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Abstract: With the increasing awareness of sustainable mining, the cement tailings backfill (CTB)
method has been developed rapidly over the past decades. In the CTB technique, the two main
mechanical properties engineers were concerned with are the rheological properties of CTB slurry
and the resulting CTB strength after curing. Particle size distribution (PSD) of tailings material or
PSD of the slurry is a significant factor that highly influences the rheological of CTB slurry and the
strength performance of CTB. However, the concentrically partial size distribution curve and existing
mathematical model could not represent the PSD of tailings material. In this study, a mathematical
model for the particle size distribution of mine tailings was established using three model coefficients
A B and K, which mainly reflect the characteristics of particles from three aspects respectively, the
average size of particles, the proportion of the coarse or the fine parts of particles, and the distribution
width of particles; meanwhile, an optimal coefficient solution method based on error analysis is
given. Twelve tailing materials sourced from metal mines around China were used for the model
establishment and validation. The determination coefficient of error analysis (R2) for all twelve
modeled PSD lognormal curves was more significant than 0.99, and the modeled PSD lognormal
curves are highly consistent with the determined particle size distribution curve.

Keywords: backfill; tailings; particle size distribution; metal mine; log-sigmoid

1. Introduction

With the increasing awareness of sustainable mining, the cement tailings backfill (CTB)
method has been developed rapidly over the past decades [1–4]. Cement tailings backfill
is a technology that assists waste management and mitigates the mine environment from
being hazardous by utilizing tailings (or other waste materials) to underground mined
voids resulting from underground mine operations [5–8]. It somehow performs as both a
support system or an underground working platform to improve the underground mine
stability and promote ore extraction [9–12]. The cement tailings backfill is normally mixed
to a high-density slurry with a non-settling character, consisting of a low cementitious
material content, mine tailings as aggregate, and processed mine water, which could be
gravity-transferred or facile pumping into mined cavities [13–16]. After placing CTB
slurries in mined cavities, it could then be consolidated and cured to a designed period to
achieve particular strength for further mine exaction [17–20].

Tailings used for filling in mines are usually obtained through the beneficiation process,
and their particle size range varies according to different beneficiation processes [21–23].
Generally, the tailings produced by the flotation process for copper, lead-zinc, gold, and
other raw ores can reach about 80% below 37 µm [24]. The tailings produced by the
magnetic separation and gravity separation process are relatively coarse for iron ore, tin
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ore, etc. According to the 74 µm boundary, the coarse particle part above can account up
for about 60% [25,26].

Over the past few decades, due to the low operating costs and well-performed me-
chanical performance compared with other backfilling methods, CTB technology has been
increasingly applied in the mining industry [27–29]. In the CTB technique, the two main
mechanical property engineers were concerned with are the rheological properties of CTB
slurry and the resulting CTB strength after curing [30–34]. The governing factors of CTB
rheological and strength performance have been well documented in the literature [35–38]
(e.g., physical and chemical properties of the tailings, chemical composition and content
of the mixing water, binder type, and content, the CTB mix design, and in situ curing
conditions for strength performance only).

Particle size distribution (PSD) of tailings material or PSD of the slurry is a signifi-
cant factor that highly influences the rheological and strength performance of CTB [29–31].
Conventionally, there are two forms: interval distribution and cumulative distribution,
representing material PSD. Interval distribution, also known as differential distribution or
frequency distribution, represents the percentage content of particles in a series of particle
size ranges; cumulative distribution represents the percentage content of particles less than
specific particle size [37,39]. As the cumulative distribution curve can easily make the cu-
mulative proportion of particles smaller than a specific size, it is widely used in the mine
backfill [36,37,39–41]. On the PSD curve, the coarse and fine characteristics of a specific back-
fill tailing material can be approximately reflected by choosing some points. Such common
representative points are usually d30, d50, d60. Here, the symbol d represents the particle
size, and the number subscript represents the proportion smaller than the particle size. For
example, d10 represents a particle size with a cumulative volume fraction less than 10%.

