were established,
respectively. All molecular dynamics simulations were completed at 700 K. The MSD curves
in STGB models with concentrations of 0.5, 2.5 and 5 at. % H are shown in Figure 5a–c,
respectively. It can be seen from the figure that the MSD curves of the STGB models with
0.5 at. % H are significantly different from those of the models with 2.5 and 5 at. % H. At
600 ps, the MSD curves of STGB models with 0.5 at. % H have an inflection point, and
the hydrogen diffusion rate before and after the inflection point was significantly different.
In contrast, the slope of the MSD curves of STGB models with 2.5 at. % H decreases
after 600 ps, but the MSD curve of model with 5 at. % H hardly changed after 600 ps.
Comparing the MSD curves of different hydrogen concentrations, the diffusion rate of
hydrogen atoms in STGB models had a great relationship with hydrogen concentration.
At the lower concentration of 0.5 at. % H, the decrease in the slopes of the MSD curves
showed that the capture of hydrogen atoms by grain boundaries hinders the diffusion of
hydrogen atoms. This does not happen in the concentration of 5 at. % H models, indicating
that the barrier ability of the grain boundary to hydrogen atom diffusion decreases.

Using the same method as the MSD curves at different temperatures, the MSD curves
of STGB models and their control models at different angles were linearly fitted. The
model with a concentration of 0.5 at. % H only fitted the MSD curves before 600 ps.
The slope value obtained by fitting was calculated to obtain the hydrogen diffusion rate
in different models. The hydrogen diffusion rate of STGB models with concentrations
of 0.5, 2.5 and 5 at. % H and the control bulk models at 700 K are shown in Figure 6,
Figure 7 and Figure 8, respectively. In the bulk models with three groups of different
hydrogen concentrations, the diffusion rate of hydrogen atoms fluctuates slightly due to
different inclination angles, and the diffusion rate of hydrogen atoms in the bulk models is
1.0× 10−9 m2/s to 1.25× 10−9 m2/s. In the STGB models, the existence of grain boundaries
affects the diffusion rate of hydrogen atoms. Under different hydrogen concentrations,
the diffusion rates of hydrogen atoms in the STGB models were greater than those in the
bulk models, and the difference of diffusion rate was clearer with the increase in hydrogen
concentration.
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The grain boundaries of the aluminum captured hydrogen atoms in the process of
hydrogen atom movement, and the diffusion process of hydrogen atoms was affected by
factors such as grain boundaries. Figures 9–11 are hydrogen diffusion diagrams of Σ29a
(250) STGB models at 700 K with concentrations of 0.5, 2.5 and 5 at. % H, respectively.
Figures 9a, 10a and 11a are the MSD curves and the MSD curves of the X, Y and Z directions
of hydrogen atoms in Σ29a (250) STGB models with concentrations of 0.5, 2.5 and 5 at. % H,
respectively. Figures 9b, 10b and 11b are the diffusion rates of hydrogen atoms at 0–600 ps
and 600–1200 ps in Σ29a (250) STGB models with concentrations of 0.5, 2.5 and 5 at. %
H, respectively. Figures 9c, 10c and 11c are the distribution diagrams of hydrogen atoms
in Σ29a (250) STGB models with concentrations of 0.5, 2.5 and 5 at. % H, respectively.
Comparing the MSD curves in the coordinate axis direction of different concentrations,
the diffusion rates of hydrogen atoms in the three directions were almost the same before
600 ps. However, after 600 ps, more hydrogen atoms gathered at the grain boundaries. In
the STGB model with a hydrogen concentration of 0.5%, the diffusion rates of hydrogen
atoms in three directions became very small. In the model with hydrogen concentrations of
2.5% and 5%, the diffusion rates of hydrogen atoms in the three directions were different.
The diffusion rates of hydrogen atoms in the Z direction were less than those in the X and
Y directions, and the plane of grain boundary was perpendicular to the Z axis. It showed
that after the hydrogen concentration at the grain boundaries increases, the diffusion of
hydrogen atoms at the grain boundaries was anisotropic, and hydrogen atoms have a rapid
diffusion along the grain boundary.

Figure 12 shows the hydrogen distribution diagram of the STGB model with a hy-
drogen content of 5% at 1200 ps. Hydrogen atoms were enriched at the grain boundary
in STGB models with different angles. The orange elliptical regions in the figures are
the enrichment regions formed after hydrogen atoms gather. The accumulation of too
many hydrogen atoms made it possible for hydrogen atoms to combine to form hydrogen
molecules. The increase in internal pressure at the grain boundaries distorted the lattice of
the nearby aluminum. In some STGB models, small aluminum denuded zones can even
appear, which become the starting point of microcrack initiation.
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Figure 10. Hydrogen diffusion diagram of Σ29a(250) STGB model with 2.5 at. % H. (a) MSD of H and
MSD in X, Y and Z direction; (b) Hydrogen diffusion rate of 0–600 ps and 600–1200 ps; (c) Distribution
diagrams of H in Σ29a(250) STGB model at 0 ps, 300 ps, 600 ps, 900 ps and 1200 ps.
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Figure 11. Hydrogen diffusion diagram of Σ29a(250) STGB model with 5 at. % H. (a) MSD of H and
MSD in X, Y and Z direction; (b) Hydrogen diffusion rate of 0–600 ps and 600–1200 ps; (c) Distribution
diagrams of H in Σ29a(250) STGB model at 0 ps, 300 ps, 600 ps, 900 ps and 1200 ps.

The research conducted in this paper selected seven kinds of STGB as the research
object for simulation, covering different angles of grain boundaries. The simulation result
was very close to the experimental value when compared with the hydrogen diffusion rate
measured by the experiment; therefore, the simulation results were reliable. The current
simulation proves that the selected grain boundary meets the above-mentioned predicted
law, but it cannot represent other types of grain boundaries. The influence of other types
of grain boundaries on hydrogen diffusion requires further research. Unfortunately, this
study cannot extract MSD data by region, which is a problem that we need to overcome in
future research.
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4. Conclusions

(1) Grain boundaries have a great influence on the diffusion rate of hydrogen atoms in
aluminum. The diffusion rate of hydrogen in the model with a grain boundary is
higher than that in the block model.

(2) In the 0.5 at. % H STGB models, the grain boundaries capture hydrogen atoms
and hinder the diffusion of hydrogen. In the 2.5 and 5 at. % H STGB models,
the barrier effect of grain boundaries on hydrogen is weakened, and the overall
hydrogen diffusion rate increases after the aggregation of hydrogen atoms at the grain
boundaries.

(3) In the STGB models with 2.5 and 5 at. % H, the anisotropy of diffusion rate is clearer
after hydrogen atoms accumulated at the grain boundaries, which shows that the dif-
fusion rate along the grain boundaries interface increases. MD simulation is a feasible
and effective method for studying the effect of complex grain boundaries in hydrogen
diffusion, which provides a new research idea for studying other microstructure
defects and hydrogen diffusion in metals.
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