Conventionally, researchers often use these representative points to represent tailing
PSD in investigating the relationship between the tailings’ PSD with the rheological and
strength performance of CTB to solve the problems encountered in CTB slurry transporta-
tion underground support [42–44]. Therefore, it is of great significance to study the particle
distribution characteristics of tailings. However, the conventional PSD curve is not easy
enough to describe the characteristics of particle distribution entirely because the curve is
only a collection of scattered points and the selected representative points are random to
some extent, i.e., there is no certain equivalent size that can represent the whole particle
group features in a conventional PSD curve. Thus, it is of great significance to study the
full-size description method of tailings.

Fredlund et al. [45–47] established a mathematical equation representing soil particle
size distribution. However, Fredlund’s model mainly focuses on naturally grained soils
and could not represent the particle size distribution of artificial mine tailings. In addition,
in Fredlund’s model, five model coefficients are required to represent the PSD, including
the initial breaking point of the PSD curve, the steepest slope of the curve, the shape of the
fines portion of the curve, the amount of fine, and the diameter of the minimum allowable
size particle. These model coefficients are difficult to obtain and lead to difficulties in the
study of PSD. Hence, a mathematical model for tailings material PSD with fewer model
coefficients will benefit CTB research.

The present study aims to build a mathematical model of tailings material using twelve
different tailings sources from various mines in China. Loop iteration was used to obtain a
more reliable model function to express the characteristics of particle size compositions
with three coefficients. The model could then be validated using the twelve different
tailings materials and was further applied in industrial applications.

2. Materials

Twelve different tailings sources from various mines in China were used in this study
and each of them are conform to Non-hazardous industrial solid waste standard [48]. The
tailings include coarse-grained tailings to extremely fine-grained tailings, representing
the typical particle size distribution (PSD) range of tailings materials in underground
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metal mines. After sampling, the particle size distribution (PSD) of the used tailings were
determined by Laser Particle Size Analyzer (PSA) (Malvern Mastersizer 2000: Malvern In-
struments Ltd., Malvern, UK) and the specific gravity (ρs) of each tailing was measured [49].
As shown in Table 1, the measured particle size distribution and specific gravity for all
twelve tailings were listed.

Table 1. The particle size distribution and specific gravity of tailings.

Samples ρs
PSD Measured Curve, µm

d10
(1) d30

(2) d50
(3) d60

(4) d70
(5) d90

(6)

Classified fine Copper tailing: S1 3.02 1.76 6.41 14.42 20.43 28.71 64.62
Unclassified Copper tailing: S2 2.64 2.25 9.34 36.27 56.83 81.42 172.7

Unclassified Copper-Nickel tailing: S3 2.94 2.62 10.56 27.94 42.53 62.52 132.48
Unclassified Polymetallic tailing: S4 3.19 2.75 12.86 33.71 53.15 82.34 203.57

Unclassified Copper tailing: S5 2.87 2.75 13.15 39.58 68.51 116.14 251.02
Unclassified Copper tailing: S6 2.75 2.95 11.78 28.97 43.56 65.03 151.48
Unclassified Copper tailing: S7 2.98 3.31 23.54 78.86 119.77 179.22 393.43

Unclassified Copper-Gold tailing: S8 2.95 4.44 11.1 21.88 31.21 45.9 118.76
Unclassified Copper-Gold tailing: S9 2.94 7.24 40.4 76.42 99.45 130.37 268.87

Unclassified Copper tailing: S10 2.96 9.31 46.57 82.46 105.45 137.32 284.11
Unclassified Iron tailing: S11 2.84 10.22 42.7 79.81 104.39 137.8 296.31

Classified coarse Copper tailing: S12 2.94 13.62 60.82 106.92 137.79 179.24 345.65
(1) The portion of particles with diameters smaller than this value is 10%. (2) The portion of particles with diameters
smaller than this value is 30%. (3) The portion of particles with diameters smaller than this value is 50%. (4) The
portion of particles with diameters smaller than this value is 60%. (5) The portion of particles with diameters
smaller than this value is 70%. (6) The portion of particles with diameters smaller than this value is 90%.

Figure 1 illustrates the particle size distribution of all twelve tailings materials in
semi-logarithmic coordinate space. S1 is the finest material used in this study in the twelve
tailings, which is the classified fine part, followed by unclassified tailings S2 to S11 sourced
from different metal mines and classified coarse tailing S12. Hence, the tailings materials
from S1 to S12 are gradually coarsened, and the average grain size increases.
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Figure 1. The particle size distribution of twelve different tailings.

3. Mathematical Model
3.1. Definition of Coefficients

As shown in Figure 1, the PSD of tailings on the logarithmic curve has S-shaped
characteristics. The ordinate is the cumulative percentage value passing a specific particle
size, and the abscissa is the logarithm of the particle diameter. Therefore, to establish a
Mathematical Model for PSD of the tailings material, a Sigmoid function can be used to
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simulate the tailing’s grain size distribution characteristics, as shown in Equation (1). The
following contents will discuss further analysis by the goodness-of-fit test for its reliability.

Ni =
K

1 + AXi
B (1)

where Ni refers to the cumulative percentage value of particles less than specific particle
size, Xi, and A, B, K are the model coefficients.

The equivalent form of Equation (1) could be written as follows:

ln(A) + B ln(Xi) = ln(
K
Ni

− 1) (2)

The independent variable and dependent variable of Equation (2) can be equivalent,
and then the equation could be modified as follows:

A + BX = Y (3)

where 
A = ln(A)

Xi = ln(Xi)
Yi = ln( K

Ni
− 1)

The model coefficients A, B and K in Equation (1) then can be obtained in the
following steps:

Step 1: Three methods to determine Coefficient K

(a). Method 1: The meaning of K value is the cumulative fraction of particles when the
particle size reaches infinity. Therefore, the approximate value is Approach to 100%.
It is means K = 100 (Excluding percent sign, the same below).

(b). Method 2: According to Equation (2), three equidistant points are selected to eliminate
the coefficients A and B. The value K can be calculated by solving the Equation (4).
The equidistant points can be 37 µm, 74 µm, and 150 µm.

K =
N1[2N0N2 − N1(N0 + N2)]

N0N2 − N2
1

(4)

where N0, N1, and N2 are the cumulative percentage values of particles passing 37 µm,
74 µm, and 150 µm. It should be pointed out that the K value can be calculated for
N0, N1 and N2 of any equidistant points. The above value method can cover most
of the particle size range of tailings for common tailings, and the value is relatively
reasonable.

(c). Method 3: The K value is optimal fitting solved by loop iterative calculation, which
will be discussed in Section 3.2.

Step 2: Take points and linear regression to obtain coefficients A and B

The coefficients A and B can be obtained by linear regression of the measured tailing’s
particle size distribution scatters by Equation (3). A series of representative points are taken
for regression analysis. In the present work, d10, d30, d50, d60, d70, d90 are proposed. The
linear regression equation could be written as follows: A =

∑ XiYi− 1
N ∑ Xi∑ Yi

∑ X2
i −

1
N (∑ Xi)

2

B = ∑ Yi−A∑ Xi
N

(5)

where (Xi, Yi) is the sample point, i.e., (d10,10), (d30,30), (d50,50), (d60,60), (d70,70), (d90,90),
and N is the number of samples (N = 6 in this study). The coefficients A and B can be
obtained by substitution with A and B in Equation (3).
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Step 3: Error analysis

To further analyze the reliability of this regression model, the following goodness-of-fit
test error analysis method is used:

R2 = 1 − SSR
SST

= 1 − ∑ (Ŷi − Yi)
2

∑ (Yi − Yi)
2 (6)

where R2 reflects the goodness-of-fitting, also known as Determinants of coefficients, the
maximum value of R2 is 1, and the closer the value to 1, the better the fitting is. Generally, it
should not be less than 0.8. SST is the square sum of total deviations; SSR is the square sum
of errors; Ŷi is the predictive value of the model; and Yi is the average value of samples.

Through the above steps, the S-curve model can be obtained, but the reliability of the
model is greatly affected by the measuring points, and the reliability index of error analysis
could be low. In order to solve this problem, a simple loop iteration calculation is carried
out based on the goodness-of-fit to find the most suitable model coefficients.

3.2. Iterative Analysis for the Optimal Fitting Coefficient

In order to obtain a more reliable model function to express the characteristics of
particle size composition, the three model coefficients (A, B and K) are obtained by loop
iteration. Figure 2 illustrates the structure of the loop iterative control flow chart. As shown
in Figure 2, Equation (6) is used as the discrimination function of the iterative loop, where
the initial value of K is taken as 100, and the loop step is 1 (K = K + 1). The Coefficient A
and B in each cycle step are obtained by Equation (5), the corresponding model calculation
value is calculated by Equation (1), and the corresponding goodness-of-fit is calculated by
Equation (6).
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At the starring of loop interactive, the initial value of K was taken as 100, the char-
acteristic points (d10,10), (d30,30), (d50,50), (d60,60), (d70,70), (d90,90) as the sample points
for linear regression were obtained, and the model coefficients A and B were calculated
according to Equation (3). When the corresponding model calculation value N̂i of the
cumulative proportion of particles is calculated by Equation (1), R2 can then be obtained
by Equation (6). If R2 satisfies the condition of loop termination, the calculation ends by
increasing K by 1 for a new loop until the R2 fits the loop termination requirements. The
final values of model coefficients could finally be outputted. In this study, the condition for
cycle terminations is R2 ≤ 0.99. Generally, the PSD model with enough goodness-of-fit can
be obtained through a few loop-steps

3.3. Coefficients Interpretation

The three coefficients of the model determine the distribution characteristics of the
particle size, each of them is analyzed as follows.

(a) Coefficient A reflects the average particle size

We plot the model curves with various A values for 10 to 100 when K = 100 and
B = −1.0 as shown in Figure 3. The PSD curves move towards a coarse particle area with
the increase, indicating that the Coefficient A is positively correlated with the overall
particle size. Hence, the larger the value of A is, the larger the average particle size is, and
vice versa.
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Figure 3. Model curve under different coefficient A.

(b) Coefficient B represents the proportion of coarse and fine tailings

Similarly, Figure 4 illustrates the model curves under different coefficient B values
for −1.25 increasing to −0.8 when A = 50, K = 100. As shown in Figure 4, the fine fraction
content increased in the particle size distribution with an increase in the B value. Therefore,
the Coefficient B can reflect the proportion of the fine part to the coarse. The larger that B is,
the smaller the fine particles contained, and vice versa.
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(c) Coefficient K represents the width of particle distribution

Similarly, Figure 5 illustrates the modeled curve under different coefficients K increas-
ing from 100 to 145 when A = 50 and B = −1.0. As shown in Figure 5, with the increase of
K, the cumulative volume fraction of particles reaches 100% rapidly, and the corresponding
particle size decreases significantly, which indicates that the Coefficient K can represent the
maximum particle size and the distribution width of particles. The higher the K value is,
the smaller the maximum particle size is and the narrower the particle distribution width,
and vice versa.
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4. Validation and Discussion

Twelve kinds of tailings are used for verification. The coefficients of sample materials
are shown in Table 1. The model is established by cyclic iteration, as described in Section 3.
The results are shown in Table 2.

Coefficient A reflects the average fineness of tailings particles, as shown in Table 1,
with the increase of samples number, the average particles sizes show an increasing trend;
A = 19.32 for S1 sample, which is the smallest one, indicating that the sample is the finest
tailings, A = 234.78 for S12, which is the largest one, indicating that the sample is the
coarsest tailings. Coefficient B reflects the portion of coarse and fine tailings, as shown
in Table 1, B = −0.69 of S8 sample is the largest, indicating the fine part proportion is the
least, B = −1.29 of S2 sample is the smallest, indicating the fine part proportion is the
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most. Coefficient K reflects the width of PSD, as shown in Table 1, K = 101 of S2 sample is
the lowest, indicating the distribution of PSD is the broadest, K = 126 of S8 sample is the
highest, indicating the distribution of PSD is the narrowest.

Table 2. Tailings sample PSD model and coefficients.

Samples Model
Coefficients

A B K R2

S1 Ni =
104

1+19.32e−1.12 19.32 −1.12 104 0.999
S2 Ni =

101
1+57.78e−1.29 57.78 −1.29 101 0.999

S3 Ni =
120

1+25.15e−0.87 25.15 −0.87 120 0.999
S4 Ni =

115
1+19.57e−0.79 19.57 −0.79 115 0.994

S5 Ni =
109

1+28.79e−0.96 28.79 −0.96 109 0.999
S6 Ni =

108
1+25.18e−0.89 25.18 −0.89 108 0.999

S7 Ni =
116

1+22.6e−0.77 22.60 −0.77 116 0.996
S8 Ni =

126
1+27.98e−0.69 27.98 −0.69 126 0.995

S9 Ni =
115

1+90.63e−1.0 90.63 −1.00 115 0.995
S10 Ni =

115
1−133.67e−1.07 133.67 −1.07 115 0.995

S11 Ni =
108

1+167.68e−1.16 167.68 −1.16 108 0.997
S12 Ni =

104
1−19.32e−1.12 234.78 −1.13 114 0.993

Overall, the model coefficients A, B, and K could well describe the average particle
sizes, portion of coarse and fine tailings and the range for the particle size distribution.
Figure 6 illustrates the semi-logarithmic PSD of all twelve samples modeled using the three
coefficients, and their PSD characteristics are highly consistent with the measured PSD
graph shown in Figure 1.
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Figure 6. Model curve of tailings samples.

We compared the model curve with the measured curve and selected the particle size
characteristic curves of two samples (S1 and S2) for a clear representation, in which the
solid line is the measured PSD, and the dotted line is the model calculated PSD.

It can be seen from Figure 7, although there is a slight deviation in some local places
of the curve, that the overall modeled curve is highly consistent with the measured one,
which vividly reflects the fact of a high goodness-of-fit (R2). Similarly, other samples also
have the same regular characteristics, but due to the limited space, it will not be shown one
by one.
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5. Conclusions

This study firstly presents a mathematical model for the particle size distribution of
mine tailings. The model contains three model coefficients (A, B and K) which mainly reflect
the characteristics of particles from three aspects respectively, the average size of particles
can be reflected by coefficient A, the proportion of the coarse or the fine parts of particles
can be reflected by coefficient B, and the distribution width of particles can be reflected by
coefficient K. Loop iteration was used to obtain a more reliable model function to express
the characteristics of particle size composition with the three coefficients. Twelve tailing
materials sourced from metal mines around China were used for the model establishment
and validation. The goodness-of-fitting was given by R2 for all twelve samples, each of
them was greater than 0.99, showing a highly consistent between the test values and the
model calculate values.

Compared with other particle characterization methods, using the proposed model
to research the PSD features of tailings can intuitively obtain the overall particle size, the
proportion characteristics tailings of coarse parts to fine parts, the distribution width of
the particle size, which can provide a reference for studying the PSD features and its
influence on other physical quantities, such as the strength characteristics of cemented
backfill and the flow pattern characteristics of tailings slurry. This model is mainly focused
on artificially grinded tailing materials in mineral procession, its applicability for natural
formed particles such as sand or soil need be verified and the application on artificial sand
such as construction sand, slag powder could be further studied.
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